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Abstract: This paper proposes a novel nonlinear approach
for high performance flight control design. The dynamic
linearization is accomplished via a kind of unknown input
observer, called Extended State Observer. A non-smooth
feedback law is employed to achieve the desirable dynamic
performances. A Lyapunov function is constructed for the
proposed method.

1. Introduction

Nomenclature
g Gravitational acceleration
m(r) Aircraft mass
v Velocity of aircraft center of mass
P Thrust force
Ly, z Position of aircraft center of mass
Y Density of air
M, Mach number
Sref Reference wing area
c . reference length
Pody Iy Moments of inertia and product of inertia
M, M M. Components of aerodynamic moment
@y 0y, 0, Angular velocity components
VeV ¥s Velocity components
XYz Aerodynamic drag, side and lift force
AR Pitch angle, yaw angle and bank angle
dy.d,.d, Aileron, elevator and rudder deflection
angles
a, Attack angle and sideslip angle

Modern high-performance aircraft often have control
difficulties over certain flight regimes, such as high attack
angle or high angular rates. These difficulties arise from
highly nonlinear aerodynamic characteristics, from
undesired coupling between axes, and from control input
saturation and delay.

Conventional flight control designs are developed based on
the “small perturbation theory”, which assumes that the
aircraft dynamics is linear and time invariant around the trim
condition, and that the longitudinal motion is independent of
the lateral motion. Therefore the equations can be decoupled
and treated independently’ ), Since the assumptions are
only valid for small regions about the trim conditions, set
point designs are needed to be carried out for a large set of
trim conditions in the flight envelop, and then a gain
scheduling is constructed by interpolating gains with respect
to flight conditions. But in extreme flight conditions, the
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performance of these systems starts to deteriorate due to the
un-modeled effects of the strong nonlinearities inherent in
the flight dynamics, and the coupling between longitudinal
and lateral motions, which become significant at high angles
of attack or rapid rolling.

In recent years, extensive literatures have discussed
nonlinear feedback linearization methods, such as nonlinear
transformation, nonlinear inverse dynamics, decoupling
theory, etc., for flight control design ®7), which directly
incorporate  full nonlinear inertia dynamics and
aerodynamics into the design. These nonlinear methods can
offer the potential for providing improved levels of
performance over conventional flight control designs.
However, to perform exact nenlinear cancellation, these
methods assume exact knowledge of dynamic models and
aerodynamic coefficients in the entire flight envelop. In
practice, this assumption is not valid. To improve the
robustness of the aforementioned nonlinear design methods,
[8-111 discussed how to combine sliding mode control,
adaptive control, neural networks and (or) robust controt
with these nonlinear methods. However, since the
dependence of the model and aerodynamic coefficients is not
fundamentally relaxed in these approaches, only small
parameters and/or unmodeled dynamic unceriainties are
permitted.

This paper proposes a novel nonlinear flight control design,
the Active Disturbances Rejection Control (ADRC), for the
aircraft attitude control, which also takes into account the
nonlinear nature of the problem but is independent of the
nonlinear dynamics models. The main idea is to use the
Extended State Observer, a kind of nonlinear unknown input
observer (UIO), and a non-smooth feedback design. Then,
only partial state feedback (d.y.,7.0,,0,.0.,V ) is needed
via this technique,

The paper is organized as follows. In Section 2, the aircraft
model and the attitude control problem under consideration
are briefly described. Then, the idea of dynamic linearization
via ESO is outlined in Section 3. In Section 4, the ADRC
design, based on the techniques of ESO and a non-smooth
continuous control law, is given. In Section 5, a Lyapunov
function is constructed for the closed-loop system. The
simulation results are presented in Section 6 and the
advantages of the proposed technique are summarized in
Section 7.



2, Aircraft mode! and design specification
The model for the motion of an aircraft is given by

X1 | Gyts CySpSy —SyCy CySpty +SyuSy [ vy
)" =| 5yCs  SySaSy +Culy  SySeCy —CuSy b vy |
— S5y Cﬂsy CﬂCr v,
w, —a, v P+X
w, 0 Wy fvy [+glcssy
w, —a, 0 jv €0y
E {1), 0 cosy —siny
y 3@ ={0 siny/cos# cosy/cosd 4]
y W, 1 sinpgd cosyrgd

o, ] |Uy-Low +l o0, +M,

Bay =0, - Lwo, +1 (@ -al)+M,

o, U -1)oo, -1 00, +M,
. . I, 0 -1
c,=cosa, §,=sina, E=| 0 [, O
I, 0 I,
where
X :CfoSrej‘ M = CneQS s,
- 1
Y=CrQS,y. M,=Cpn 08¢, Q=EpV2, 2
Z=Cp0S,, M, =Cp0S,7.

The aerodynamic force coefficients (C 0 CpCp) and
moment coefficients (C,,,Cpy.Cp,} are assumed to be
linear functions of the aileron ( d,, ), elevator ( 4, ) and rudder
(d, ) deflections:

Ca [ da||Cmc | |Ca dq
Cp =l Co |FZrM ) d, L[ Cpy |=]Cs [+ Zpe M) d,
Cﬁ Cs d, sz Ce df
3
where C;(ie6) are nonlinear functions of

(@.p.apo.0,0.5V), Z.(M,) and Z,(M,) are

function matrixes of M, . Further details about the aircraft
model can be found in {1,2,3,5,10,12].

In this paper, we study the attitude control problem. The
output vector to be controlled is selected as §9,p.y[ . The
control inputis {(d,(¢).d,(¢),d_{t)) with nonlinear saturation
characteristics |d; [<d.|d; |.€dT (i=a.e,r), where d is the
maximum deflection angle, and ; is the maximum
deflection angular velocity. It is assumed for this design that
only the states v , [B.y.yf and [{x)x,my,m:]r can be
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measured directly and that w; <@ , @ is the maximum
angular velocity.
3. Dynamic linearization via ESO

To state the idea clearly, the states of Equation (1) are
rearranged and defined as:

D4 Wy x Ve d,
X1=U/,X2=ﬂ)y X3 =yl X, = Vy U = de
Y W, z v, d,

Then the aircraft equations of motion can be put into the
following form:
Xy =R{X)X;
()X, = Fa(X). X2, X3.X )+ B(X;, X5. X) - U, 4)
X3=HB{X;. X4
Xy =Fy(Xy. X2, X3, X410,

To allow the nonlinear inverse dynamics technique ' be
apptied to the subsystem (€), the nonlinear models
Fp(X(,X,5,X5,Xy) , B(X|,X5,X4) should be exactly
known and full state feedback is needed te perform exact
nonlinear cancellation. Next, the ESO technique is employed
to perform nonlinear cancellation for the subsystem () in a
model-free way.

From (1)~(3), it is assumed that
B(X). X3, X4) =08, 5 'Sy (M,) (5)

is nonsingular. This is a commonly employed practical
assumption. Define

a
Hy=F(X 1, X5, X3, X)) +(B(X |, X3, X ) By(VHU, (6)

where the nonsingular matrix

M =const »

BO(V)=-;—VZS,,IFE“2M

which is a function of the state V , is an approximation for
B(X,.X3,X). Then system (L) can be rewritten as

X, =HNO+By(V)U . M

Similar to the idea of nonlinear inverse dynamics®!, applying

the control law
U=-B'(VXHN+U,). )

to system (€2} leaves it in the integrator-decoupled form:
k" 2= 7] 1

To obtain a real-time estimation for H(t) , an ESO is
designed:



Zy=2y - Fq(E)+ Byl E, = Z; - X,
Zy= ~Folf)
Jarlay—x21) fen(ay —x2) &
FolEp = faa(zia =~ x2) | Foa(B) = | fena(ziz = x22)
Joa(zaz —x3)
where  f(zy; ~xp ) i=12,j=123) are  suitably
constructed non-smooth functions. To simplify the design,
ESO (9) is designed to have the form of three second-order

ESOs with similar structure and parameters arranged in
parallel,

Fensz = x23)

{éli =zg; — Bor (zy — k2 )+, i=123

iy = - Bofa(zy; - xa.8), T
214 231 l‘;l (10)
212 =Z|, 22 =22. EZ =BO(V)U

213 <23 i3

|elf -sgn(e),|e|>d

fa[(e,a,6)={ O<a<ld=>0 (1)

le|/8"%, otherwise

For appropriate values of Sy, >0.8p >0, and §, the
output Z,(r) approaches H(z) , which is viewed as an
extended state vector of system (), at a desired rate. Then a
dynamic linearization can be accomplished by replacing
H(t) with Z,(#) in the control law (8}, that is:

U =-Bg (VIZ,(n+U)). (12)

By introducing H(r) , X, and X, in (4) are viewed as
extermal disturbances of the subsystem (L), and the
derivatives of the aerodynamic forces with respect to the
contro! surface (d,.d,.d,), which are very small for most
aircraft configurations, are also considered as disturbances
and are included in H{r) . Then system (4) can be simplified
{o

X, = F{XX,, 1%
X, = Hiy+ Byv)u.

Next, the ADRC law is designed for system {13)

Remark 1. Unlike traditional observers (linear or nonlinear),
ESO not only estimates the state but also the dynamics H(@) .
H(n can be viewed as the “roral disturbance” of the system,
which lumps the “internal disturbance” and the “external
disturbance”. The former is composed of nonlinear nature of
the dynamics, the coupling effects, the dynamic uncertainties,
et al, while the latter includes the unknown factors from the
environment. Disturbance rejection is an old but key
problem for high performance control. A great deal of effort
has been devoted to tackling this difficulty, see [13,19,20]
and the references therein. However, these methods usually
assume the knowledge of the disturbance model and/or the
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nominal plant model. The breakthrough brought by ESQO is
that it facilitates solutions for a series of challenging control
problems, such as dynamic linearization, disturbance
rejection and decoupling control, in an ingenious way.

Remark 2. It is obviously that (10) is in the form of the
classical Luenberger observer when f (e)=e(i€ n+1) and
is in a form of a variable structure observer when
Feitey=e+k sign(e)ic ntl) 21 However, the nonlinear
structure (11) is not a simple substitution for a sliding mode
estimator. The state trajectory of ESO does not convergeto a
certain sliding mode but a special region, the self-stable
region, determined by (11). The advantages of the
continuous non-smooth structure in ESO and its convergence
analysis are discussed in [14].

4. Non-smooth flight control design

[15~17] and the references therein discussed the advantages
of non-smooth feedbacks, especially the fractional power
control (FPC) law for providing excellent capabilities on
dynamic performances, robustness and disturbance rejection.
Next, the non-smooth flight control design is proposed for
system (13}.

Since system (13) is in the strict feedback form, non-smooth
backstepping techniques"® can be employed. Suppose that
X[ (1) is the command for X, (). Using X, as the control
for X, ,the FPClaw for X, to follow X is designed as:

k18 -8 g’ -0)
FI(XX,=Uy= klz[w‘ —yr | -sgn(w* -y | (14)
ks ly —r|™ sen(y” —y)

where k;; >0( =1,23) are the gain coefficients. Considering
the physical bound for the angular velocity, the “command”
for X, 1is designed as: X5 =sat(F, " (X\)Wg.8)
FHXx,)=0" is nonsingular.

Then based on (12), the continuous non-smooth control law
for X, tracking X is designed as

U = sat(By (VU - Zy(e),d)

kZ] wa* Wy !a’ vsgn(w; _wx) (15)
Uy=lkplo, -w, [ sgnla, —w,) |

* *®
kyylo, —w, [ snglo, -—o,)

where D<a, <1, ky > 0(=1,23) are the gain coefficients.
Hence control law (15} is mainly composed of two parts:
Z, (1) is used to compensate the “nonlinear dynamics™ H(z)
and U,(X3 - X,) is a non-smooth feedback law to achieve
satisfactory performance.

Since the proposed control law can automatically detect and
compensate this “total disturbance”, it is called Active
Disturbance Rejection Control (ADRC) technique ', Fig. 1
shows the diagram of ADRC designed for aircraft attitude
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Fig. 1. Diagram of ADRC for aircraft attitude control

Remark 3. Backstepping technique avoids the state
transformation or higher order derivatives of the controlled
state so that the phase variables can be controlled directly.

Remark 4. To simplify the algorithm and avoid chattering,
the FPC law can be simply substituted by the pieccewise
linear (PL) {aw, for example:

x5 lx| <8
]
x(2e DS otherwise

fpl(x.c.8) = (16)

5. Stability and closed-loop performance analysis

The ADRC law designed for system (13) has nice properties:
high speed, small overshoot and steady errors. Next, a
Lyapunov function will be constructed for the closed-loop
system, and the advantages of the non-smooth structures will
be analyzed. In the following analysis, the saturation
characteristics are ignored. f{t) denotes the generalized
derivative of f(t), if the function () is non-smooth.

From (9}, (13) and (15), the closed-loop system can be
described as follows:

X| = F(X])X;,

Xo=HO+U -7,

Ey = Ey—Fy(E)
Ex=-H(t)-Fp(E), Ey=7Z,-H(@)

(17

3
1
Define Vv, =—2-2 g3:(ey e2;) , where
=

lkli(elive?.f)l' |hzi(£’u’<‘~’25)1 > grilen)

gailey.e) =
a {Bli(eli)'

otherwise.
hyileye2;) = ez, = By fa () + %frl(e]i)
i

gile) = fTo;lfrzl-k >1
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From Theorem 4 of [14], the following lemma can be
obtained:

Lemma 1. Assuming that H(z):[lil(:) (1) Pi;(r)]r is
bounded, that is, lli,.(r)l<w.i:1,2,3 , for some W>0, if

(1+k)?

¢y >1, then
k

fo2

2
Boy >

€282

V, <0, when By85; >

€2 W (18)

CZ—

From (18), an upper bound for the steady estimate error of
ESO (10) can be derived as follows /'

e;- = sup {[el,- (w)|}
!h,-(r)|<w
- w
_ﬂ.)a k>l _._kCZ_ =8,
=1 Bpalez =D Boa(ca -1
w 19
—LC-Z—, otherwise (19)
Boalc, -1
. (k—De,W
e2 = sup (legi(=)}= Boien - ————.
[fst|<w Borlcz -1

leqg e ep) =E;, i=12

ke, W
2 - the smailer the o is,
C2 -

which shows that, when 8y, >

the smaller the steady estimation errors e;; and ey, will be.

It means that the ESO can have better ability for estimating
the uncertainties and disturbances. This is one advantage of
the non-smooth structure (11).

Remark 3. Since H() is the uncertain part of the angular
acceleration, W can be determined by the bound of the
angular acceleration rate, which is usually known in practice.

Define V, =%(x§ -X)T(X3-X,). Then

v, =—Uf(x;—x2)+[zz —H(r)+X§]T(x; -X3)

=-ik2‘-l[x; —le.l'mz e+ 03T - xy)

i=l

20

where [A]; means the jth element of vector A. Therefore
3 . * 0y o * .
V, <0, if J<2,7|[x2 —Xz],l >[i£, + X31,} =123, 20

From (14), X} is bounded, if FPC law (14) is replaced by



PL law (16). On the other hand, from (18), £, is bounded.
Hence, an upper bound for the steady tracking error
I[X i-X 21' can be obtained as follows:

1
-l 1

(22)

, the smaller the a5 is,
|[x; —x2].| will be.
This is the advantage of the non-smooth structure in (15).

Ttis clear that, when ky; >[[E2 +X3],

the smailer the steady tracking error

Finally, define V; :%(xf -X;)" (X} ~X,). Then

Vi = U (X} - X+ o~ R X, + X7 (7 - X))

3
= _Ekli
P

{Xl‘ —Xllllml + [FI(XI)(X; —Xo)+ X;]r(x; - X

(23)
Therefore, V3 <0. if

kul[Xf —Xl],-la‘ >llF1(X1)(X§ X+ X ;] i21.2.3.(24)

It is assumed that X; is bounded. From (22), IXE —-X,| is
1

bounded. Hence, an upper bound for the steady tracking

error |X; — X, || can be obtained as follows:
i -]

1
. ([ cx0xs - x4 %7 | o
[Xl_xll"<| (X zkl' 2t Xy I1.

I

(25)

It means that, when k,,->[[F1(Xl)(X§—X2)+Xf],-[ , the
smaller the ¢, is, the smaller the steady tracking error
l[X,' -X, “ will be. This is the advantage of the non-smooth
structure (14).

fine V =V, +V,+V;y. Combining (18), (21) and (24), it is
obviously that V 15 a Lyapunov function of the closed-loop
system (17).

6. Simulation results
Fig.2 depicts the simulation results under the following
command:

x 00, t=t,
W (:)={ 0

o s }"(!)=0 ,
1207, ¢ 21

. 65%, 1<
15(1)={ =n

0
=155, 12145

fg <t <ty <t3.[8;|515°, Id,.|5300°/5.

Fig. 2 and Table 1 show that the system has the performance
of high speed, small overshoot and steady errors. Fig.3
shows that the output of ESO (11) approaches the “total
disturbances” H{t) very well.
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Overshoot Steady error
(Degree) {Degree)
& 0.3 <0.1
¥ 24 <0.6
Y =0.0
Table 1. Dynamic response data
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Fiz.3 The total disturbance estimation via ESO
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Remark 6. In the simulation, the deflection angles are
generated through a second order dynamic process, in which
the saturation constraints are set on the bound of the
deflection angles and the deflection angutar velocity (Fig.4)

7. Conclusions

The paper proposes a novel method directed at the

difficulties of high-performance flight control design. The

major advantages of the method are:

1) Realizing dynamic linearization by estimating the
unknown nonlinear dynamics H¢) via ESO s
essentially independent on the models and aerodynamic
coefficients;

2) Non-smooth feedback law is used to improve
performances, such as high speed and high accuracy;

3) Only partial states information is needed. The phase
variables can be controlled directly.

The paper also provides an analysis for the proposed
approaches. As a first step towards this goal, the saturation
characteristics are ignored in this paper. If they are
considered, the resuits may be local. This problem is still
under investigation.
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