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Abstract 
Good generalization results are obtained l?om 
neurofkzy networks if its structure is suitably chosen. 
To select the structure of neurofuzzy networks, the 
authors proposed a construction algorithm that is 
derived fiom the Support Vector Regression. 
However, the modeling errors are assumed to be 
uncorrelated. In this paper, systems with correlated 
modeling errors are considered. The comlated noise is 
modeled separately by a recurrent network. The 
overall network is referred to as the support vector 
recurrent neurofuzzy networks. The prediction error 
method is used to train the networks, where the 
derivatives are computed by a sensitivity model. The 
performance of proposed networks is illustrated by an 
example involving a nonlinear dynamic system 
corrupted by correlated noise. 

Keywords: Support vectors, recurrent neurofuzzy 
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1. Introduction 
Neurofuzzy networks were shown to have the 
transparency of fuzzy systems and the modeling ability 
of neural networks [ 121. However, the goodness of the 
approximation depends not only on the training 
algorithm, but also on the structure of the network, i.e., 
the number of basis functions and their locations in the 
input space. If a-priori knowledge of the system is 
available, the structure of the network can be suitably 
chosen tiom this knowledge. If, however, no a-priori 
knowledge is available, the structure of the network is 
usually chosen from the training data, which a well- 
known problem. Support Vector Regression (SVR) 
developed from statistical learning theory is a linear- 
in-weights network [5].  The structure and the 
parameters of the network are obtained by minimizing 
a cost function that consists of the modeling errors and 
the complexity of the network. The structure of the 
SVR is now selected for a given error bound from the 
training data, which is known as the Support Vector 
(SV). It is shown that the SVR can be transformed to a 
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radial basis function (RBF) neural network [13,15]. 
The structure of the transformed RBF network is the 
same as that of the SVR obtained objectively for a 
given error bound. 
However, the noise of the system is assumed to be a 
white noise [13]. In this paper, this result is extended 
to systems with correlated noise. To model the 
correlated noise, an additional recurrent neurofuzzy 
network is used, yielding the support vector recurrent 
neurofbzy network (SVRNFN). The training of the 
SVRNFN is derived fiom the predictipn error method 
[6]. Newton-Raphson technique is used to optimize 
the cost fiinction, with the derivatives obtained fkom 
the sensitivity model. 

The organization of the paper is as follows. In section 
2, the modeling of dynamic systems with correlated 
noise is presented. A brief description of the SVR 
algorithm is given in section 3, fiom which the 
SVRNFN is derived in section 4. The training of the 
SVRNFN derived l?om the prediction error method is 
derived in section 5. The performance of the SVRNFN 
and the proposed training algorithm is illustrated by an 
example given in section 6. 

2. Modelling of Nonlinear Stochastic Systems 
Consider the Nonlinear Auto-Regressive Moving 
Average model with exogenous input (NARMAX) 
given by [8,10], 

y(k)= F(y(k-I), ..., y(k -mbu(k-l)...,u(k - p i  
e(k-1 ),..., e(k-n))+e(k) (1) 

where yfi), U&) and e&)- N(0, d) are respectively the 
output, input and white noise; m, p and n, the 
respective orders; and F(o), a smooth nonlihear 
function. There is a wide class of nonlinear stochastic 
systems that can be modeled by NARMAX (1) around 
an equilibrium point subject to the following 
conditions [SI: 
A 1 : a state-space realization of the system exists, 
A2: a linearized model exists when operating close to 

the given equilibrium point. 
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For simplicity, it is assumed that the correlated noise is 
independent of y&), U&), hence (1) can be simplified 
to 

where f() and g() are smooth nonlinear functions, 
X(k)  = b(k - 1) ..., y(k - M) u(k - 1) ..., ~ ( k  - p)]' and 

E(k) = [e(k - l),...,e(k - n)r . The model given by (2) 
is referred to as the simplified NARMAX model [lo]. 
Since the correlated noise is bounded with a mean of 
zero, hence we have, 

N= f (X(k ) )+  g(E(k))+ 4) (2) 

g@)= 0 (3) 
3G E %+ S.Z. lg(E)I < G V E  E '8'' (4) 

3. Support Vector Regression 
Rewrite (2), 

where d(k) = g(E(k)) + e(k) is the correlated noise. 
The nonlinearity fix@)) can be approximated by a 
Support Vector Machine (SVM) as given below [5]. 

where N is the length of data for determining the 
structure of f(*) ; x(~F[x~(R), .  . . J,AN, 
m=m,+m.; K(X(k),  X(i)) is a kernel satisfying the 
Mercer's condition [2]; ETi and ai are the Lagrange 
multipliers, and b is the bias. The following fourth 
order B-spline kernels is used [2], 

Y ( 4  = f (X(k) )+  4 k )  ( 5 )  

f ( N k ) ) =  Cf,(zi - n , ) ~ ( ~ t k b ~ ( i ) ) + b  (6) 

where 

B4 (4 = 

(22 +X)3 /6~3  -22 I < -A 

(21 - x)' /sa3 a I x 2 a  
0 otherwise 

where h is the distance between two consecutive 
knots. The estimate of Ei and ai are obtained by 
minimizing the cost function, 

L(zi ,ai )= 3 cyj=, (zi -ai )(zj -aj ) K ( x ( ~ ) x ( . ~ ) )  
- C(".1 (q - ai )Ai>+ (q + ai )E (9) 

subjectto Os& S C I N  and 0 2 %  S C I N ,  where& 
and C are the given precision level and regularization 
constant respectively. Minimizing L(.,.) yields the 
following cases: 
If Iy(i)- f ( ~ ( i ) ) (  e E ,  then 6 = ai = o (10) 

O<E, < C I N  
(1 1) ai = o  If y(i) - f ( X ( i ) )  = E , then 

E, = C I N  
a, = o  
El = o  

If y(i)- f ( ~ ( i ) )  > E ,  then 

If f ( ~ ( i ) ) -  y(i) > E , then a, = C I N  
Condition (10) implies that some of the Lagrange 
multipliers are zero. Consequently, the number of 
kernels in the SVM (6) can be reduced. Assuming n 
data points satisfy cases (11)-(14), the SVM is 
simplified as, 

f ( ~ ( k ) ) =  Q jK(X(k ) ,  x 'O' ) )+~ (15) 
where {X'(l),. .., X ( n ) )  is a subset of the training data 
referred to as the Support Vectors (SV) [ 1-51, 

and { aI,. . ., a,,) are given by, 

The bias 6 is computed fiom Conditions (1 1 )-( 14), the 
so-called Karush-Kuhn-Tucker conditions [ 1,2]. The 
model (8) is known as the support vector regression 
(SVR). It is shown that (13) and (14) do not occur if C 
is sufficiently large, implying that the estimate of d(k) 
is bounded by ix [14]. Note that an optimal structure 
offiX(k)) is suitably chosen subject to (4) if E is less 
than G. 

s = @(i) : Iy(i) - f(x(i)] 2 E )  

A = ki -ai - : I&)- f(x(i))I 2 €1 
(16) 

(17) 

4. Support Vector Recurrent Neurofuzzy 

NeurofUzzy networks are often used in modeling 
nonlinear systems for given input-output data. It is 
shown that under certain conditions, they are 
transparent and that the linguistic rules can be deduced 
fiom the network [12]. A recurrent network is used to 
implement a stochastic system represented by an 
ARMA model [9]. In this work, recurrent neurofuzzy 
networks are used to implement the NARMAX model. 
Since A.) and g(.) are well-defined, they can be 
approximated by the following neurofuzzy networks. 

Network 

i(W) = z;:., b, 4 (m)- zZ1 b, 4 (2) (1 9) 

where &i and bi are the estimated weights; n and n', 
the respective numbers of weights; A,(X(R)), the 
normalized kernel is given by, 
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and Bi (E(k)) is the tensor product of the univariate B- 
spline fimctions [ 11,121, 

Bi (E(R))= n;l1 s:, (4’ - i)) (21) 
where si(.) is given by, 

(22) 
i f  X E I X J - I , X J )  

otherwise 
It should be noted in (19) that &I) = 0 , satisfying (3).  
From ( 1  8 )  and (1 9), the prediction ofy(k) is, 

%k) = c;=, 4 A, (X(k))+ x;:, B, B, (E(k))  

(23) 

As ?(X(k)) is a Support Vector Neurofuzzy Network 
derived fiom the SVR, (23) is referred to as the 
support vector recurrent neurofuzzy network 
(SVRNFN), as shown in figure 1. The training of the 
network will be discussed in the next section. 

5. Training of the SVRNFN 
The prediction error (PE) method is a general 
parameter estimation method, which can be 
implemented by the Newton-Raphson technique [6 ] .  In 
this paper, a training algorithm is proposed for training 
the SVRNFN, which is derived following closely the 
PE method. Similarly, the following assumptions are 
made. 
S1: Let ek=[e(k), ..., e(0)JT and sz” be ealgebra 

generated by (ek, U”>. So E[e(k) I C f l ]  = 0 . 
~ 2 :  I 0k-112 SI,  6 > 0. 

Let DM be a compact set, and M, the model set that 
consists of model (23), 

M =Cw(e):~(k,e)=rT(k)~~eE D ~ ]  (24) 

where r ( k )  =[A,(k) ... A,(k) B,(k)...B,,.(k)]T and 

i = [a, ... a, p, . . . pne ]’ . The training algorithm 
aims at finding the model with the smallest mean 
square errors fiom M, 

(25) 

Since the mean of e(k) is zero, the neurohzzy 
network is trained fiom the input-output data, {U(]), 

I N 2  J(8)  =&=,e (4 

..., u(N), y(l), ..., y(N)} by minimizing the cost 
function (25). The Newton-Raphson method is used 
here to estimate the weights in (24). 

The prediction error of SVRNFN (23) is given by, 

where the weight 6 is computed iteratively by the 
Newton-Raphson technique, 

where 1 is the number of iterations, 
6 = [el e2. ..en+,], rtk)=[rl(k) rdk) ... r n + f l ~ k ) ~ T ,  Y 

= [e( l ) ,  e(2), ..., e(N)IT, and cb and S are 

e ( k )  = y ( k )  - r (k )6  (26) 

e(1+1)=8(1)-(cbTcb+s)cbyI (27) 

The partial derivatives of the prediction errors with 
respect to 8 can be generated by the sensitivity model, 
as given below [7] .  

5.1 Sensitivity model 
The derivatives of prediction errors of the SVRNFN 
can be derived by dynamic back propagation [7] .  
Define 

k = j  (29) 
0, otherwise 

Differentiating (21) with respect to e(i) gives 

The derivative of an univariate B-spline function can 
be obtained recursively as follows [ 11, 121. 

Assuming that the initial conditions of the first and 
second partial derivatives are zero, differentiating (26) 
with respect to Bi, yields, 
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This linear dynamic model is known as the sensitivity 
model, with the fmt partial derivative c3e(k)/LWi as 
the output, and the basis function as the input [7]. An 
advantage of using the neurofuzzy networks is that the 
coefficients of the dynamic model are given by the 
derivatives of the basis hctions,  therefore, . the 
computation time will not be too large for small me. 
Define 

i = n + 1, ..., n+ n’ and 
ci (kd= j )  k-12 j 2 k-me (33) {? otherwise 
Differentiating (32) with respect to Oi, a sensitivity 
model of the second partial derivative is obtained. 

5.2 Training Procedure 
The procedure to train the recurrent neural networks is 
summarized below. 
(1) Choose suitable X(k), E@), me, E, h and C. 
(2) Obtain SV by minimizing L(.) given by (9). 
(3) Initialize weights of j(X(&)) by that of SVR. 
(4) Compute e(k), for k- 1,. . . f l  by (26). 
(5) Compute @and S by (32) and (34). 
(6) Update the parameters &1+1) by (27). 
(7) Repeat (4)-(6) until IAJ(i)J(6] < E ’ ,  say lo3 .  

6. Examples 
Consider the following nonlinear system given in [ 121, 

y ( k )  = (0.&0.5e-Y2(k-1) )y(k-1)(0.3 + 0.9e-y2(k-’))y(k-2) 
(35) 

where r(k) - N(0, 0. 12), and p is a constant set to 0.5, 
0,s and 1 respectively. The iterative map of (v(k - 2), 
y(k  - 1)) with an initial condition of (0.1, 0-1), when 
there is no noise, diverges from an unstable 
equilibrium near the origin towards a periodic 
attractor, as shown in Fig. 2. In the example, 1000 
input-output data are generated from (35) with an 
initial condition of (0,O). Since most of the data are on 
the periodic attractor, as shown in Fig. 2, only the first 
50 data points are required to select the SV. The 
distance between the inner knots L is set to 1.25, and 
the regularization constant C, to 100. The precision E 

is chosen to be 0.122, 0.122 and 0.149 for the 
respective value of p. Note that E for p = 1 is larger, as 
the variance of the correlated noise is larger. From 
Step 2 in training procedure, 16 SV are selected from 

+ 0.1 sin(ny(k-1))- ps(k-l)+ €(k) 

the 50 data points, which are marked by circles in Fig. 
3. In the SVRNFN, 16 normalized B-spline kemels are 
used to model &), and 2 triangular B-spline 
functions are used to model i(*). The initial estimate 
of a is now computed, as given in Step 3. The 
Newton-Raphson technique is now applied to train the 
SVRNFN with derivatives computed ftom the 
sensitivity model. The estimate iterative map ofA.) in 
all three cases are shown in Figs. 4 to 6. The 
autocorrelation functions of the prediction errors for p 
= 0.5, as shown in Fig. 7, indicated that the prediction 
errors are statistically uncorrelated. The 
autocorrelation functions from the other two cases are 
similar, indicating that good generalization results are 
obtained. 

7. Conclusion 
The SVRNFN is proposed to model dynamic systems 
with correlated noise. The main feature of the 
SVRNFN is that the structure of the sub-network 
modeling the nonlinear system is determined by the 
SV, which is selected similar to that in the SVR. A 
recurrent neurofuzzy network is used to model the 
correlated noise. The training algorithm of the 
SVRNFN is derived based on the prediction error 
method. The Newton-Raphson technique is proposed 
to train the SVRNFN, and the derivation of the 
derivatives using the sensitivity model is given. The 
SVRNFN is applied to model a nonlinear system 
corrupted by correlated noise. Good generalization 
results are obtained using the SVRNFN, and the 
training algorithms based on the Newton-Raphson 
technique. 
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Fig. 2 The iterative map ofA.). 
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Fig. 4 Estimated iterative map offi.) for ~ 0 . 5 .  

Fig. 5 Estimated iterative map ofA.) for y 0 . 8 .  
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Fig. 6 Estimated iterative map offf.) for p=l . 
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Fig. 7 The autocorrelation functions of e(k) forp4.5. 
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