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ON THE EXPONENTIAL STABILITY OF STOCHASTIC MARKOVIAN JUMP 

SYSTEMS 

E.K. Boukas, H. Yang 

Abstract- 
This paper deals with the exponential stability of the class 

of‘ stochastic systems with jumps. For the linear case, a suf- 
ficient condition, which guarantees that the nominal system 
with a bounded diffusion term remains stable under a state 
feedback control law, is established. For the case of uncer- 
taiin linear stochastic system, we have designed an optimal 
control law that guarantees the robust exponential stability 
of the systems. Finally for the nonlinear case with matching 
conditions, we have established a similar result. 

I. INTRODUCTION 

For practical systems, we always recourse to the reduc- 
tion of the model by making some assumptions that are 
in general not satisfied. The model we used is not a good 
representation of the system we want to control. Therefore 
it is necessary to consider the effect of the uncertainties if 
we want to guarantee that the real system remains at least 
stable. The knowledge of the dynamics or certain informa- 
tion on the uncertainties of the system under consideration 
is then an important point in the design phase. 

Our goal is to design a control law that guarantees to 
the stochastic systems under study to  remain exponentially 
stable when certain conditions for the uncertain terms and 
the perturbation terms are satisfied. 

11. STABILITY OF LINEAR SYSTEM 

In this section, we consider the class of jump linear sys- 
tems described by the following stochastic differential equa- 
tion: 

dx(t) = A(r(t))x(t)dt + B(r(t))u(t)dt 

+g(x(t), r ( t ) , t ) d w ( t ) ,  x(0) = XO, (1) 

w!here the n-dimensional vector ~ ( t )  E IRn stands for the 
state of the system and the m-dimensional vector u(t) E 
IRm is the control law. Vector w(t) is a vector standard 
Brownian motion. The parameter r(t) represents a con- 
tinuous time discrete-state Markov process taking values 
in a finite set B = {1,2, .  . . , s }  with transition probability 
pi,i(r(t)) := P{r(t + At) = jlr(t) = i} given by: 
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In this relation, qi3 stands for the transition probability rate 
from mode i to mode j and satisfies the following relations 

In Eq. (l), A(r(t)) ,  B(r(t) and g(x(t), r(t), t) are appro- 
priately dimensioned matrices. The matrices A(r(t))  and 
B(r(t) are constant for a given value of r(t). g(x(t), r(t), t )  
is Lipschitz continuous for x and satisfying the linear 
growth condition. We will a,lso assume that the Brownian 
motion w(t) and the jump process r(t) are independent. 

In the remainder of this paper, we assume that the first 
component of the state vector, i.e. x(t) in each mode is 
available for feedback. Moreover the stochastic observabil- 
ity and controllability are assumed. In this section, we will 
use the technique given by Mao (Ref. 9) to show the expo- 
nential stochastic stability of the system described by Eqs. 
(1)-(2) when the state feedback control law is used. 

Theorem 2.1: If the system without the Brownian mo- 
tion terms is exponentially stable under the feedback con- 
trol given by Eq. (7 )  and there is a nonnegative constant 
N such that: 

4i j  2 0 and 4ii = - Cj@,if3 q i j .  

111. ROBUST STABILITY OF THE SYSTEMS WITH 
UNCERTAIN COEFFICIENT 

Let the real system be described by the following stochas- 
tic differential equations: 

dx(t) = [A(r(t)) + A,h(r(t)]x(t)dt + [B(r(t))  

+AB(r(t))]u(t)dt + g(x,r(t) ,  t)dw(t) ,  x(0) = xo(5) 

where the matrices AA(r(t))  and AB(r(t)) represent re- 
spectively the uncertainties on the matrices A(r(t)) and 
B(r(t))  for each value of r(t), x ( t )  and u(t) have the same 
meaning as previous. 

Assumption 3.1 For each i E B, there are nonnegative 
symmetric matrices Qo(i) and Ro(i) and positive scalars 
ra(i) and Yb(Z), such that: 



To control the system (5)-(2), we will now use the opti- 
mal approach by choosing the weighting cost matrices Q(i )  
and R(i) as following: 

Q(i )  = Qo(i) + Qi( i ) ,  R(i) = Ro(i) + Rl(i) (8) 

where Qo(z)  and Ro(i) are the matrices defined in (6)-(7) 
and SI ( ; )  and Rl(i) are known symmetric matrices with 
Ql(i) positive semidefinite and RI  ( i )  positive definite. 

Assumption 3.2 Assume that the nominal system with- 
out the Brownian motion terms is stable under the control 
law obtained by solving the optimal control problem, i.e. 
u(x, i )  = -R-l(i)B’(i)P(i)x(t), where the weighting ma- 
trices are chosen by Eq. (8). 

Let y ( i )  and r ( i )  be defined by: 

In the following, we present a sufficient condition which 
guarantees the stabilizability of the system (5)-(2). 
Theorem 3.1. If the nominal system without the Brown- 
ian motion terms is stable under the state feedback control 
law obtained by solving the optimal control problem with 
the weighting matrices are chosen by Eqs. (18)-(19), there 
exists an CY such that the following conditions are satisfied: 

Then the real system remains exponentially stable in the 
whole ranges of uncertainty. 

IV. STABILITY OF NONLINEAR SYSTEMS 

We consider an uncertain stochastic nonlinear system 
described by: 

dx(t) = [A(x(t), r( t) , t)  + AA(x(t),r(t), t ) ] d t  

+[B(x(t), r(t), t )  + AB(x(t), r(t), t)lu(t)dt 
+g(x(t), r(t), t)dw(t) (14) 

where the n-dimensional vector x ( t )  E IRn stands for the 
state of the system and the m-dimensional vector u(t)  E 
IR” is the control law. A(x,r ,  t ) ,  AA(x,r, t ) ,  B(x,r, t ) ,  
AB(x(t), r(t),  t )  and g(x(t), r(t), t )  are matrices of appro- 
priate dimensions. r(t) is same as before. We will assume 
that all the matrices of the system are Lipschitz continu- 
ous functions and satisfying the linear growth condition. 
So the equation (14) has a unique solution. 
Assumption 4.1. For each i E B, A(O,i,t) = 0, 
B(O,i,t) = 0, AA(O,i,t) = 0, AB(O,i,t) = 0 and 
g(O,i,t) = 0, for all t E IR, and x = 0 is the unique equi- 
librium of (29) when u(t) = 0. 
Assumption 4.2. For each mode i E B ,  there are map- 
pings D(x, i, t )  and E(x, i, t )  such that 

~ 
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where D(.) and E(.) are matrices of appropriate dimensions 
which are continuous in (x, t )  for each i E t3. 

Let the stochastic Lyapunov function V(x, i )  be defined 
by: V(x, i )  = x’P(i)x, where P ( i )  is a symmetric positive 
definite matrix. 
Assumption 4.3.  Let AoV(i ,  x) be defined by: 

where 0; denotes the transpose of gradient operation. We 
also require that there is a constant y1 > 0 such that 

In the following, we use the same technique to construct 
a control law U*(.) which will later be shown to stabilize 
the class of systems under study. The first step in the 
construction of the control law is to select two functions 
AI(.) and A2(.), independent of the uncertainty such that: 

Now, for each mode i E t3, we choose any nonnegative 
function y(x, i ,  t )  which is continuous in (x, t )  and satisfy- 
ing the following inequality: 

where 0 < C1 < 1. 
We define the controller by the following expression: 

(23) u*(x, i ,  t )  := --y(x, i ,  t)B’(x, i ,  t)B,V(x, 2) 

The following result states the sufficient condition which 
guarantee the exponential stability of the class of nonlinear 
system (14). 
Theorem 4.1. Assume that the assumptions 4.1-4.3 are 
satisfied and the controller constructed above is used. As- 
sume also that 

are verified. Then the uncertain nonlinear system (14) is 
exponentially stable. 
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