
Modelling of River Discharges using Neural Networks 
derived from Support Vector Regression 

K. Y. Choy C. W. Chan 
Department of Mechanical Engineering 

The University of Hong Kong, Hong Kong, China 
mechan@hkucc.hku.hk 

Abstract - Neural networks are often used to model complex 
and nonlinear systems, as they can approximate nonlinear 
systems with arbitrary accuracy and can he trained from data. 
Amongst the neural networks, Associative Memory Networks 
(AMNs) are oflen used, since they are less computation intensive, 
and yet good generalization results can he obtained. However, 
this can only be achieved if the structure of the AMNs is suitably 
chosen. An approach to choose the structure of the AMNs is to 
use the Support Vectors (SVs) obtained from the Support Vector 
Machines. The SVs are obtained from a constrained optimization 
for a given data set and an error bound. For convenience, this 
class of AMNs is referred to as the Support Vector Neural 
Networks (SVNNs). In this paper, the modelling of river 
discharges with rainfall as input using the SVNN is presented, 
from which the nonlinear dynamic relationship between rainfall 
and river discharges is obtained. The prediction of river 
discharges from the SVNN can give early warning of severe river 
discharges when there are heavy rainfalls. 

1. INTRODUCTION 

Data driven modelling and prediction methods have become 
quite popular for systems that are too complex or too difficult 
to be described mathematically. Although data driven 
approaches do not always lead to a better understanding of the 
physics or the dynamics of the system, they are extremely 
practical for modelling “data rich” but ”theory weak” 
nonlinear systems. However, one has to be cautious in building 
and using these models, especially if they are working beyond 
the data range that has been used for producing them, or there 
are large outliers in the model. 

Neural networks are popular for modelling nonlinear 
systems, since they have been shown to be universal 
approximators [I] .  In practice, the generalization ability of 
neural networks depends on the choice of their structure. 
Associative Memory Networks (AMNs) are neural networks 
that store information locally using a set of basis functions and 
associated weights. Though lattice-based AMNs are simple to 
construct, they have the disadvantage that the number of basis 
functions in the network increases exponentially as the 
dimension of the input space increases, leading to the “curse of 
dimensionality” problem [Z]. Not only the memory required to 
implement the network is large, computation cost in training 
the network can be excessive. The Radial Basis Function (RBF) 
networks belong to a class of AMNs for interpolation in an 
input space with large dimension [3]. An advantage of the RBF 
networks is that the centres of the basis functions can be 

distributed over the input space, instead of on a lattice [4]. For 
the same number of basis functions, this configuration often 
leads to better generalization results than with centres on a 
lattice. Further, the choice of the structure of the networks is 
less dependent on the dimension of the input space. However, 
as the performance of the RBF networks depends on the choice 
of the centres of the basis functions, it is crucial that they are 
suitably chosen. Several techniques are available in the 
literature. A popular technique is the Adaptive Spline 
Modelling of Observation Data (ASMOD) algorithm [SI that 
searches for the “best” structure from a set of basis functions. 
The orthogonal-forward-regression routine involves selecting 
the structure of the network based on the error reduction ratio 
[61. In [7], the basis functions are pruned by backward 
elimination using the orthogonal triangular decomposition to 
minimize a prediction risk criterion. In [SI, a constrained 
minimization algorithm similar to that in the Support Vector 
Regression (SVR) [91 is proposed to select the number of basis 
functions and their respective centres for a given modelling 
error bound. This class of networks has been referred to as the 
Support Vector Neural Networks (SVNNs) [8]. The advantage 
of S V ”  is that its structure is selected objectively by a 
constrained optimization. 

In this paper, the SVNN is applied to model the river 
discharges of Fuji River with rainfall as its input. Fuji River is 
the third steepest river in Japan. The data set for the study 
consists of daily river discharges at Kitamatsuno gauging 
station, and daily rainfall data collected at 10 weather stations 
in and around the basin from January 1990 to December 1993. 
The SVNN is constructed from the given data, from which the 
temporal relationship between rainfall and river discharges is 
obtained. This result can be used to examine the dynamic 
effect of rainfall on the river discharges, and to forecast the 
river discharges from rainfall. Therefore an early warning of 
severe river discharges can be obtained when there are heavy 
and prolonged rainfalls. 

The organization of this paper is as follows. A brief review 
of AMNs and Support Vector Machine are given respectively 
in Sections I1 and 111. The derivation of Support Vector Neural 
Networks from the Support Vector Machine is presented in 
Section IV, together with the training algorithm and the 
training procedure. The modelling of the river discharges with 
rainfall as an input is described in Section V. 

0-7803-7810-5/03/$17.00 02003 IEEE 1321 The IEEE International Conference on Fuzzy Systems 



11. ASSOCIATNE MEMORY NETWORKS 

Consider a nonlinear dynamic system given by, 

Y ( k )  = f ( X ( k ) ) +  4)  7 (1) 

where X(k)  = b(k - I), ..., y (k  - my), u(k), ..., u(k - m,)lr, y (k)  
and u(k) are the output and the input; e(&) is a white noise with 
normal distribution, e(k) - N(0, 0'); my and mu are the known 
orders of the system; A.) is a well-defined but a-priori 
unknown nonlinear function. Suppose the nonlinear function 
A.) is approximated by an AMN. For an AMN with the centres 
of the basis functions evenly distributed on an m-dimensional 
lattice, the number of multivariate basis functions, or the 

number of weights of the RBF network is given by n = n n j  , 

which increases exponentially as m increases. This leads to the 
well-known ''curse of dimensionality" problem [IO]. Scattered 
partitioning of the input space can be used to overcome this 
problem by reducing the number of multivariate basis 
functions in a RBF network 141. Without loss of generality, 
these centres can be chosen to coincide with the input data, 
~ ( k ) ,  giving 

m 

i=l 

where Bi is the ?' weight; and kLi is the i" Gaussian basis 
function given by, 

(3) 

where y and X'(i)= [xi( i )  ,..., xL( i ) r  are respectively the 
spread and the centre of the Gaussian function. The centres 
X'(i) are chosen from the input data { X ( k ) } ,  and y is chosen to 
ensure a complete coverage of the input space. The i" 
multivariate basis function is a product of the univariate basis 
functions for the input variables, 

(4) 
;=I 

where pi,; (x , (k) )  = ex& (x; (k) - x; (i))z/2y2 J . From (3), 
p j ( X ' ( i ) ) = l  for I s i s n .  

111. SUPFORTVECTOR MACHINE 

The Support Vector Machine (SVM) 191 for estimating the 
nodinear function f(.) is 

where N is the length of data; ai and ai are the Lagrange 
multipliers and b is the bias. Let @ ( X )  and w be respectively 
the nonlinear regressor and the associated weights. The kernel 
K ( X ( k ) , X ( i ) )  is given by the linear dot product of the 
nonlinear regressors, @(X(k) )  and @(X(i ) ) ,  

K ( x ( ~ ) - x ( ~ ) ) =  @'(X@)h(X( i ) )  (6) 

It is assumed that K ( X ( k ) , X ( i ) )  in (6) is symmetric and 

satisfies the Mercer's condition [ I l l .  The parameters ai, a, 
and b in (5) are estimated by minimizing the regularized risk 
L'(w,b) , which is a linear combination of the model 

complexity and the empirical risk. 

(7) 

where C is the regularization constant; E is the given error 
bound; wrw/2 re resents the model complexity; and 
I . le = max{O.l . / - E  P , the E-insensitive loss function. If the 

magnitude of '.' is less than E, then 1 .  I s  is zero. The 

minimization of (7) can be transformed to the constrained 
minimization [12]: 

Minimize: 

&a)= -! 2 ( Z i  - a,h; - g j b ( x ( i h x (  j ) )  

(8) 
2 i . j-1 

N 
- 61 -a, )y(i)+ Qi + 

i=1 i-I 

subjectto t&-s)=O 
i i l  

and the Lagrange multipliers ui,gi 2 0 satisfies, 

05ai,czi 5-. 

In the SVM, each pair of { gi,cxj} is associated with a kernel 

having a centre at X ( i ) ,  which is retained if ai -aj # 0 ,  but is 

removed if both ai and g j  are zero. The centres X ( i )  of the 
retained kernels are referred to as the Support Vectors (SVs) 
[91. Let 

(10) 
C 
N 

- 

- 

(i) n be the number of SVs, 
(ii) cc,=ai-gj. 
(iii) K ; ( x ( ~ ) ) =  K ( X ( k ) , X ( i ) ) ,  

- 

where j = 1, .. ,, n. and X ( i )  is the j" SV. Rewriting (5) gives, 
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f (X(k)) = 2 a,K,  (X ( k ) )  + b .  (11) 6 = [@'+P'Y, (16) 
Jil 

where 
{K , (X(k ) ) }  are Gaussian functions given by (3) with their 
centres given by the SVs. The model given by (11) is referred 
to as the Support Vector Regression (SVR) [ 131, which is the 
minimum of Lb,,ct,) for a given error bound E and C, to be 
specified by the users. 

"1)) "' N M ) )  

"9 ..' N " ( X ( N ) )  

(17) cp = 

IV. SUPFORTVEC~~R NEURALNETWORKS 

Since the SVR given by (11) can be considered as a 
two-layer neural network linear in its weights, it is intuitive to 
reformulate it as a RBF network given by (2) using normalized 
basis functions, since the kernels of the SVR do not necessarily 
form a partition of unity [8]. Following [8], the SVR (11) is 
transformed to the neural network (2). 

where N ,  ( X ( k ) )  = K, (X(k ) ) /h (X(k ) )  is the normalized basis 
function. For convenience, (12) is referred to as the Support 
Vector Neural Network (SVNN) [8]. The properties of the 
SVNN are that the modelling errors have a zero mean and a 
variance smaller than the square of the error bound E'. In 
contrast, the output of the SVR is biased and the variance of 
the modelling errors is greater than the SVNN [8]. 

A. Training Algorithm of SVNN 

As the output of the SVNN is linear in the weights of the 
network, the weights can be estimated by the least-squares 
method. Rewriting (12) in matrix form gives, 

y ( k ) = B ' ( X ( k ) k .  (13) 

where B ( X ( k ) ) =  [N,(X(k)) ,  ..., N , ( X ( k ) ) y  and e = [e,,.. . , O n  r . 
The least squares estimate of 0 is obtained by minimizing the 
cost function, 

(14) 

where ?(k )  is the estimate of the output y ( k )  computed by 

j(k) = B ' ( X ( k ) N .  (15) 

The least-squares estimate of the weights 6 that minimizes 
(14) is 

B. Training Procedure of SVNN 

The training procedure for the SVNN is summarized below. 
Step 1 Normalize the input-output data such that they are in 

the range of 0 and 1, and choose the spread y of the 
Gaussian function given by (3) to give a good coverage 
of the input space. 

Step 2 Select E and C, and obtain the SVs of the SVM by 
minimizing L&j,(yj)  given by (8) subject to the 
constraints (9) and (IO). 

Step 3 Obtain B ( X ( k ) ) = [ N , ( X ( k ) )  ,..., N , ( X ( k ) ) r  from (12) 
using the SVs, and compute the least-squares estimate 
of the weights 6 by (16). 

Step 4 Evaluate the modelling errors of the SVNN. Choose 
another E, and repeat Steps 3 and 4. 

From experience, the choice of C does not have too much 
effect on the optimization result. However, the choice of E has 
a direct impact on the number of SVs, as it governs the 
precision of the approximation. Therefore, it is necessary to 
choose a few E and obtain the corresponding SVNNs. The 
choice of the 'best' one is a compromise between the variance 
reduction in the modelling errors, and the number of SVs used. 

V. RESULTS 

A. The modelling data 

Fuji River, which runs through mountainous terrain, is the 
third steepest river in Japan. The basin is located between the 
latitudes 35"07'- 35'46' N, and longitudes 138'12' - 138O39' 
E, and the river originates at an elevation of 2685 m. The 
catchment area of the river is 3570 km2 over a length of 128 
km [141. The data set used in the study consists of daily river 
discharges at Kitamatsuno gauging station, which is 10.7 km 
from the river mouth with a catchment area of 3540 km', daily 
rainfall data collected at 10 weather stations in and around the 
basin (Kamikuishiki, Nakatomi, Kawaguchiko, Yamanaka, 
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Nanbu, Ooizumi, Nirasaki, Kofu, Katsunuma and Ootsuki) for 
the period from January 1990 to December 1993. There are 
1461 sets of daily river discharges data y(k) (m’ls) and daily 
rainfall data u(k) (mm) from each of its surrounding weather 
stations. Following the modelling procedure described in 
Section IV, these data are normalized with values within 0 and 
I ,  giving, which are denoted by y ( k )  and &). The input 

X ( k )  of the SVNN is selected by choosing first my and mu, 

based on the autocorrelation functions p,(h) of y ( k )  and the 

cross-correlation functions p, (h) between y ( k )  and u ( k ) ,  

- 

lag; N = 1461; denotes the meanof .The cross-correlation 
functions between the river discharges and the rainfall data 
from each of the ten weather stations are computed. As the 
cross-correlation functions for 5 out of 10 weather stations are 
much smaller than the other 5, they are not included in the 
study. Therefore, the average rainfall is computed from the 
remaining 5 weather stations, and is used to compute the 
cross-correlation functions between the river discharges and 
the rainfall. From the autocorrelation and the cross-correlation 
functions shown in Figs. I and 2, py(l). p,(2), pJ0) and p,(l) 
are much larger than the other functions. Therefore, n z y  is 
chosen to be 2 and m, to be 1,  giving 

X ( k )  = L(k - - 1)- - y(k - Z),u(kXu(k - 1)P 

The first 1000 normalized data are used as training data. To 
reduce the computing time, 53 data are further selected for 
finding the SVs, and are selected as follows. Since most of the 
training data are within the range (O,O.l) ,  this range is divided 
into 10 equal intervals and 3 data are randomly drawn from 
each interval, giving 30 data. The remaining 23 data include 
the smallest one and all those in the range CO.1, 11. 

E. Modelling using the SVNN 

The spread y of the Gaussian function is chosen to be 1,  C 
to be 300, and E to be 0.08. 0.09 and 0.1, from which three 
SVRs are obtained, and the number of SVs in the respective 
SVR is 12,9 and 8. The SVR with 9 SVs corresponding to E = 
0.09 is shown in Fig. 3 with the SVs marked by circles. From 
these SVs, B(X(k)) and @ are computed, and the least squares 

estimate of the weights 6 is then computed from (16). From 
the estimated weights, the estimated output F(k) is computed 
from (15).  The mean of the modelling errors of all trial models 
is approximately zero, and the variance of the modelling errors 
for each SVR are: 76.52’, 88.68’. and 91.96’. The SVNN with 
structure determined by the SVR with E = 0.09 is preferred, 
since the reduction in the variance of the modelling errors for 
the one based on E = 0.08 is achieved by the addition of 3 more 
svs .  

The modelling errors for the selected SVNN are shown in 
Fig. 4. The SVNN is then used to predict the river discharges 
for the periods 1001 to 1461. The variance of the prediction 
errors, which are shown in Fig. 5, is 69.152, much smaller than 
the variance of the modelling errors. This is because there are a 
few large outliers in the modelling errors that lead to a larger 
variance. 

C. Intervention 

The outliers in the modelling errors are arisen from the way 
the data are collected. As the rainfall data are aggregated over a 
day, and the river discharges are measured at some specific 
time of the day, it is possible that a heavy rainfall may take 
place after the river discharges are measured. To obtain a more 
reliable model, it is necessary to remove these outliers. Since 
there are 6 outliers from the modelling errors as shown in Fig. 
4 , 6  intervention variables are used. Each one is a zero vector, 
except in the position where the outlier occurs, which is set to I .  
These vectors are adjoined to @, and the number of parameters 
in the SVNN becomes 15. The magnitude of these outliers is 
given by the least squares estimate of the parameters 
associated with the intervention variables. Now, the 
normalized river discharges are adjusted by subtracting these 
parameters at the period when the outliers occurred. The 
modelling procedure is repeated withy = 0.7, E = 0.09. and C= 
300. A SVR with 10 SVs is obtained. The SVs shown in Fig. 6 
are those data as marked by circles. 

With the new 10 SVs, the SVNN is re-estimated using the 
least squares method and the original data with the 
intervention variables. The variance of the modelling errors is 
44.402, and from Fig. 7, there are no obvious outliers in the 
modelling errors. 

D. Relationship between Rainfall and River Discharges 

To analyze the effect of rainfall on river discharges, 2 cases 
are simulated from the SVNN. In case 1. the rainfall ~ ( 1 )  is set 
to some values between 0 and 1, say 0.7, whilst the rainfall in 
the following days are set to zero. y(-1)= - y(O)=O.O12, the 
mean of the river discharges for periods when there was no 
rainfall. The estimated output for the SVNN with intervention 
is shown in Fig. 8. In case 2, the rainfall ~ ( 1 )  is fixed at 0.4, 

- 
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In this paper, the modelling of river discharges of Fuji River 
using the Support Vector Neural Networks is described. The 
ability of the SVNN to predict river discharges is demonstrated 
using the test data. From the SV" ,  the nonlinear relationship 
between rainfall and river discharges is obtained, from which 
river discharges can be forecasted from rainfall. This 
relationship is useful to provide an early warning of severe 
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