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ABSTRACT: In this paper, the maximization of 
the parametric stability margin of state-space uncer- 
tain systems under the constraints of pole assignment 
is investigated. The class of systems considered is 
where the uncertainty may be modelled as the, pos- 
sibly nonlinear, variation of a parameter appearing 
in the entries of the system and input matrices. The 
continuity and differentiability of the stability mar- 
gin are discussed. A gradient-based procedure is for- 
mulated for the maximization of the stability margin 
with the corresponding gradient provided. Numerical 
examples are used to illustrate the technique. 
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1 Introduction 

One way to represent uncertainties or perturbations 
in control systems is to model them as parameters 
in the system descriptions. From a control-theoretic 
point of view, the influence of these parameters on the 
stability of control systems has naturally become the 
major issue for consideration in parametric uncertain 
systems. Stability robustness condition was given by 
Pate1 and Toda [7] for perturbation in the state ma- 
trix without exploiting any structural information of 
the perturbation. Subsequently, Yedavalli [13], Zhou 
and Khargonekar [14] gave improved results for struc- 
tured perturbation. These and many other results as- 
sumed the perturbation in the system matrix as affine 
functions of the parameters. Moreover, the results 
presented are focussed on providing bounds on the 
parameters to ensure stability rather than for control 
synthesis. The behaviour of systems under pertur- 
bations modelled as polynomial functions of an un- 
certain parameter vector is considered by Tesi and 
Vicino [ll, 121. Other numerical approaches related 
t.0 certain robust stability margins computation may 
be found in [5, 8, lo]. The formulations are based on 
specific structures in the way which the parameters 
appeared in the characteristic polynomial coefficients. 
While these approaches lead to nice theoretical results 
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and taylor-made computation algorithms, the general 
nonlinear case has not been fully addressed. 

In control system design, it would be important to 
construct a closed-loop system such that it is max- 
imally tolerable towards uncertainties. For a com- 
pletely state controllable realization, it is well known 
that the closed-loop poles may be assigned, via con- 
stant state feedback, to any set of self-conjugate 
complex numbers of cardinality equal to the state- 
dimension. For multi-input systems, the nonunique- 
ness of the feedback gain to achieve a given pole as- 
signment specification may be exploited to optimize 
a variety of system performance indices. The most 
common application of this idea is robust pole assign- 
ment (see [I, 4, 61 and references therein). There is 
little work on utilizing the freedom in the state feed- 
back gain matrices to improve stability margin. The 
obvious reason is that pole assignment itself imposes 
constraints to the feedback systems and inevitably re- 
duces the overall achievable stability margin if only 
closed-loop stability is imposed. However, the trade- 
off between pole assignment constraints and optimum 
performance is often justifiable in view of implemen- 
tation since optimal solutions may have undesirable 
transient behavior or unacceptably large gain. 

Motivated by the above reasons, this paper consid- 
ers the maximization of a parametric stability mar- 
gin under the constraints of pole assignment via state 
feedback. As a first step towards a more general com- 
putation procedure, it is assumed that the (nonlinear) 
perturbation is parametrized by a single parameter. 

2 Stability Margin 

Consider the following parametric uncertain system 

x = M(F,p)x (1) 

where x E R" is the state, F is a real matrix contain- 
ing all the design parameters, p E R is the uncertain 
parameter and M ( F ,  p) E R"'" is a continuously dif- 
ferentiable matrix function in F and p. 
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For a given F, suppose M(F, 0) is stable, then there 
exists a real number r > 0 such that M(F, p) is stable 
for p E (-r,  r ) .  A practical problem is to select an F 
such that this r is maximized. The stability margin 
is characterized as follows. 

Definition 1 Let -F be the set of F such that M(F, 0 )  
is stable. For F E 3, define 

p'(F) := { 00, if M(F,p) is stable for p E R 
min(lp1 : M(F,p) is unstable} 

('4 

In this paper, we are particularly interested in the 
following closed-loop system, 

k = M(F,p)z = [A@) + B(p)F]z (3) 

where F E Rmx" is the state feedback matrix. And 
A(p) E R"'", B(p) E RnX" are matrix functions 
that are continuously differentiable with respect to 
the uncertain parameter p E R. In this paper, we 
are interested in selecting an F such that ~ M ( F )  is 
maximized under the constraint of pole assignment. 
For simplicity, denote A(0) = Ao, B(0) = Bo. 

Stability Margin Maximization Under Pole 
Assignment Problem: Suppose A ( p ) ,  B(p) are dif- 
ferentiable matrix functions of p. The problem is to 
f ind a state feedback F such that ~ M ( F )  is maximized 
under the constraint that Ao+BoF has the prescribed 
eigenvalues. 

Since p is a scalar, for a given F ,  pm(F) can be 
computed by the bisection method. It is clear that 
functions of this kind are very complicated and can 
possess many discontinuities. To maximize p~ ( F )  
based on gradient information, one must have knowl- 
edge about under what condition p~ ( F )  is continu- 
ous and differentiable. 

2.1 Continuity and Differentiability of Stabil- 
ity Margin  

To maintain the generality of the development, let 
M(F,p) E R"'" be a continuously differentiable ma- 
trix function of F E Rmxn and p E R. Assume 
that all the eigenvalues of M ( F ,  0) have negative real 
parts. Denote 

then 

min{p > 0 :  ReXi[Q(F,p)] = 0 for some i )  
p M ( F )  { 00, if ReX,[Q(F,p)] # 0 V p  > 0 and i. 

(4) 

where Re Ai[.] denotes the real part of the ith eigen- 
value of a matrix. For a given F, the eigenloci of 
Q(F,p) can be drawn as p varies continuously. Each 
locus Xi[Q(F, p)] is continuous and piecewise smooth. 
Then PM(F) equals to the smallest p at which one of 
the loci hits the imaginary axis. 

Theorem 1 For a given Fo, let po = p ~ ( F 0 ) .  Sup- 
pose Q(F0,po) has e distinct eigenvalues Ai[Q(Fo,po)], 
1 5 i 5 I on the imaginary axas, then 

1. p~ (F)  is continuous in a neighborhood of FO i f  
there is one i, 1 5 i 5 I such that 

2. ~ M ( F )  is differentiable at FO i f  

and the following I items are equal 

In  this case, the partial derivative of ~ I~ . I (F)  at 
F o  is given as, 

To prove the above theorem, define for i = 1,2 ,  . . . , 2n ,  

pL(F) := { CO, if ReAi[Q(F,p)] # 0 Vp > 0. 
min{p > 0 :  ReXi[Q(F,p)] = 0} 

It is easy to see that 

~ I~ . I (F )  =min{pL(F) , i=1 ,2 ,  . . . ,  2n) (6)  

For each p k  ( F )  , we have the following result. 

Lemma 1 For a given Fo, assume pL(F0) < w. Let 
po = pL(F0) (hence ReXi[Q(Fo,po)] = 0). Suppose 
that the following conditions are satisfied, 

1. Xi[Q(Fo,po)] is a simple eigenvalue ofQ(Fo, PO) 

then pL(F)  is continuously differentiable in a neigh- 
borhood of FO with 
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Proof: The result then follows from an application 
0 of the implicit function theorem with (6). 

Lemma 2 p L ( F )  is semi-continuous from above. That 
is, given Fo, if pL(F0)  > a, then there exists 6 > 0, 
such that & ( F )  > a whenever [IF - Foil < S. 

Proof of Theorem 1: Notice that pL(F0) = p ~ ( F 0 )  
for i 5 C and ,oh(&) > p ~ ( F 0 )  for i > C. 

1. W.l.o.g., assume that a Re xl'Q(FoJpo)l # 0, it fol- 
lows from Lemma 1 that & ( F )  is continuous at  
Fo. Thus for any E > 0, there exists 61 > 0 such 

Since &(PO) > pL(F0) - E ,  by Lemma 2, there 
exists 6 E (0,611 such that when /IF - Foil < 6, 
p&(F) > pL(F0) - E ,  i = 2 , .  . . ,2n. This implies 
that ~ M ( F )  > p ~ ( F 0 )  - E .  On the other hand, since 

by (6). It follows that l p ~ ( F )  - p ~ ( F o ) (  < E for all 
F satisfying [IF - Foil < 6. This shows that ~ M ( F )  
is continuous at Fo. 

2. When the conditions are satisfied, ,oh(:), i 5 l 
are continuous at FO. Let E = $mini>e(pZ,(Fo) - 
p M ( F o ) ) ,  there exists 6 > 0 such that when IJF - 
Foil < 6, \ p L ( F )  - p ~ ( F 0 ) l  < E for i I l and 
&(F)  > p ~ ( F 0 )  + E  for i > f2 (by Lemma 2). This 
shows ~ M ( F )  = min{pL(F), i = 1,2,  . . . , C} when 
IIF - Foil < 6. Thus, together with the conditions, 
we have p ~ (  F )  continuous differentiable and the par- 

0 

aP 

that when IIF - Fol l  < 61, IPL(F) - P k f ( F 0 ) l  < E.  

PL(F) < P M ( F 0 )  + E ,  we have P M ( F )  < PM(F0) + E  

tial derivative formula (5) follows. 

2.2 Partial Derivative Formulas for Stability 
Margin 

aRex, (F,PU Here, we provide formulas to compute aS.& 
and a Re x$Qp(F9p)l. Denote the left eigenvector and 
the right eigenvector of Q(F0, p o )  corresponding to 
XI as tT and v. tTv = 1. Furthermore, t , v  are parti- 

and consequently, we have 
OpM (FO) -= 

dF 

In general, Q(F0,po) has only one or one pair of 
eigenvalues on the imaginary axis. Suppose the pair 
is A1,2[Q(Fo,po)] = fju, then ~ M ( F )  is continu- 
ously differentiable at  FO if a Re x l ~ ~ ( F o ' p O ~  # 0 since 

apZ(P) and are equal. aF 

By Theorem 1, a gradient based algorithm can be 
devised to increase ~ M ( F ) .  The constraint that 
A0 + BoF is stable will be guaranteed in each step 
since ~ M ( F )  is increased after each iteration. In the 
following section, we will present a method to increase 
~ M ( F )  under the pole assignment constraint. 

3 Optimizing Stability Margin Under 
Pole Assignment 

Let {AI, A2,  . . . , A,} be a set of self-conjugate complex 
numbers corresponding to the set of desired poles. 
Assume that there are n' complex conjugate pairs, 
X2i-1,  A2i = ai f j p i ,  i = 1 , 2 , .  . . , n', then one can 
define the following real block diagonal matrix: 

It is assumed that the eigenvalues of A are distinct, 
then for a given controllable pair (A ,B) ,  A E RnX" 
and B E Rnxm, the problem of pole assignment by 
state feedback is to choose feedback matrix F, such 
that 

T 1 ( A  + BF)V = A (11) 

for some nonsingular V .  

Now we turn back to system (3). At the nominal 
working point p = 0, the closed-loop state matrix 

, ,  

tioned as tT = [ tT 
Cn.  We have 

t? 1 ,  UT = [ UT 1 ,  t l ,  t2 ,  v lr  v2 E is A0 + BoF. It is required that the eigenvalues of 
A0 + BoF be the set {XI, A p , .  . . ,An} .  Assume that 
(Ao, BO) is controllable and rank(&) > 1, then there 

aReA1[Q(Fo,po)l = Re ~AIIQ(Fo,Po)~ are infinity many F that satisfy this pole assignment 
constraint. Our objective is to choose among these F aP aP 
such that the stability margin ~ M ( F )  is maximized. 
This problem can be formulated as: 

where F = [ f j k ] .  In particular, when M ( F , p )  = . ~ ~ P P M ( F )  s-t. V-'(Ao + B o F ) V = A  (12) 
A(p) + B ( p ) F ,  then it follows that 

In the following, we will follow the idea of [l, 21 to 
parametrize all the feedback matrices F that satisfy 

-1 = [Re (vlt:)B(po)+Re ( ~ t : ) B ( - p o ) ] ~  (11) as the function of a free parameter U E RmX". 
This is achieved by solving a parametric Sylvester (8) 
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equation in U and then recovering the feedback ma- 
trix F = UV-l. In this way, P M ( F )  becomes a func- 
tion of the free parameter U .  Explicit formulas to 
compute the gradient can be derived. 

Given a controllable pair (Ao, BO) and a real block 
diagonal matrii A with the form in (10) such that A0 
and A have no common eigenvalues, then a function 
f : U -+ F is defined as follows. For U E RmX", 
solve 

AoV - V A  = -BoU 
for V and if V is nonsingular, let F = UV-l. The 
function is denoted as F = f ( U ) .  The domain of f is 

D f  := {U E RmXn 1 V in (13) is nonsingular} 

and the range of f is Rf = f(Df). It is easy to 
see that V depends linearly on U and F is in fact a 
rational function of the elements of U. 

(13) 

Theorem 2 11, 4) 

(a) IDf is a dense open set in I tmxn.  

(b)  { F  : V-l(Ao + BoF)V = A} == Rf = f (D~f) .  

The above result shows that F satisfying the con- 
straint in (12) can be parametrised as a function of 
U and justifies its use as an optimization parame- 
ter. Since ~ M ( F )  is a function of F which is in turn 
uniquely determined by U ,  consequently, it can be 
expressed as J ( U )  := p u ( F ( U ) ) .  By the above The- 
orem, the constraint in (12) can be relaxed and we 
get an equivalent optimization problem 

SUP J ( U )  (14) 
UEWr 

3.1 Gradient Formula for Stability Margin 

As F = f(73) is a rational function and Vf is an 
open set, so F is differentiable with respect to U for 
U E D f .  Thus &$ exists if P M ( F )  is differentiable 
with respect to F. 

Theorem 3 Suppose U E D f  and 

AoV - V A  = -BoU , F = UV-' 

If exists, then 

where V-T denotes (V-l)T and Y is the unique so- 
lution 0.f 

YAo - AY = V-' ( g ) T F  (16) 

Proof: Omitted. 0 

3.2 Schematic Numerical Algorithm 

1. STEP 1: Select U0 E Dj and a small 

2. STEP 2: Compute J(U0). 

> 0. 

(a) Solve AoV - V h  = -BoUo for V ,  let Fo = 

(b) Compute p ~ ( F 0 )  by the bisection method. 

If Condition 2 of Theorem 1 is not satisfied, 
then stop the algorithm. 

u,v-l. 

3. STEP 3: Compute $&. 
(a) Compute Fo = f (U0)  and PO = J(Uo) = 

(b) Compute % via (9 )  (provided that Con- 

(c) compute $j$ via (15) and (16). 

PM (PO). 

dition 2 in Theorem 1 is satisfied). 

4. STEP 4: Maximize J(U0 + h g )  with respect 
to h (line search). 

5. STEP 5: If J(Uo fhg) - J(U0) < E ,  then stop. 
Otherwise replace U0 with U0 + hg and go to 
STEP 2. 

4 Numerical Examples 

Consider the system of two identical penduli coupled 
by a spring [9], 

Example 1: Suppose a is the uncertain parame- 
ter and other parameters are constants: 1 = 1, k = 
2,m = 0.2. The nominal value of a is m. Let 
p = a2 - 0.5, then 

A(p)  = Ao + pAi, B03) = BO 

where 

1 5  0 4.8 0 1  
1 0  

0 0 0  
10 0 -10 0 

The characteristic equation of A(p)  = A0 + pA1 is 

[5s2 - 49(p + 1)][5s2 + (100~  + l)(p + l)] = 0 
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Thus, the open-loop system is always unstable and 
the nominal system matrix A0 has eigenvalues f3.1305 
and fj0.4472. The desired closed-loop eigenvalues of 
A0 + BoF are, -1 -f j, -2, -3. 

-’ , we obtain the initial 
1 0  0 -1 1 Let U0 = 

feedback mktrix Fo with stahlity margin given by 
J(U0) = p ~ ( F ( u 0 ) )  = 0.0844. After 4 iterations, the 
gradient algorithm terminates at F4 given by 

1 -2.0849 -0.9109 -1.6376 -0.2889 
-01118 0.2245 -0.8832 -0.4891 F4= [ 

and p ~ ( F 4 )  = 0.3004 which represents a significant 
improvement of the size of the stability margin. In 
fact, when p = -0.3004, the system has a pair of poles 
coalesce at the origin that destabilize the system. 

Example 2: Now suppose 1 is the uncertain parame- 
ter. The other parameters are constants, IC = 2, a = 
m , m  = 0.2. The nominal value of 1 is 1. Let 
p = - 1, then 

A@) = AO + PA1 + p2A2, B(P) = Bo +pBi + p2B2 

where Ao, Bo are the same as those in Example 1 and 

0 0  0 0  0 0  
A1 = [ -”: : ’: : ] ,  B ~ =  [ 10 0 

10 0 -0.2 0 0 10 
0 0  0 0  0 0  

A2 = [ -; ; ; :I, & = [ ;  :I 
5 0 - 5 0  0 5  

The characteristic equation is 

[5s2 - 49(p + 1)][5s2 + ( p  + 1)(50p2 + loop + l)] = 0 

Similarly, the system is always unstable without feed- 
back. The desired closed loop eigenvalues are the 
same as Example 1. 

Different local minima with the same value of ~ M ( F )  
are detected. The optimal stability magrin is ~ M ( F * )  = 
0.2428. A particular optimal feedback that achieve 
this stability margin is F* given below 

I -1.2510 -0.5367 -0.7251 -0.0740 
-1.5804 -0.2938 -2.0610 -0.8633 F * =  [ 
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