
Bruce Shriver
Gcncsis 2 Inc.

Peter Capek
IBMZI.
\Watson Rcsearch
Center

Just Curious:

This computer architecture leader’s curiosity led him to discover several of
the field’s most significant advances.

lcgcnd in the computer arcliitccture coin-
muuity, John Cockc has been involved i n
tlie design of several machines that have
made a tremendous impact ou current
processor design, including the IBM Stretch;

the Advanced Computer System (ACS); and the 801,
RS/6000, and I’owerPC proccssors.

Pcrhaps best known as a pionccr of ideas that lcd to
reduccd iiistruction set computing (RISC), Cocke is
also much admired for a broad intcrest in and under-
standing of techuology that spans mathematics, com-
pilers, architecture, circuits, packaging, and design
automation, to namc a few. In conjunction with his
winning the inaugural Seymour Cray Award, Com-
puter visited Cocke in his Westchcstcr, New York,
home, located near the T.J. Watson Research Center,
where he worked for iiearly four decades until his
retirement.

Beginnings
Computer: Let’s start at the bcginning. How and

whcn did you initially become acquainted with com-
puters? And when did thcy begin to fascinate you?

Cncke: Sullivan Camphell, who worked with IBM
for several years, came to Duke after working on
Oracle at Oak Ridge, Tennessee. Oraclc was essentially
a 40-hit-wide parallcl von Neumann computer like the
one at the Institutc for Advanccd Study. I Iiad just grad-
uated and had planncd to spend the summer at Duke
working for J.J. Gurgen, 3 mathcmatician who was
hired to study which computers the Army might use.
I rented a room from Sully Campbell-he was working
for Gurgen too-and we drank a lot of becr and spent
a lot of time talking about computers. I had studied
mathematics but didn’t know auythiug about com-
puters until I sat around and talked to Campbell ahout
Oracle, and lxiilding faster adders-siinple-minded
things like that. The field just interested me.

Computer: llow did you come to work for IBM?
Cockc: I was thinking of going to work for Arthur

U. Little, so I went by thcrc and by GE. I had a friend
at IBM-a logician named Brad Dunhan-who took
me around to see Steve Dunwell, the hcad of the
Stretch project, which was just starting. Dunwell con-
vinccd me that working on Stretch would be interest-
ing-one of the main goals was to make it run
fast-and so I joined IBM in 1956.

Wc had a very interesting group that included Jim
Pomerene-who huilt the CRT memory for tlie
Institute machine, thc Jirhnuiac-and Fred Brooks.
I had a desk in between them. I learned about Fortran
from Irv Ziller, who worked on the original compiler
and invented Fortran 3 . Our tCam also had Gerry
Blaauw and John Fairclough. John later worked as
manager of the IBM Hurslcy lab and tlicn for the
prime minister, and he was later knighted.

I was delighted that the people I met knew some-
thing ahout computers hecause I didn’t. Subsequently,

0010-91021991$10.00 0 1999 IEEE Computer

I talked Sully Campbell into coining to IBM, which
had an outrageous reputation in those days. At the
time, IBM was basically a punch card business, so
Campbell sent me up as a trial balloon. If I didn’t quit
immediately, he would takc a chancc on coming.

Influences
Compter: Seymour Cray frequently set the stan-

dard for competition in high-pcrformancc computing.
Did understanding his machine design tcchniques give
you any insights into what could or should be done
in computer architecture?

Cocke: Yes. I always liad the greatest admiration for
Cray as a computer architect. He liad a lot of good idcas,
not just the 6600, but his earlier machines. He had pro-
gressive indexing and many other things that gave you
high speed. I think he was a real computer man. Me
knew a lot about everything. I never met him or heard
him speak, but some of those who did have told me hc
had a terrific sense of humor, which I didn’t suspect.

Computer: Does anyone besidcs Cray fit your def-
inition of a real computer man?

Cncke: Campbell around IBM knew a lot about
various parts of computers, but not as much as Cray,
who excelled at circuit design, logic design, packag-
ing-everything. He built them, cooled them, and
wrote his own operating system. I don’t know anyone
else like him. I wish I had met him; I’m sure Cray
would have been great fun to talk to. I also liked that
he wasn’t afraid to start his own company.

Computeu: Do you havc any thoughts on how coni-
puter architecture should he taught today?

Cncke: When I started out, I worked with a lot of
people who didn’t take any courses in computer sci-
ence, because thcre weren’t any. Until Don Knutli
came along, no one wrote any really good computer
science books. After hc wrote his fundamental-algo-
rithms book, lots of other books came out.

I think you should-depending on how elementary
the course-teach how computers work: logic, adders,
ways to make them go faster, hut especially memory.
There’s bccn a l o7 improvement in cost-performancc
since Dennard invented DRAM. We uscd to get a dol-
lar a bit for memory, and it’s now down to about a
dollar a megabytc. And performance is much better,
too. We had 12-b~ memory on the 704, and now we
have 100-ns memory. And Dcnnard also worked on
scaling-what happens when you shrink circnits in
size and kecp the power density constant. That work
was a major contribution. So wc have Dcnnard to
thank for two major accomplishments.

Computer: You seem to admirc Don Knuth. Did
your many talks with Knuth on computer-related
issues have an impact on your thinking?

Cocke: Absolutely. For examplc, hefore profiling, I
thought we should compilc in comm and understand

the frequencies. He gave a coiirsc about profiling
where he got frequcncies and had schemes that
allowed compiling in fewer counts, and calculated the
rest. He also knew a lot about compilers and lan-
guages-how many doubly subscriptcd, singly sub-
scripted, and unsubscripted variables thcrc were in
Fortran programs and so on. We agreed that devel-
opers should have access to a lot of facts when work-
ing with compilers. Knuth is a hard-working,
organized man, and I fccl he made more of a differ-
ence in the computer industry than anybody.

System design
Compter: You’ve designcd several machines that

have inadc a tremendous impact on current processor
design, including Stretch; ACS; and the 801, RS/6000,
and PowerPC processors. Let’s talk about them.

Stretch
Strctch may have been thc first machine to include

partitioning of the instruction execution proccss into
the instruction fetch-decode phase and the data execu-
tion phase. This development gavc rise to instructinn
look-ahead, pipelining, short-circuit data forwarding,

our Cray Computer Sci

as the father ofsupercomputing. In 1997, to honor Cray’s legacy, the IEEE
Computer Society and Silicon Graphics Inc. established a award
recognizing innovation in high-performance networking puting.
Cocke was chosen this year as the first recipient of the r Cray
Computer Science and Engineering Award.

Cocke’s Cray Award citation reads, “for unique and creative contribu-
tions to the computer indu
tern designs.” He will rece
$10,000 endowed by a gift from Silicon Graphics, the current producer of
Cray Supercomputer products.

through innovative hi
a crystal memento an

Seymour Cray Cray cryslal memento

November 1999 I

partitioned memory, and instruction backout to pre-
scrvc hard interrupts. What Icd you to develop these
innovative featurcs!

Cocke: Stretch was a joint project betwecn I.os
Alamos and IBM. During our discussions with thcrn,
wc gave a sense of how thc timing on Stretch-and
more particularly look-ahead-would work. I said I'd
just write a simulator for it in Fortran. To wrirc thc
simulator, I had to dream up what lool~-aliead would
be like: Whcn you gave a load, it was not held up hy
the next op; you gave a load, then you gave an add,
and the load would load a buffer, the add would load
a buffer, and tlic actual operation wnuld execute. Bot

thc next op was not held up by thc add being execurcd
on the basis that it was tied to the rcfereiice from incin-
ory. So you put an op in a buffer to bc cxcciited later
and went ahead and loaded the data into a buffer, too.

Cornputen. Stretch's goal was to be a hundrcd times
faster than the 704. To achieve spced required a corn-
plex machine that, in turn, rcquired a complex siinu-
lator. How practical was it to run code sequcnces
through that kind of simulator so they would bc of
any value to you!

Cocke: The sequenccs made it clcar that we were
not going to make that performance in good timc. The
simulator helped us find out a lot of information about

Because Stretch's act ance did not meet expectations,
IBM lowered its price to the point where the product would not
he profitable and stopped marhttngit. But Stretch did contribute
much technology to what pioved to be commercially successful
IBM products, such as the 7090 computer The late
cariied forward many of the concepts from Stretc

einory addiessing in power-of-two increments (with 64
kt words for high-speed arithmetic and %hit bytes for

* 72-bit words in memory, including 8 hits for automatic error
inputloutput);

detection and correction;
* magnetic disks instead of drums fur secondary storage
* provisions for safely running multiple programs sirnul

OUSlV. 3lld
I ,

* a standard interface for attaching different I/O devices.
Further readlng

Stretch also introduced some new terininol Bashcetal ,IBM'sEarly Computets, Chapter Zl,MITPress, Cam-
bridge, Mass., 1986. re-now in common use. John Cocke's two major con-

were the deaign and implementation of a detailed tiin W Ruchholz, ed., Planning o Computer Yyrt
mg simulator and an iimnucti
overlapped operation within a

Nine systems were built, inc
cia1 product for the Natinnal

the machine’s design and uncovered several had ideas.
One of the worst ideas we found involved having reg-
isters be addressable as part of mcmory. The justifi-
cation for that was to make things “clcan”-that’s thc
worst word in computer architecture. Say we had a
store instruction. You can’t figure nut what is affected
by the store. This screwed up all hopcs of writing a
decent register allocator.

Computer: Given all of Stretch’s unique features
that are so important today, such as the partitioning
of instruction exccution, the execution process, short
circuiting, look-ahead, partitioned memory, and so
forth, which feature do you consider most important?

Cocke:Tliat’s hard to say. Partitioned memory was
sort of a dcfault. We had a very fast 1,000-word mein-
ory, and we decided to partition it to usc its perfor-
mance, as well as have a much larger memory to keep
our instructions in.

Computer: Was partitioned memory a result of the
instruction look-ahead that let you keep fctching
instructions?

Cockc: We felt that partitioned nicmory would not
destroy look-ahead performance, though it actually
did slow a Monte Carlo simulation wc bad that was
full of branches. So when we got to ACS, we incor-
porated some vcry fancy branch prcdiction. We had a
prepare-to-branch instruction and added skips-skip
on bit, skip on no bit-whereby you could mark an
instruction with a bit, and conditionally execute it.
You could prepare to branch, execute as many instruc-
tions as you wanted, come to this hit, and then go. If
we hadn’t prepared thc branch, we couldn’t have an
instruction set up for skipping. Uranch preparation let
us take sonic of the burden off branchcs.

Rdvanced Campuler System
Computer: ACS was pcrhaps thc first project that

pushed very hard simultaneously nn all aspects of its
design: thc machine wganization, the compilcr, the
packaging tcchnology, and reliability. Did the expcri-
encc with Stretch lead you to rcalize that ACS’s com-
piler and hardware should hc designed in tandem?

Cocke: When we first started the ACS project, one
of cnir main concerns was when we would do the
instruction set design. As we wrotc the compiler, wc
wanted to make sure it provided consistently good
coinpilation of the instructions wc were providing.

We worked on things like the number of registers,
particularly things dependent on the architccture of the
machine, but also machine-independent things like com-
mon subexpression elimination. We worked on reduc-
tion of strcngth. That was a bad name; wc should have
called it “Bahhagc differencing.” In other words, when
you’re calculating a subscript, as you are going around
the loop as you incrcment i, for instance, all you have to
do is add the dimension of a times i to get the suhscript

updated. You don’t have to do i times mul-
tiply and calculate it all. That was indepcn-
dcnt of the machine to the extent that you
assume that multiply was slower than add.

Computer: Given that you undertook
development of the optimizing compilcr
and nlachine design simultaneously, did the
results of the compiler impact thc dcsigii
of the machine and vice versa?

Cocke: Yes. We found that we could do
a lot of things that we didn’t think practi-
cal a t first. Cray had progrcssive index-
ing-whcn you give a load, you increrncnt
the address pointer-and we had that too.
We thought that it might he hard for the
compiler to implement and found it wasn’t.
We would use the same algorithm for
reduction of strength and so forth. We got
a lot of ideas from the 704 compiler, thc
first Fortran compiler. It didn’t have w h -
routines but did have a lot of optimization
and was terrificallv clever. In fact. some of

When the queen asked
who was second, the

observer replied,
“Madam, there is no

second.”

the code it produced was so good that I was reading
the object code and thought it had a bug, but then real-
ized it was j u t amazingly clever,

Computer: One of ACS’s most important concepts
is the decoding and issuing of multiplc instructions per
cycle. How did you arrive at this idea?

Cocke: I credit Gcnc Anidahl with that idea. He
wrote a paper that said the fastest single-instructioo-
counter machine has an upper hound on its perfor-
mance. I wanted to make a faster machine. So we
looked at his paper, which said you can only decode
and issue one instruction pcr cycle, and we decided to
get around that limitation. The paper helped us a lot
because, even though many of his hypotheses were
wrong, it helped us sec them. Hc appreciatcd that all
computers at that time had certain properties that pre-
vented them from going faster. So we designed a
machine with different properties.

RISC: 801, RS16000, PawerPC
Computer: You also workcd on the 801. I believe

it was code-named America after the first America’s
Cup Race off the coast of Wales, and is widely re-
garded as the first RISC processor.

Cocke: Yes, 1 actually gave it that namc, hased on a
story I heard. While attending the first America’s Cup
llace, Queen Victoria had some gcntlcman observe tlic
race’s progress for hcr. As the lead ship rounded the
island, Victoria asked, “Who is first?” “America,” her
ohserver replied. When the queen asked who was sec-
ond, the observer replicd, “Madam, there is no scc-
ond.” That’s why I picked the name.

Computer: What was the impetus behind the pro-
ject?

November 1999

IBM’s ACS-1 Machine,.
uth

IBMs System1360 line of computers was announced in April
1964. It was expected to do well in coniinercial markets, but its
attractiveness to the scientific market was uncertain. Several pro-
jects were started to address the high-performance scientific mar-
ket. Project X began in 1963 and became the 360191. Project Y
was begun as a norr-System/360 compatible research effort in late
1963, and in the summer of 1965 it was transferred to a devel-
opment organization and renamed Advanced Computing System
1 or ACS-1.

was 1,000 times the performance of the IBM
million instructions per second. That goal was

to he achieved in several ways. The 7090’s hardware ran at 20
nanoseconds per circuit; ACS’s would run at 1.6 nanoseconds-
a factor of 12.5. An additional factor of four was required from
the machine architecture and organization. To achieve this, many
independcnt units were to operate concurrently: instruction fetch,
instruction dccode, data fetch and store, index arithmetic, float-
ing-point arithmetic, and branch calculation. Moreover, multi-
ple instructions were to be executed on each machine cycle. The
remaining overall improvement was to be achieved by additional
circuits providingparallelism and optimizations to be done in the
compiler. cs.clemson.edu/-marWacs.htm1.

ACS had numerous innovations; here I list a few of the high-
lights. Key among these was the instruction sequencing logic,
which examined eight instructions per cycle and dispntclied as

many as seven for execution, possibly out-of-order. Branch
instructions were overlapped with computation, with prefetching
down multiple paths, and a deferred-branch architecture. Backup
registers provided a precursor to various register-renaming
schemes.

Among John Cocke’s hey contributions to the ACS effort was
his insistence that the compiler, architecture, and machine orga-
nization be developed in concert. To aid this, the perforniaiice of
ACS was simulated during development 011 a cycle-by-cycle basis.
This allowed a complete source program-to-timing analysis view
of the operation of real problems with the design

Delays in the development of the ACS circuit
ing problems, and an excess number of circuits forced ACS-1 to
continually slip its original schedule. Moreover, it was determined
that most of the ACS-1 innovations were applicable to 360-class
computers, and the line of 360 computers was selling well. In
1968, ACS-1 was phased out.

Further readlng
H. Schorr, “Design Principles for a High-l’erformance System,” Symp.

Computersand Automata, New York, Apr. 1971, j’p. 165-192.
M. Smothcrman, ”IBM Advanced Computer System-A Secret, Scien-

tific, Superscaler Supercomputer from the 1960s;” http://www.

Ed Sussenguth was a major nrcbitect ofthe AC,Y project and later can-
trihurcd to IBM’s System Network Architecture,

Cockc: At the tinic, IBM and LM Ericssoii were dis-
cussing a joint project to develop a controller for a
telephone cxchange. We wcre going to build a time-
division switch and control it with the 801. In the end,
though, thc project fell through.

Computer: Was the 801 effort prompted or influ-
enccd by experiments that indicated thc Systeid360
compilers only generated a subset of the Systed360
instruction set?

Cocke: YCS. One thing wc did with RSl6000 was
try to make surc thc compiler could easily generatc
cvcry instruction we had. We took the point of vicw,
which you should always take, of being flexible.
Initially, we said every instruction was siniplc: It did
something, not something and something more. Then
we said, the heck with that, why not havc it do and-
branch and count and sct a bit. You start off and
clear a bit. First time through a loop, you did the
count and sct a hit so that you weren’t dclayed by
the time it took to do thc count, and tlic next time
around the loop, you test the hit and take the branch.

Computer: What was the major architectural dif-
fcrcnce between the 801, the RSl6000, and thc l’ower-
PC processors that evolved from the 801? What
motivated those changes?

Cocke: Well, IBM Austin started to build a thing they
called ROMP, which came out of the 801 effort. We
went down to Austin, and they askcd LIS to build a float-
ing-point machine. We threw out ROMI’and dcsigned
a floating-point machine that bccame the RSI6000.

Computer: In addition to the flaating-point unit,
what were the RS/6000’s other architectural differ-
cnccs? Could you do different multiple issues, differ-
ent decodings?

Cocke: Well, thc opcodes wcrc vastly diffcreut. We
had a triple address machine and 32 registers. Wc’d
also learncd from Strctch to avoid indexing throngh
registers.

Computer: Stretch and the ACS can be described as
having a gond dcal of complcxity in the hardware;
they also implcniented rathcr complex instructions.
The 801 and KSl6000 processors contained much less
hardwarc complexity, which implemented much sim-
plcr instructinns and relied incrcasingly on more com-
pilcr knowlcdgc. So we can scc an evnlntian from
complex machines and semi-intelligcnt compilers to
simple instructions and very intclligent compilers. Can
you tcll us how your thinking evolvcd over those three
or four machines and compilcrs?

Cocke: We saw that we could create-and had, by

Computer

http://www

the time RS/6000 came along-a very good compiler.
Nowadays, everybody in graduate school takes a
course on how to write compilers. Now, courses cover
cvery kind of optimiaation, including a lot of things
we didn’t do. We didn’t do profiling, which in rctro-
spect we should have done. Profiling involves the opcr-
ating system-you have to go beyond the compiler.
You want to compile, run, and count frequencies, and
then decide where to emphasize your optimization.

Computer: Are you suggesting that the compiler
design really involves the concurrent evolution of the
compiler to both the hardware and the operating sys-
tem?

Cocke: If you want to do things like profiling, you
want the operating systeni’n cooperation. Now, a lot
of peoplc want intcrpretation as part of that cooper-
ation. You interpret and comit, then compile. Peoplc
have all kinds of opinions on this, and you can choose
from a great numhcr of approaches. You can scan the
program every timc, keep going and execute, or you
can scan and translate it into an intermediate lan-
guagc, then interpret that intermcdiatc language. Once
yon have done the interpretation, you can compile.

Computer: Given this range of approaches, which
do you support?

Cockc: I favor translating into an intermediate lan-
guagc, interpreting, gcttitig a count, and then compil-
ing it.

Parallel computing
Computer: Some in the industry have ascribed ti)

you the ambition of designing the fastest possible
uniprocessor. Somc have even suggested that ynii may
he ambivalent about designing and implerncnting par-
allel computers. What are your views on dcsigning
parallel systems?

Cocke: When you couple machines tightly, you get
a lot of interfercnce, and the addition of the sccond
machinc doesn’t come close to donbling performance.
With closely rather than tightly coupled machines, it’s
easier for the hardware. The SP2s do a decent job in
achieving a fair percentage of two machines’ combined
performance. Ramesh Agrawal has programmed a
iiiultidimensioiial Fourier transform that performs
better as you get up to higher and higher dimcnsions.
He’s also done this excellent bucket sort that gives you
almost linear performance mi multiple machines. Hut
all those enhancements don’t come easily.

Computer: What conclusions do yon draw from
this situation-that it’s jnst algorithm-smart pro-
gramming?

Cocke: If we build the right type of communication
hetween the memories of the various processors, we
will ultimately obtain good performance. But in the
end, it’s the algorithms: If you lonk at things like fast
Fourier transform, it went from N squared tn N log n.

There is no way you can makc an improvc-
ment in computer architecture that conics
close to that.

Computer: Do you think parallelism,
say, in pairs of multipliers is useful?

Cocke: Wcll, the utility of the second
multiplier isn’t as valuable as the first, and
by a large amount. I don’t remcmber the
figures, but thcy aren’t good.

Future architectures
Computer: So, how would you summa-

rize this situation? Can we cxpect technol-
ogy or architecture improvements that
achieve 10 to 20 percent or-if we’re very
lucky-50 perccnt per generation?

Cocke: If, for instance, you make an
improvemcnt in the compiler and you get a 10 tn 15 per-
cent pcrformance boost, you would consider that a very
good rcsult. You might get a multiple of that perfor-
mance boost in hardware by making your CI’U clock
run a lot faster. I believe we are going to be doing that
in the next few years.

Computer: Where do you see the clock speeds going
in the next few years?

Cocke: Up to 200 gigahertz.
Computer: We arc currently close to one gigahertz,

and so you are projecting a two-orders-of-magnitude
improvement?

Cocke: In 15 years we will get there. It’s still just a
multiple, not large. l h e hard part will he a 100-picosec-
ond clock distribution without skew, but we have some
good ideas about how to distribute the clock.

IBM has copper wiring. Several years back, I saw a
photomicrograph of wiring that looked like the framc-
work of a skyscraper, with the wires in the air. We’ll
have X-ray lithography so we can get normal scaling
rules, or better. As you shrink the chip, the scaling and
cooling get better, so we can let power density grow by
cooling the chip. Thus, we will have less capacitance
and less resistance-that is, very low RC timc cnn-
stants-so that perfornlance can go way up. Wc will
also have good programs for optimizing the circuits;
it’s quite clear that as circuits become faster, it’s easier
til make them faster still.

Say I use X-ray lithography to make a chip 3m1ii2,
so that I have a four-processor CPU with a 3-mm‘
cache. 1’11 need to worry ahnut main memory scaling
in perfnrniance, hut if I map this 3-mmz chip on a
memory chip that’s, say, one centimeter nr two cen-
timeters on a side, that gets me to 256 Gbytes. So I
have a lot of memory, and I can make fast memory
accesscs-say 5-ns memory. That’s 50 cycles. That’s
straining cache a little, but it’s close to bcing okay.
Then I read out interleaved and so forth and have
what they call nonblockiiig cache-that is, a queue

November 1999

The compiler generated v ode from the contribw

for my cache-so that makes it a littlc bit better. I’m
not saying that IBM will achieve this immediately, but
five or 10 years is a very long time in computing.

Reconllnuralle computing
Cornputen What docs the future hold for reconfig-

urahle computing systems?
Cocke. I’m a great believer in them, because that’s

the way to build a simulator fairly fast. But if I con-
sider the domain and range, let’s say i have a 32-bit
word, how many functions do I have? The answer is
approximately 270, which is a lot. Take a normal 32-
hit adder, what functions do I have? Add, subtract,
multiply, divide. That’s what math is. So how do I
think of 2’Ouseful binary combinations? Reconfigura-
bility won’t be uscd in the functional unit, to do a
square root, hut it will be good for a hashing scheme
or encryption-70 hits is a long-enough key.

Reconfigurability is also good for control. Say I
want to run a dataflow machine or something. I have
a machine like an evaporator or etcher that is auto-
matically controlled. If I give you thc instructions, how
long docs it takc you to build a computer? But if I have

this reconfigurable machine, and I dcbug and assem-
ble it and tell this other machine to huild it. Say it takes
two weeks to make the machine. So what? Big prob-
lems like that take a lot longer.

Quantum compullnu
Cornputen What about compnting at the molecu-

lar lcvel?
Cockc: I believe the situation’s like this: In quantum

computers, Pis cqual to NP. Now, that’s only a theo-
retical result, and nobody knows how to build these
quantum computers, but they’re working like hcll to
figure out how to do it. I saw an article in Physics
Today on how you can use a laser to shape the wave
function of an electron. Somebody will obviously fig-
ure it out-remember that Kelly at Bell Labs said huild
a transistor, and Shockley, Bardeen, and others did it.
I don’t know how it will work out, hut pcople are a lot
more sophisticated today, and so eventually wc will
have quantum computers.

If P is equal to NP, that is a giant difference. If I have
a proof checker, for example, I scan over the proof
and I check it and make sure it’s okay. Now, the dif-

Computer

ferencc between a proof checkcr and a theorem prover
is the difference hetwccn P and NI’, right? I mean, that
is fantastic. It’s like you start out trying to prove every-
thing in every direction, and whenever I find the one
that’s been chccked, I say here is a proof. But with a
molecular computcr I’m proving cvcrything, right?
That’s a Turing machinc.

Just curious
Computer: You have been described as having a

very fertile mind, inspiring and guiding your col-
lcagucs both within and outside of IBM. What would
you advise others to do as mentors and catalysts in
industrics and universities?

Cocke: I just do what I do hccause I am interested
in computers. I don’t have a plan to make myself effec-
tive. Almost nothing about computers escapes my
attention, including the people interested in thcm. I
can’t say that I have any systematic idca of how to
movc things along.

Computer: Would you dcscribe yourself as driven?
Cocke: No. I inst get along with a normal amount

Computer:Is that your main motivator? Curiosity?
Cocke: Well, I don’t know. My father, when he

graduatcd from law school at something like 18, wcnt
to work for his uncle’s law firm. Hc couldn’t takc the
bar cxam because he wasn’t old cnough. So hc was
kind of like an officc hoy-and they teased him a lot
ahout his curiosity. One day, he wcnt by a drugstore,
saw a black box with a hole in it, and wondcred what

of curiosity.

it was for. He stuck his finger inside and got a bad cut.
Turns out the box cut off cigar ends-something my
father found out the hard way. I think I’ve inherited
my curiosity from him. Hopefully, I haven’t had quite
as had an expericnce with it, though.

Computer: Is there any advice you would like to
give the next gcncratkm’s computcr architects?

Cocke: I don’t know. I do what I do, and I don’t
plan how I ought to do it. I never havc. I don’t believe
in being rigid ahout anything. If I sec an opportunity,
I will drop all the rules, even when doing so is proba-
bly a mistake. 0

Acknowledgments
Wc thank Vicky Markstein of SilvcrMark, Chris

Sciacca of Technology Solutions, Takako Yamakura
of IBM, and Robert Godfrcy of the IBM Archives for
their help in locating images.

Bruce Shriver consults for Genesis 2 Inc. He is a pro-
fessor-at-larjie at the University of Tromso in Norway
and an honorary professor at the University of Hung
Kong. Shriver is a Fellow ofthe IEEE and U past-pres-
ident of the Computer Society. Contact him at
b.shriuer@compMter.org.

Peter Capek is a research staffmemher at the I B M TI.
Watson Research Center and a member ofthe IEEE.
Contact him at capek@us.ihm.com.

Set Industry Standards
Our members write important IT standards. Our members

wrote IEEE 802.3, the standard for Ethernet, the most widely
deployed LAN. But technology networks are not the only kinds

developed here.
Crow Your Career’. Find Out How @

h ttp://computer. org/standard/index. h tm

November 1999

mailto:b.shriuer@compMter.org
mailto:capek@us.ihm.com

