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Abstract 

Practical computation of the minimum variance unbiased estimator 
(MVUE) is often a dificult, i f  not impossible, task, even though general 
statistical theory assures its existence under nyulare'ty conditions. We pro- 
pose a new approach, based on infinitely many iterations of bootstrap bias 
correction, to calculating the MVUE approximately. A numerical example 
is given to illustrate the eflectiveness of our new approach. 
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1 Introduction 
In cases where the maximum likelihood estimator (MLE) is a function of a com- 
plete sufficient statistic, an exact MVUE may be obtained by eliminating the 
bias of the MLE. For example, an MLE can be bias-corrected by subtracting an 
estimated bias term, but the result is usually not satisfactory. In this paper, we 
propose a new approach that makes use of infinitely many bootstrap iterations to 
completely eliminate the bias of the MLE, thus yielding the exact MVUE. Appli- 
cation of the bootstrap to estimate the bias was first conceived by Efron (1979). 
In general the bias of an estimator can be reduced by an order of O(n-'), where 
n denotes the sample size, by subtracting the bootstrap bias estimate. Each it- 
eration of the bootstrap reduces the bias successively by one order. In principle, 
we may iterate the bootstrap indefinitely so as to completely eliminate the bias, 
at least in an asymptotic sense. A unified account of the iterated bootstrap is 
given by Hall and Martin (1988). In practice, bootstrap iterations can be done 
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by nested levels of Monte Carlo simulations, which become computationally pro- 
hibitively expensive even for a moderate number of iterations. With the modern 
computer power, indefinitely iterating the bootstrap using simulation is infeasi- 
ble. Moreover, the necessarily finite simulation size incurs simulation error which 
makes the algorithm increasingly unstable as the number of iterations increases. 
Chan and Lee (2001) propose an exact algorithm for nonparametric bootstrap 
bias elimination, which works for small sample sizes and does not involve any 
Monte Carlo simulation. Our new approach to computing the MVUE extends 
Chan and Lee's (2001) algorithm to a classical parametric context where bias 
correction is made to an MLE. It consists of Monte Carlo simulation of first-level 
parametric bootstrap samples, followed by implementation of Chan and Lee's 
(2001) nonparametric algorithm for bias elimination. It involves only one level 
of Monte Carlo simulation, which is considerably more stable and computation- 
ally more efficient than the conventional Monte Carlo approach. In practice, the 
numerical error of our approach is determined solely by the precision of the com- 
puter and the number of first-level Monte Carlo samples that we are prepared to 
simulate. 

Section 2 discusses the theory of bias correction of MLE based on bootstrap 
iterations, and establishes its relevance to the computation of the exact MVUE. 
Our new approach is introduced in Section 3. Section 4 illustrates our method 
with gamma data in a numerical example. Concluding remarks are given in 
Section 5. 

2 Theory 
Let X = (XI,. . . , X,) be a random sample drawn from a distribution Fe in a 
parametric family indexed by 8 E 8 c Rd. Under regularity conditions, the 
likelihood function of 8 is maximized uniquely at in, which is defined as the 
MLE of 8.  Note that 8, depends on the observed sample X .  For a generic 
sample Y = (Yl, . . . , Y,), we may define 8(Y) to be the MLE of 8 based on Y ,  so 
that O(X)  = 8,. Let X(O) = X ,  and Xb+') be a generic nonparametric bootstrap 
sample drawn from X b ) ,  for j = 0,1,2,. . ., such that X ( j + l )  constitutes a random 
sample of n observations drawn with replacement from X ( j ) .  

Theorem 1.3 of Hall (1992) establishes a general formula for the bias-corrected 
estimate based on j bootstrap iterations, which is given by 

It can be shown that the bias of 
vanishes as j 

is of the order O(n-(j+l)), so that the bias 
CO in an asymptotic sense. 
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We describe below two theorems which suggest two slightly different but re- 
lated characterizations of the MVUE. These characterizations will be employed 
to develop our iterated bootstrap algorithm for calculating the MVUE. 

Theorem 1 (Lehmann-Schefld) If there exists an unbiased estimator of 8 that 
is a function of a complete suficient statistic for 8 ,  then it is the MVUE, which 
is unique almost surely under each 8. 

Theorem 2 (Rao-Blackwell) Let U be an unbiased estimator of 8 and T a suf- 
ficient statistic for 8. Then d(T) E &[UIT] is unbiased for B and Var&(T) 5 
VareU. 

3 Computation of MVUE 
Let T be a complete sufficient statistic. Abusing our notation slightly, gm = 
lim+,m is exactly unbiased and it follows from Theorems 1 and 2 that IT] 
is the MVUE. This suggests an algorithm for computing MVUE, which requires 
preliminary simulation of Monte Carlo samples from the conditional distribution 
of X given T ,  followed by a separake iterated bootstrap bias correction for each 
conditional sample. 

Define 

Identify a typical, possibly iterated, bootstrap sample with a unique 1 E L(n), 
such that l l , .  . . ,1, give the “ordered” frequencies of appearances of the original 
observations in the bootstrap sample. In particular, the state 1 = (1, . . . ,  1) 
corresponds to the original sample X. Bootstrap iterations may be viewed as 
a Markov chain process on L(n), since each bootstrap sample depends stochas- 
tically only on the bootstrap sample drawn at  the preceding level. Denote the 
transition matrix for the Markov chain by P, = bn(s,t) : s, t  E L(n)], where 
pn(s,t)  is the transition probability from state s to state t and can be found 
by routine combinatoric calculations. The i-step transition probabilities can be 
obtained from the product matrix P: = [pt)(s, t )  : s, t E C(n)] .  Denote by M(2) 
the set of all distinct permutations of 2 E L(n). Let A41 be the size of M{Z). For 
each m = (ml, . . . , m,) E M(Z), define X ( m )  to be the sample which contains 
mi replicates of X i  for i = 1,. . . , n. Then we have 

which is directly computable. Details of (2) and the properties of # ( s ,  t )  can be 
found in Chan and Lee (2001). 
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We now describe an algorithm for approximating the MVUE. First generate 
a large number of independent Monte Carlo samples, XI, . . . , X ,  say, from the 
conditional distribution of X given a complete sufficient statistic T .  For each j ,  
approximate the estimate E[ej (TI by 

where Xb(m) has the same definition as X(m) except that the observations X 
are now replaced by xb. Compute the expression (3) sequentidly for j = 1,2 , .  . . 
until numerical convergence is detected. The limiting value can then be taken 
as an approximation to the MVUE. Clearly a large B is required for a better 
approximation. Computational efficiency and accuracy of the above algorithm 
thus hinge upon the sample size n and the ease with which conditional samples 
X I ,  . . . , X ,  can be generated. The number of levels j has relatively little effects 
on its efficiency. 

4 Examples 
Consider a random sample X = (Xl, ..., X n )  from gamma (0, l), where 8 denotes 
the shape parameter. Then T = n:=, X i  is complete sufficient for 8.  Let V = 
(XI, . . . , X,-l), so that ( X I ,  . . . , X n )  I+ (T, V )  defines a one-one transformation 
cp. It is clear that the conditional density of V given T is proportional to 

Choose h(z1,. . . , zn-l) to be the joint density function of TI- 1 independent expo- 
nential random variables each of unit rate, so that h(a;l, ..., ~ ~ - 1 )  = exp{- 
Note that g2(T,  51, ... x,-l)/h(~1, ... xn-l) 5 T-le-', which serves as a suitable 
upper bound for application of the acceptance-rejection algorithm to generate 
a random variate W = (Wl,. . . , W,-l) from the conditional density of V given 
T.  Specifically, the algorithm generates n - 1 independent exponential random 
variables VI, . . . , Vn-l of unit rate, calculates R = T exp(1 -T/ ni vi)/ ni vi, and 
accepts W = V only when a randomly generated uniform (0,l)  variable U 5 R. 
The required conditional sample is then q-'(T, W )  = (WI, . . . , Wn-l, T /  ny.; Wi). 
The MVUE is approximated by evaluating (3) based on B independent con- 
ditional samples obtained by the above procedure. Note that the acceptance- 
rejection algorithm tends to yield samples with observations not too close to 
zero. For if some of the x's are close to zero, then R is also close to zero and we 
are likely to reject this set of K's. 

In the simulation study we took n = 5 and drew X from gamma (2,l) .  The 
MLE was calculated to be 8, = 2.6262. Table 1 shows the values of E[JjIT], 

xi}. 
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. B 
1000 

Table 1: Example: gamma (0,l) random sample of size 5. 

IE[BIIT] IE[e,lT] q 8 5 1 q  q & o l q  q42017-1 IE[Bw(TI 
2.5598 2.5478 2.5459 2.5457 2.5453 2.5455 

B 
5000 
10000 

2000 
5000 
10000 
20000 
50000 
100000 

e: 0; 
2.5407 2.4676 
2.5320 2.4354 

2.5610 2.5491 2.5471 2.5470 2.5468 2.5468 
2.5609 2.5489 2.5469 2.5468 2.5466 2.5466 
2.5614 2.5495 2.5474 2.5473 2.5472 2.5472 
2.5615 2.5497 2.5476 2.5476 2.5474 2.5474 
2.5620 2.5501 2.5481 2.5480 2.5479 2.5479 
2.5620 2.5501 2.5481 2.5480 2.5479 2.5479 

I I 

Monte Carlo approximated el: 

approximated using different numbers of conditional samples. for up to j = 25 
iterations. We see that increasing B has the effect of stabilizing our estimates at 
each iteration level. An equilibrium point seems to be reached when B and j in- 
crease beyond 50,000 and 20 respectively. It is evident that the MVUE should be 
around 2.5479. Table 1 also gives the Monte Carlo approximated 0: for j = 1,2, 
based on B first- and B2 second-level parametric bootstrap samples. Here each 
parametric bootstrap sample was drawn from a gamma distribution with shape 
parameter estimated from a sample drawn at the preceding level. In comparison 
with our estimates, the first-level Monte Carlo estimate is closer to the MVUE 
than the second-level one, which elucidates the undesirable instability of Monte 
Carlo iterations. One should be cautious about iterating Monte Carlo simula- 
tions, especially if other more accurate methods, such as our hybrid procedure in 
the present context, are available. 

We remark that our procedure applies generally to problems in a parametric 
setup where a complete sufficient statistic is available and a Monte Carlo algo- 
rithm can be found to generate conditional samples. In particular, it adapts 
readily to multivariate settings to compute a multivariate MIWE. We have re- 
investigated the gamma example with unknown shape and scale parameters and 
computed the MVUE’s of the two parameters by our procedure. Detailed findings 
will be reported elsewhere. Briefly, the required samples, conditioned on the suf- 
ficient statistic (xi Xi, ni Xi) ,  had to be simulated by the more computationally 
involved Metropolis-Hastings algorithm and the numerical results were not as 
stable as those from the gamma (e, 1) example. The latter may be attributed to 
an intrinsic feature of the bootstrap, which has a positive probability to generate 
a sample of n identical observations and thus poses a numerical problem when 
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O(Y) depends to some extent on the sample variance of Y .  

5 Conclusion 
The classical problem of MVUE derivation has been extensively studied in the 
literature. However, in many situations the knowledge of the existence of the 
MVUE does not automatically lead to a simple analytic or numerical method 
for its computation. The contemporary bootstrap iteraton method has been 
shown to play a new and constructive role in this classical area. It provides 
a credible and efficient solution when there is no explicit formula available for 
the MVUE. The method involves very limited Monte Carlo effort, and has an 
efficiency largely independent of the number of iterations. It is particularly useful 
in cases where n is small. Our simulation findings are encouraging. The iterated 
estimates converge rapidly to the correct MVUE. On the contrary, conventional 
Monte Carlo simulation of bootstrap iterations fails to give an accurate and stable 
answer. We believe that our proposed algorithms will be applicable to large 
samples before long, with the rapid advance of computer power. Lastly, we 
remark that the hybrid procedure introduced in Section 3 is highly problem- 
specific and requires clever Monte Carlo techniques to uphold its efficiency. 
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