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Abstract: A novel approach is proposed to the state estimation of 
a class of nonlinear systems which consist of known linear part 
and unknown nonlinear part. A linear observer is first designed 
then a nonlinear compensation term in the nonlinear observer is 
determined using the proposed “deconvolution method”. The B- 
spline neural network is used to model the estimated compensation 
term. Three simulation examples are given to compare the 
effectiveness of the proposed approach and some analytical 
approaches. 
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1. Introduction 
Estimating the states of nonlinear systems is important to control , 
supervisory and fault diagnosis problems. There are some 
research results on the design of observer of nonlinear system 
using analytical approach in the publications [ 1-41. The: Canonical 
Observer Design developed by Bestle, Zeitz [ l ] ,  ECrener and 
Respondek [2] uses Lie-algebraic methods to transform the 
nonlinear plant into observer canonical form from which the 
design of an observer is facilitated. However to find an :appropriate 
nonlinear one to one transformation is highly nontrivial. 
Moreover, the nonlinear model of the plant must be known 
exactly. Baumann and Rugh developed another approach [3] in 
which an extended lineairization technique is utilized to produce 
an observer. Here again the exact knowledge of the nonlinearities 
and, further , the first derivative of these nonlinearities must be 
known in order to calculate the gain function of the observer. 
Walcott and Zak proposed a variable structure method [4] which 
only uses the bounds of nonlinearity of the plant in observer 
dynamics. However the bounds may not be known exactly in 
practice. Comparative study of above methods is given in [SI. 
Many problems of designing nonlinear observer remain to be 
solved. Especially, when the model of the nonlinearity is unknown 
or does not satisfy the conditions required by the above methods. 

Neural network has proven to be an universal approximator. It 
can successfully approximate nonlinear function. However, only 
few papers have applied neural network approach to the state 
estimation of nonlinear systems [6], [7] as compared with the 
neural approach to the system modeling [8]-[ 111. Although they 
are similar in terms of the function approximation, the state 
estimation problem is more difficult than the modeling problem. It 
requires the observability of nonlinear system which is hard to 
check. 

In this paper, the B-spline neural network is applied to the 
state estimation of nonlinear systems with unknown nonlinearity 

and known linear part. The nonlinear observer consists of a linear 
observer and a nonlinear compensation term. The compensation 
term is determined using a proposed “deconvolution method”. 
Then, it is modeled using B-spline neural network. Simulation 
examples of the proposed approach are given to illustrate the 
effectiveness. 

The rest of the paper is organized as follows: In second section, 
a novel design procedure of nonlinear observer based on neural 
network is presented; In third section, the estimation of unknown 
nonlinear compensation term in the nonlinear observer using 
“deconvolution method” is developed; In forth section, B-spline 
neural network is used to model the nonlinear compensation term; 
In fifth section estimation error of the Neural Network observer is 
analyzed; In sixth section simulation examples are given, the 
results o f  the proposed approach and some analytical approaches 
are compared; The last section is the conclusion. 

2. New design procedure of nonlinear neural network based 
observers 
(1) System 
Consider a class of nonlinear systems described by 

x ( k  + 1) = Ax(k)  + f ( x ( k ) )  (1) 

Y ( k )  = Cx(k)  (2) 
where A is the linear part of the system; f (x )  is nonlinear part of 
the system. The measurement equation is linear. We assume the 
linear part of the system is known and observable, i.e., (A,C) is a 
observable pair. The nonlinear part f (x)  is unknown and not 
necessary smooth. 
(2) Design procedure 
(a) Firstly, we design a linear observer for the linear part of the 
system as follows: 

; , ( k + l ) =  A $ , ( k ) + K y ( k )  (3) 

A , = A - K C  (4) 
where K is observer gain, which can be designed using existing 
methods, and i1 is the state of linear observer. The nonlinear 
observer has the following form 

f (k + 1) = A&k) + K y ( k )  + S ( k )  ( 5 )  

j y k )  = G ( k )  (6) 
where S is an unknown nonlinear compensation term which is due 
to the existence of nonlinear part in (1 1. 
(b) Secondly, we estimate the unknown nonlinear compensation 
term S using a “ deconvolution procedure”. Since the nonlinear 
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observer output j can be expressed as a convolution relation 
with the nonlinear compensation term, by forcing the observer 
output j to equal the system output y, the unknown nonlinear 
compensation term can be determined. 
(c) Finally, using neural network mapping ability we can model 
the nonlinear compensation term as a nonlinear function of some 
inputs selected based on the knowledge of the system 
nonlinearity, or by trial and errors. 

3. Determination of the nonlinear compensation term using 
“deconvolution procedure” 
The idea is to force j ( k )  in (6) to track y(k), in doing so we can 
determine the compensation term. From (5) and (6) we have 
j ( k ) = C i ( k ) =  C I A O . ? ( k - l ) + K y ( k - l ) + S ( k - l ) ] = . - .  

k k 

= CA,” i (o)  + C CA;-’ ~ y ( k  - i) + C C A ; - ’ S ( ~  - i) (7) 
*=I r = l  

k 

y ” ( k ) = y ( k ) - j ( k ) = y ’ ( k ) - C C A i - ’ S ( k - i )  (8) 
r = l  

k 

y * ( k )  = y ( k )  - CA: i ( 0 )  - C CA;-’ Ky ( k  - i) (9) 
r=l 

i ( 0 )  can be assigned arbitrary, except to satisfy 

Ci(0) = j ( 0 )  = y ( 0 )  , therefore y * ( k )  is known. Let 

y”(k)  = 0 and cr = CA;-’, k=1,2 ,..., M+1. From (8) we can 
obtain 

c, S(0) = Y’  ( 1 )  
ClS(1)+C2S(O) = y ’ ( 2 )  

CIS(M)+*..+CM+IS(0) = y * ( M  + 1 )  

I 

(10) 

S(0) = C + Y ’ ( l )  

1 
when rank( C) = n , and p 2 n ( C E R pxn ), the solution of S(k) 
is 

where C’ = (C’C)-’ C‘ , k = 1, 
When S(k) can be expressed as 

, M 

where F ( k )  E R d x n .  C can be partitioned accordingly as 

C = [ c  C],where Z ; R P X d .  

When runk(C) = d , p 2 d , we can obtain a solution for S ( k )  
as 

S(0, = C’Y (1) 

4. Modeling nonlinear compensation term using neural 
network 
In this paper , we will adopt the B-Spline network to model the 
nonlinear compensation term. The advantages of using such 
network are as follows. In the feedforward network (BP network), 

the output is a complicated nonlinear function of weights w,; . The 
performance index for training the network is 

I = Z I I ~ ( ~ ) - ~ ( ~ ) I I *  = C I I ~ ( ~ ) I I ~  (12) 
k k 

which is highly nonlinear. That means there may be several local 
minimums associated with the index function I .  In contract, the 
output of a B-spline network[ 121 is given by 

where W, is the weight corresponding to the ith basis function 

a, ( k )  , its input is i ( k ) ,  p is the number of basis functions. (12) 
is quadratic in the unknown weights, hence a global minimum 
exists. 
If nonlinear function has several augments, multivariate basis 
function is needed for approximation. Multivariate basis functions 
are formed by taking the tensor product of the univariate basis 
functions. The network output is linearly dependent on these 
multivariate basis functions. 
The estimated nonlinear compensation term is taken as the 
desired network output while the network input can be selected 
based on the knowledge of the system nonlinearity or by try and 
error method . 

Assuming input variable is i ( k ) ,  and compensation term S(k) is 
a scalar function(if S(k) is a vector, we can model its elements 
similarly), the network modelling can be expressed as 

P 

S ( l ) = Z a i ( i ( l ) ) w i  +E(1) 
i=l 

(14) 

r = l  

E ( k )  is the modelling error of network, k=I ,  ..., N.  (14) can be 
written in vector-matrix form: 

where S ’ = [ S ( l )  S ( N ) ] ,  W’=[w, ... w p ] ,  
S = A W + E  (15) 

a,(U -.. ap(U 

a , ( W  ... a , (W 
.;[ ... ... ... 1, E ’ Z [ & ( 1 )  ... & ( N ) ]  

Normally, the number of equations is greater than the number of 
unknown weights, i.e., N>p,  and assuming has full column 
rank, therefore hast-Squares method can be used to determine 
the weights as follows: 

w = (A’Z) -1 X’S (16) 

5. Estimation error analysis 
The equation of neural network estimator can be expressed as 

i ( k + l ) =  A , i ( k ) + K y ( k ) + i ( i ( k ) )  (17) 

where j ( i ( k ) )  is the output of network. From (5) and (24) we 
have 
e(k + 1) = 2({+ 1) - x ( k  + 1 )  

= A,e(k) + Af(k) + ~ ( k )  

where A j ( k )  = j [ x ( k ) + e ( k ) ] - j [ x ( k ) ] ,  

= A , e ( k ) + [ f ( 3 - f ( x ) l  (18) 

E(k)  = [h) - f (x> l  
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Since A, is a Hurwitz matrix, then given any positive definite 
real symmetric matrix Q,  there exists a positive dcfinite real 
symmetric matrix P such that 

Next, consider the following Lyapunov function 

For the time being, we assume that the approximation of network 
is perfect, i.e., E(k)  = 0 .  From (18) we get 
V ( k  + 1) = e’(k + l)Pe(k + 1) = e’(k)AiPA e k 

A V ( k )  = V ( k  +1) - V ( k )  = -e’(k)Qe(k) 

We assume the output function f of the B-spline network 
satisfies Lipschitz condition, i.e., 

L is a positive number. Then we have 

AiPA, - P =  -Q (19) 

V ( k )  = e’(k)Pe(k) 

+2@’(k)PAoe(k)+Af’(k)PAf(k) O ( ) (20) 

(‘21) +2@’(k )PAoe(k )+Af ’ (k )P@(k)  

II A ~ ( ~ ) I I  =~~f (x (k )  + e ( k ) )  - ~ ( x ( ~ ) ) I I I  LII e(k)ll (22) 

A V ( k )  I -A, mm II e(k)l I:! +2LAp,0,, I le(k)l I’ + L2iZp,,Ilel(k)l12 (2!3) 

where Aqm, is the minimum eigenvalue of Q, Apmax is the 

maximum eigenvalue of P ,  a,,, is the largest singular value of 

A,. Therefore, if 

-aq,,, +2~a,,,,0,, + ~ ~ a ~ ~ ~  C O  (24) 
then A V ( k ) < O  
which means e@) can asymptotically approach zero. 
In practice, network approximation will never be perfect, i.e., 
l l~(k)l l# 0 for all k. In this case, we can give an estimate of 
upper bound of estimate error. 
From ( 18), we have 

I le(k + 1)l I $1 I Aoe(k)l kl I @(k)lkll ~ ( k ) l  I 
I (om, + L)lle(k)lkll~(k)ll 

When (a,,, + L) < 1, the above difference equation is stable, 
therefore for sufficient large k, we have 

Substituting (26) into (25). we obtain 

(25) 

Ile(k + l)ll=lle(k)ll (26) 

I I E(k)l I 
I I e(k)ll< (for large k) (27) 

1-(0,, + L) 
Although the above estimation may be very rough and 
conservative, it does give some physical insight into the problem. 
From (27), we can see that Ile(k)ll is proportional to IIE(k)ll 

and inversely proportional to Omax and L. It means thiat smaller 

network approximation error, smaller amax and smaller L will 
give a smaller estimation error. 

6. Simulation examples 
In this section, nonlinear observers are first given by analytical 
approaches and then by tlhe proposed approach. The results are 
compared. Later , the proposed approach is applied to some 
examples of nonlinear systems to which some analytical 
approaches can not be applied. 
(1) Example 1. 
System and measurement equations 

y = x , + x 2  (29) 
This example is taken from [5] where four analytical approaches 
were used. We list the designed observers using these approaches 
below and compare the results with that of proposed approach. 
(a) The Lie-algebraic methods 
The designed observer has the following form 

where 
gl ( i )  =(COS;, + 1 ) - 3 [ ~ ~ ~ 3  i,(i; +3)coS2 iI  

+(3+i,2 - 2 i 2  sin:, -sin2 i I ) c o s i l  
+ ( 2 i ;  - 1) sin2 il - 2 i ;  sin i ,  + 11 

g 2 ( i )  =(cosi, + 1 ) - 3 [ ~ ~ ~ 3  i, +(3+ i2  +i, s in i , )cos2  i1 
+(3+4i, s i n i ,  +sin2 i ,  +i2 5 )cosiI 
+ ( 2 i ;  - 1) sin2 iI + 3i2 sin i1 + 11 

(b) The methods of extended linearization and Tau 
The designed observers have the same form as follows - 

x, - -1 0 i ,  [ i2] - [- 1 - 1][ i2]+[- ,io, 41 + [ t]Y 
(c) The Variable Structure System (VSS) technique 
The designed observer has the following form: 

0 -1 0 i ,  [::I = [- 1 - 1][i2]+[ &,, i2,  y)]+[:]Y 
where S^(il,i2,y)=-2sgn(.?, +i2 -y )  
The simulation responses of these observers for some initial 
conditions are similar. In [SI, it is claimed that VSS observer 
gives the best performance. We depict the VSS observer response 
in Fig. 1. The estimate i2 exhibits obvious chattering which is 
typical for VSS design . Notice that this chattering was not shown 
in [5] 
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Fig. 1: VSS observer design forf(x)=sinx 
(d). The proposed approach 
First, design the linear observer which has the same form as in (b) 
and (c), then discretize it at a sampling interval 0.05 seconds, and 
add a nonlinear compensation term S(k) to form a nonlinear 
observer. The designed discrete nonlinear observer has the 
following form 

$9 rm 150 2m 

where the nonlinear compensation term S(k) is determined using 
“decovolution method”, then modeled using B-spline neural 
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network. Based on the knowledge of system's nonlinearity the 
input of network is taken as , i.e., S(k) is approximated by 

In the simulation, we used 9 univariate second order (1inear)B- 
spline with even supports. The input range of the network is[-2,2]. 

1 . 2 . .  . . . . . 
l '  W )  ..., m- 

0.8 . 

0.8 . 

0.4. 

0.2 . 

The simulation responses are shown in Fig. 2. Where the x 1  ( k )  , 

2 2  ( k )  and s(k), i ( i 1  ( k ) )  are compared. 
network output ŝ (.?, ( k ) )  which is a function of i1 ( k )  .If we do 

not have the knowledge we can try to take 2, ,or i7 as input or ( k )  3 X 2  ( k )  

2 . . . , , , , 1.5 

I 

0.5 

0 

0.5 

1 

their suitable combination as input. In the latter case-multivariate 
B-spline function may be needed. 

j ( k )  is not shown, since j ( k )  = f, ( k )  -b 2, ( k )  . 

Fig.2: Observer designed by proposed approach forflx)=sinx 

As can see from these responses, good estimates are obtained. 
We should point out that further improvement in estimation 
accuracy is possible by refinement of the network structure and 
parameters. 
(2) Example2 
The linear part is the same as in example 1. the nonlinear part 
now is a deadzone function 

k ( x - 6 , )  x L b ,  
f (x )=  0 b, < x < b ,  (30) i k ( x - b , )  x S b ,  

In the simulation , kl, b, = -0.8, b, = 0.8. 
The Lie-algebraic method and extended linearization method can 
not be applied to design observer for this kind of system 
nonlinearity. Although VSS method can be applied to this case 
principally, it needs to know the upper bound of f lx) .  In example 

1, the nonlinear function is sin( x1 ) , therefore I I sin x1 I I < 1 , the 
upper bound is 1. For the deadzone function, the upper bound 
depends on the range of x 1  Since this range is not known before 
the design, different values of the upper bound in the VSS design 
are used. Fig. 3 shows that if the upper bound is set too low, 
s^ ( i l ,  i2,  y) = -0.1 sgn(i, + i2 - y )  , the ?2 is very sluggish to 

track x2 , and the estimation error is large. Fig. 4 shows that if the 

upper bound is set too high, ŝ (.?,, i, , y )  = -8 sgn(i ,  + i2 - y )  , 
though 2, is very quick to track xq  , the magnitude of chattenng 
is very large, and the estimation error is also large. Fig.5 shows 
the results of the proposed neural network approach, the 
estimation errors are small. 
(3) Example3 
The linear part is the same as in example 1, the 
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Fig.4: VSS observer design, S is too high; 
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Fig.5: Observer design by proposed approach forj'x) being a deadzone function 
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Fig.6: Observer design by proposed approach forj'x) being a Coulombic friction function 

nonlinear part now is a Csoulombic friction function described as 

Again, the Lie-algebraic method and extended linearization 
method can not applied to this example. Fig.6 shows the results of 
proposed method, the estimation accuracy is quite good. 

7. Conclusion 
The design of nonlinear observer is not easy. Some existing 
analytical approaches can give systematic design procedures , 
however their applications are limited. The proposed approach can 
be applied to a class of nonlinear systems described in (1) and (2). 
The linear part of the system is assumed known however the 
nonlinear part can be unknown and there is no restriction on its 
type. 
The proposed approach consists of three steps: (a) Design a linear 
observer for the linear part of system. The nonlinear observer is 
the combination of linear observer and a unknown nonlinear 
compensation term as described in (5). (b) Estimate the unknown 
nonlinear compensation term using " Deconvolution method" in 
(11) or (11)'. (c) Model the estimated nonlinear compensation 
term S(k) using B-spline neural network as in (16). 
Simulation examples have shown that the proposed approach is 
very effective and can apply to cases where analytical approaches 
fail to apply. 
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