# NECESSARY AND SUFFICIENT CONDITIONS FOR STABLE $H_{\infty}$ STABILIZABILITY \*

Yong-Yan Cao†

James Lam‡

P. M. Frank<sup>†</sup>

<sup>†</sup>Department of Measurement and Control, FB9, Duisburg University Duisburg, 47048, Germany. Email: yycao@iipc.zju.edu.cn <sup>‡</sup>Department of Mechanical Engineering, University of Hong Kong, Hong Kong. Email: jlam@hku.hk

### Abstract

In this paper, the stable  $H_{\infty}$  control problem is addressed. It is shown that the stable  $H_{\infty}$  control problem is reduced to finding a unimodular matrix such that a two block  $H_{\infty}$  optimization problem is solvable. And then it can be solved if an unimodular matrix is selected such that a Nehari problem is solvable. In fact, if the unimodular matrix is selected as a constant matrix, then the result of [10] is obtained.

## 1. Introduction

Recently, the  $H_{\infty}$  optimization theory has been extensively studied for a given linear time-invariant system, see [3, 5, 6, 11, 1]. However, it is well known that these design methods always yield an unstable controller, which is undesirable in practice. For example, even if an unstable controller is used for a stable plant, the system will become unstable when the feedback sensors fail, i.e., the system is open-loop. On the other hand, stabilization using an unstable controller always introduces additional right half-plane zeros into the closed-loop transfer function matrix beyond those of the original plant. As it is known that the right half-plane zeros of a system affect its stability to track reference signals and/or to reject disturbances. It is preferable to use a stable controller whenever possible.

It is well known that the strong stabilization problem is solvable if and only if the plant satisfies the parity interlacing property (PIP) condition [8] . For SISO systems, the strongly stabilizing controller can be constructed by Youla's interpolation approach [9, 8] . For the MIMO systems, Saif et al. [7] proposed an  $H_{\infty}$  optimization approach to construct the strongly stabilizing controller. In this paper, we will address the stable  $H_{\infty}$  controller design. We will prove that the stable  $H_{\infty}$  control problem can be reduced to finding an unimodular matrix such that a two-block  $H_{\infty}$ 

optimization problem is sovable and then it is solvable if a Nehari problem is solvable.

## 2. Preliminaries

In the following, a transfer function G(s) with realization (A, B, C, D) will be denoted by

$$G(s) = \left[ \begin{array}{c|c} A & B \\ \hline C & D \end{array} \right].$$

**Lemma 1** [8, 11] Suppose a plant G is stabilizable and detectable. Select constant matrices F and H such that the matrices  $A_F = A + BF$  and  $A_H = A + HC$  are both Hurwitz stable such that  $G = NM^{-1} = \tilde{M}^{-1}\tilde{N}$ , where

$$\left[ \begin{array}{c} M & X \\ N & Y \end{array} \right] \ = \ \left[ \begin{array}{c|c} A+BF & B & -H \\ \hline F & I & 0 \\ C+DF & D & I \end{array} \right],$$
 
$$\left[ \begin{array}{c|c} \tilde{Y} & -\tilde{X} \\ -\tilde{N} & \tilde{M} \end{array} \right] \ = \ \left[ \begin{array}{c|c} A+HC & -B+HD & -H \\ \hline F & I & 0 \\ C & -D & I \end{array} \right]$$

satisfying

$$\left[\begin{array}{cc} \tilde{Y} & -\tilde{X} \\ -\tilde{N} & \tilde{M} \end{array}\right] \left[\begin{array}{cc} M & X \\ N & Y \end{array}\right] = I$$

Then all stabilizing controllers for G can be parameterized as

$$K(s) = (X + MQ)(Y + NQ)^{-1}$$
  
=  $(\tilde{Y} + Q\tilde{N})^{-1}(\tilde{X} + Q\tilde{M}) = \mathfrak{F}(J, Q)$ 

where  $\mathfrak{F}(J,Q)$  denotes a linear fractional transformation (LFT) on J and Q, with

$$J = \begin{bmatrix} XY^{-1} & \tilde{Y}^{-1} \\ Y^{-1} & -Y^{-1}N \end{bmatrix}$$
 
$$= \begin{bmatrix} A + BF + HC + HDF & -H & B + HF \\ \hline F & 0 & I \\ -(C + DF) & I & -D \end{bmatrix}$$

and  $Q(s) \in RH_{\infty}$  such that  $(I + Y^{-1}NQ)(\infty)$  is invertible.

This work was supported in part by Alexander von Humboldt foundation, HKU Blk Grant 8074/98E and the National Natural Science Foundation of China under grant No. 69604007.

Assume Q(s) is given by

$$Q = \left[ \begin{array}{c|c} A_Q & B_Q \\ \hline C_Q & D_Q \end{array} \right],$$

then K(s) can be written

$$K(s) = \begin{bmatrix} A_K & B_K \\ \hline C_K & D_K \end{bmatrix}$$

$$= \begin{bmatrix} \hat{A} & (B+HD)C_Q & \hat{B}_2 \\ -B_Q(C+DF) & A_Q & B_Q \\ \hline F-D_Q(C+DF) & C_Q & D_Q \end{bmatrix}$$

$$\hat{A} = \tilde{A} - (B + HD)D_Q(C + DF)$$

$$\hat{B}_2 = -H + (B + HD)D_Q$$

Obviously, K(s) is stable if and only if the matrix  $A_K$ is stable.

**Lemma 2** [7] If  $V(s) \in RH_{\infty}$ , P(s) is unimodular in  $RH_{\infty}$  and  $||P^{-1}V||_{\infty}$  < 1, then V(s) + P(s) is unimodular in  $RH_{\infty}$ .

**Lemma 3** For any proper transfer function  $V(s) \in$  $RH_{\infty}$ , there always exists a unimodular transfer function P(s) in  $RH_{\infty}$  such that V(s)+P(s) is unimodular in  $RH_{\infty}$ .

#### Proof: Let

$$\gamma > ||V(s)||_{\infty}, \quad V_1(s) = \gamma^{-1}V(s)$$

then  $||V_1(s)||_{\infty} < 1$ . So  $V_1(s) + I$  is unimodular, i.e.  $V(\underline{s}) + P(s)$  is unimodular in  $RH_{\infty}$ , where  $P(s) = \gamma I$ 

**Lemma 4** For any unimodular transfer function T(s) in  $RH_{\infty}$ , there always exists a factorization

$$T(s) = V(s) + P(s)$$

where V(s),  $P(s) \in RH_{\infty}$  and P(s) is unimodular in  $RH_{\infty}$  such that

$$||P^{-1}V||_{\infty} < 1$$

**Proof:** Select two scalars  $\gamma_0$  and  $\gamma$  such that

$$||T(s) + \gamma_0 I||_{\infty} < \gamma \tag{1}$$

Obviously,  $||\gamma^{-1}(T(s)+\gamma_0I)||_\infty<1.$  Let  $\gamma^{-1}(T(s)+\gamma_0I)=P^{-1}V=P^{-1}(T-P).$  Then

$$P[T(s) + (\gamma_0 + \gamma)I] = \gamma T$$

If we select  $\gamma$  satisfying (1) such that  $T(s) + (\gamma_0 +$  $\gamma$ ) I is unimodular, then a unimodular P(s) can be constructed as

$$P(s) = \gamma T (T(s) + (\gamma_0 + \gamma)I)^{-1}$$

It is easy to find that the selection  $\gamma > -\gamma_0 > 0$  can guarantee that  $T(s) + (\gamma_0 + \gamma)I$  is unimodular.

## Problem Statement

Consider a linear time-invariant system G(s) with the

following minimal realizations

$$\dot{x}(t) = Ax(t) + B_1 w(t) + B_2 u(t), 
z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t),$$
(2)

$$y(t) = C_2 x(t) + D_{21} w(t) + D_{22} u(t),$$

where  $x \in \mathbb{R}^n$  is the state vector of G(s),  $u \in \mathbb{R}^m$  is the control vector,  $w \in \mathbb{R}^p$  contains all the external input signals, such as disturbances, sensor noise, and commands,  $z \in \mathbb{R}^q$  is the control output vector, and  $y \in \mathbb{R}^q$  is the vector of the measured variables available for feedback control, all matrices in (2) are constant and with appropriate dimensions. Sometimes we denote G(s) as

$$G(s) = \begin{bmatrix} A & B_1 & B_2 \\ C_1 & D_{11} & D_{12} \\ C_2 & D_{21} & D_{22} \end{bmatrix}$$

In this paper, without loss of generality, following the formulation in [3, 11], we assume that the system G(s) satisfies the following standard assumptions:

A1  $(A, B_2)$  is stabilizable and  $(A, C_2)$  is detectable; A2  $D_{12}$  has full column rank and  $D_{21}$  has full row rank;

A3 
$$\begin{bmatrix} A - j\omega I & B_2 \\ C_1 & D_{12} \end{bmatrix}$$
 has full column rank for all  $\omega$ 

A3 
$$\begin{bmatrix} A-j\omega I & B_2 \\ C_1 & D_{12} \end{bmatrix}$$
 has full column rank for all  $\omega$ ;  
A4  $\begin{bmatrix} A-j\omega I & B_1 \\ C_2 & D_{21} \end{bmatrix}$  has row column rank for all  $\omega$ .

The Stable  $H_{\infty}$  Control Problem is defined as the design of a stabilizing controller

$$u = K(s)y \tag{3}$$

where  $K(s) \in RH_{\infty}$ , such that

$$||T_{zw}||_{\infty} < \gamma \tag{4}$$

with  $\gamma > 0$  is the given  $H_{\infty}$  performance level,  $T_{zw}$  as the closed-loop transfer function from w to z subject to the feedback control (3). It is well known that  $T_{zw}$ can be described by a linear fractional transformation (LFT) on G(s) and K(s)

$$T_{zw}(s) = \mathfrak{F}(G(s), K(s))$$

The standard  $H_{\infty}$  control problem (that is, when K(s)is not restricted to be stable) is solvable if and only if two algebraic Riccati equations (AREs) have unique positive semidefinite solutions, and a spectral radius condition is satisfied. Then all stabilizing controllers satisfying  $||T_{zw}||_{\infty} < \gamma$  can be parameterized as

$$K(s) = \mathfrak{F}(J(s), Q(s)), \quad Q(s) \in RH_{\infty}, \quad ||Q||_{\infty} < \gamma$$
(5)

where J(s) is of the form

$$J(s) = \begin{bmatrix} J_{11}(s) & J_{12}(s) \\ J_{21}(s) & J_{22}(s) \end{bmatrix}$$
 (6)

$$J(s) = \begin{bmatrix} J_{11}(s) & J_{12}(s) \\ J_{21}(s) & J_{22}(s) \end{bmatrix}$$
(6)  
$$= \begin{bmatrix} \hat{A} & \hat{B}_1 & \hat{B}_2 \\ \hat{C}_1 & \hat{D}_{11} & \hat{D}_{12} \\ \hat{C}_2 & \hat{D}_{21} & \hat{D}_{22} \end{bmatrix}$$
(7)

such that  $\hat{D}_{12}$  and  $\hat{D}_{21}$  are invertible and  $\hat{A} - \hat{B}_2 \hat{D}_{12}^{-1} \hat{C}_1$ and  $\hat{A} - \hat{B}_1 \hat{D}_{21}^{-1} \hat{C}_2$  are both stable, i.e.,  $J_{12}^{-1}$ ,  $J_{21}^{-1} \in$   $RH_{\infty}$ .

From Youla's paramterization, (5) can be written as the following alternative representation [11]

$$\mathfrak{F}(J,Q) = (X_J + M_J Q)(Y_J + N_J Q)^{-1} = (\tilde{Y}_J + Q\tilde{N}_J)^{-1}(\tilde{X}_J + Q\tilde{M}_J)$$
(8)

where

$$Q = \left[ \begin{array}{c|c} A_Q & B_Q \\ \hline C_Q & D_Q \end{array} \right]$$

then K(s) can be written

$$K(s) = \begin{bmatrix} A_K & B_K \\ \hline C_K & D_K \end{bmatrix}$$

$$= \begin{bmatrix} \hat{A} + \hat{B}_2 D_Q \hat{C}_2 & \hat{B}_2 C_Q & \hat{B}_1 + \hat{B}_2 D_Q \hat{D}_{21} \\ B_Q \hat{C}_2 & A_Q & B_Q \hat{D}_{21} \\ \hline \hat{C}_1 + \hat{D}_{12} D_Q \hat{C}_2 & \hat{D}_{12} C_Q & \hat{D}_{11} + \hat{D}_{12} D_Q \hat{D}_{21} \end{bmatrix}$$

is stable, that is to make K(s) stable is equivalent to find a stable compensator  $Q(s) \in RH_{\infty}$  to stabilize the associated plant  $J_{22}(s)$ .

Lemma 5 [10] Given a linear time-invariant plant G(s) satisfying assumptions (A1-A4) and the  $H_{\infty}$  performance index  $\gamma > 0$ , the set of all  $H_{\infty}$  controllers are parameterized as (5). Then there exists a stable  $H_{\infty}$ controller if and only if there exists a stable controller  $Q(s) \in RH_{\infty}$  with  $||Q(s)||_{\infty} < \gamma$  stabilizes the associated plant  $J_{22}(s)$ .

The above lemma means that the stable  $H_{\infty}$  controller problem is reduced to a strong stabilization problem with the controller satisfying the  $H_{\infty}$ -norm constraint. It is well known that the strong stabilization problem is solvable if and only if the plant satisfies the parity interlacing property (PIP) condition [8] . For SISO systems, the strongly stabilizing controller can be constructed by Youla's interpolation approach [9, 8]. For MIMO systems, Saif et al. [7] proposed a  $H_{\infty}$  optimization approach to construct the strongly stabilizing controller. In the following, we will propose a design method of the stable  $H_{\infty}$  controller design.

#### Main Results 4.

Assume that J(s) has been computed and that  $J_{22}(s)$ 

is unstable. A necessary condition for the system to be strongly  $H_{\infty}$  stabilizable is that  $J_{22}(s)$  satisfys the PIP condition. For any coprime factorization

$$J_{22}(s) = N_J M_J^{-1}$$

where  $N_J(s)$ ,  $M_J(s) \in RH_{\infty}$ , there exists a  $Q(s) \in RH_{\infty}$  such that  $K(s) \in RH_{\infty}$  if and only if there exists a  $Q(s) \in RH_{\infty}$  such that  $M_J + QN_J$  is unimodular in  $RH_{\infty}$ , i.e.,  $(M_J + QN_J)^{-1} \in RH_{\infty}$ .

Define

$$U_J(s) = M_J(s) + QN_J(s)$$

Then there exists a factorization

$$U_J(s) = R(s) + \gamma_0 T(s)$$

such that  $\|T^{-1}R\|_{\infty} < \gamma_0$ , where  $R(s), T(s) \in RH_{\infty}$ ,  $\gamma_0$  is a constant and T(s) is unimodular in  $RH_{\infty}$ . So the stable  $H_{\infty}$  control problem is solvable if there exists a  $Q(s) \in RH_{\infty}$  such that

$$\begin{split} \left\|T^{-1}(M_J+QN_J-\gamma_0T)\right\|_{\infty} &<\gamma_0, \quad \|Q(s)\|_{\infty} <\gamma \\ \text{Let } \gamma_0 &=\gamma \left\|T^{-1}\right\|_{\infty}, \text{ the above condition is satisfied} \\ \text{if} \end{split}$$

$$\|(M_J + QN_J - \gamma_0 T)\|_{\infty} < \gamma, \quad \|Q(s)\|_{\infty} < \gamma$$

It holds if

$$\| \begin{bmatrix} M_J + QN_J - \gamma_0 T & Q \end{bmatrix} \|_{\infty} < \gamma$$

$$- \| \hat{M} + Q\hat{N} \|_{\infty} < \gamma, \quad Q(s) \in RH_{\infty}$$

where  $\hat{M} = [M_J - \gamma_0 T \quad 0], \hat{N} = [N_J \quad I]$ . This means that the stable  $H_{\infty}$  control problem can be reduced to select a unimodular transfer matrix  $T(s) \in$  $RH_{\infty}$  and a transfer function  $Q(s) \in RH_{\infty}$  such that

$$\|\hat{M} + Q\hat{N}\|_{\infty} < \gamma$$

**Theorem 1** The stable suboptimal  $H_{\infty}$  control problem is solvable if there exists a unimodular matrix T(s)such that  $\min_{Q \in RH_{\infty}} \|\hat{M} + Q\hat{N}\| < \gamma$ .

Remark 1 After T is selected, it reduces to a oneside model matching problem and it can be solved using the inner-outer factorization approach [2, 4] . On the other hand, if we set  $\gamma_0 = 1 + \varepsilon \ge \gamma$ , T = I, then we can obtain a similar result of [10].

Let  $\hat{N}$  have a co-inner/co-outer factorization as  $\hat{N} = \hat{N}_o \hat{N}_i$ , (see [4]), and define

$$\begin{array}{rcl} M & = & \left[ \begin{array}{cc} M_1 & M_2 \end{array} \right] = \hat{M} \left[ \begin{array}{cc} \hat{N}_i^* & (\hat{N}_i^{\perp})^* \end{array} \right] \\ \hat{Q} & = & Q\hat{N}_2 \end{array}$$

where  $\hat{N}_{i}^{\perp}$  is a complementary co-inner factor such that  $\left[\begin{array}{c} \hat{N_i} \\ \hat{N}^{\perp} \end{array}\right]$  is square and inner, then

$$\min_{Q \in RH_{\infty}} \left\| \hat{M} + Q \hat{N} \right\|_{\infty} = \min_{\hat{Q} \in RH_{\infty}} \left\| \begin{bmatrix} M_1 + \hat{Q} & M_2 \end{bmatrix} \right\|_{\infty}$$

which is a two-block  $H_{\infty}$  optimization problem. Define

$$\gamma_{\mathrm{opt}} \stackrel{\triangle}{=} \min_{\hat{Q} \in RH_{\infty}} \left\| \left[ \begin{array}{cc} M_1 + \hat{Q} & M_2 \end{array} \right] \right\|_{\infty}$$

 $\gamma_{\mathrm{opt}}$  can be obtained using the " $\gamma$ -iteration" approach [2, 4] . So for the stable  $\mathrm{H}_{\infty}$  control problem, it is solvable if  $\gamma \geq \gamma_{\mathrm{opt}} \geq \|M_2\|_{\infty}$  [2, 4] . When  $\gamma > \|M_2\|_{\infty}$ , to find a  $\hat{Q} \in RH_{\infty}$  such that

$$\|[M_1 + \hat{Q} \quad M_2]\|_{\infty} < \gamma$$

if and only if

$$||S^{-1}(M_1 + \hat{Q})||_{\infty} < 1$$
 (9)

where S is a spectral factor of the para-Hermitian matrix  $(\gamma^2 I - M_2 M_2^*)$ , i.e.,

$$SS^* = \gamma^2 I - M_2 M_2^*$$

Define

$$Y = S^{-1}M_1, X = S^{-1}\hat{Q}$$

we have following result.

**Theorem 2** The stable  $H_{\infty}$  control problem is solvable if there exists a unimodular matrix T(s) such that  $\|M_2\|_{\infty} < \gamma$  and

$$||Y + X||_{\infty} < 1 \tag{10}$$

where  $X \in RH_{\infty}$ .

To find a matrix  $X \in RH_{\infty}$  such that (10) holds is a Nehari problem and it can be solved using the method in [4].

## References

- [1] C. Cheng, Y.-X. Sun, and B. Tang. Robust robust  $H_{\infty}$  control of uncertain linear systems with multiple state delays-lmi approach. *Journal of China Textile University*, 15(3):46-49, 1998.
- [2] C.-C. Chu, J.C. Doyle, and E.B. Lee. The general distance problem in  $H_{\infty}$  optimal control theory. *Int. J. Control*, 44(2):565–596, 1986.
- [3] J.C. Doyle, K. Glover, P.P. Khargonekar, and B.A. Francis. State-space solutions to standard  $H_2$  and  $H_{\infty}$  control problems. *IEEE Trans. Automat. Control*, 34:831–847, 1989.
- [4] B.A. Francis. A course in  $H_{\infty}$  control theory. Springer-Verlag, Berlin, 1987.
- [5] P. Gahinet and P. Apkarian. A linear matrix inequality approach to  $H_{\infty}$  control. Int. J. Robust Nonlinear Control, 4:421–448, 1994.
- [6] T. Iwasaki and R. E. Skelton. All controllers for the general  $H_{\infty}$  control problem: LMI existence conditions and state space formulas. *Automatica*, 30(8):1307–1317, 1994.
- [7] A.A. Saif, D.-W. Gu, and I. Postlethwaite. Strong stabilization of mimo systems via  $H_{\infty}$ -optimization. Systems Control Lett., 32:111–120, 1997.
- [8] M. Vidyasagar. Control System Synthesis: A Factorization Approach. MIT Press, Cambridge, MA,

1985.

- [9] D. C. Youla, J. J. Bongiorno, and C. N. Lu. Single-loop feedback-stabilization of linear multivariable dynamical plants. *IEEE Trans. Automat. Control*, 10:159–173, 1974.
- [10] M. Zeren and H. Ozbay. On stable  $H_{\infty}$  controller design. In *Proc. of American Control Conf.*, pages 1302–1306, Albuquerque, USA, 1997.
- [11] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall, New Jersey, 1996.