Bruce Shriver
Genesis 2 Inc.

Peter Capek
IBM T

Watson Research
Center

Just Gurious:

An Interview with

John Gocke

This computer architecture leader’s curiosity led him to discover several of

the field's most significant advances.

legend in the computer architecture com-

munity, John Cocke has been involved in

the design of several machines that have

made a tremendous impact on current

processor design, including the IBM Stretch;
the Advanced Computer System (ACS); and the 801,
R5/6000, and PowerPC processors.

Perhaps best known as a pioncer of ideas that led to
reduced instruction sct computing (RISC), Cocke is
also much admired for a broad interest in and under-
standing of technology that spans mathematics, com-
pilers, architecture, circuits, packaging, and design
automation, to name a few. In conjunction with his
winning the inaugural Seymour Cray Award, Com-
puter visited Cocke in his Westchester, New York,
home, located near the T.J. Warson Research Center,
where he worked for nearly four decades until his
retirement.

Beginnings

Computer: 1et’s start ar the beginning., How and
when did you initially become acquainted with com-
puters? And when did they begin to fascinate you?

Cocke: Sullivan Campbell, who worked with IBM
for several years, came to Duke after working on
Oracle at Cak Ridge, Tennessee, Oracle was essentially
2 40-bit-wide parallel von Neumann computer like the
ong at the Institute for Advanced Study, Thad just grad-
uated and had planned to spend the summer at Duke
working for ].J. Gurgen, a mathcmatician who was
hired to study which computers the Army might use.
Irented a room from Sully Campbell—he was working
for Gurgen too—and we drank a lot of beer and spent
a lot of time talking about computers. I had studied
mathematics but didn’t know anything about com-
puters until I sat around and talked to Campbell about
Oracle, and building faster adders—simple-minded
things like that. The field just interested me.

Computer

Photo courtesy of IBM Archives

Computer: How did you come to work for [BM?

Coclee: [ was thinking of going to work for Arthur
D. Little, so I went by there and by GE. T had a friend
at IBM—a logician named Brad Dunham—who took
me around to see Steve Dunwell, the head of the
Stretch project, which was just starting, Dunwell con-
vinced me that working on Stretch would be interest-
ing—one of the main goals was to make it run
fast—and so I joined IBM in 1956.

We had a very interesting group that included Jim
Pomerene—who built the CRT memory for the
Institute machine, the Johnniac—and Fred Brooks.
I had a desk in between them. I learned about Fottran
from Irv Ziller, who worked on the original compiler
and invented Fortran 3. Qur tcam also had Getry
Blaauw and John Fairclough. John later worked as
manager of the IBM Hursley lab and then for the
prime minister, and he was later knighted.

T was delighted that the people I met knew some-
thing about computers because [ didn’t, Subsequently,

0018-9162/99/§10.00 © 1938 IEEE



1 talked Sully Campbell into coming to [BM, which
had an outrageous reputation in those days. At the
time, IBM was basically a punch card business, so
Campbell sent me up as a trial balloon. If T didn’t quit
immediately, he would take a chance on coming.

Infivences

Computer: Seymour Cray frequently set the stan-
dard for competition in high-performance computing.
Did understanding his machine design techniques give
you any insights into what could or should be done
in computer architecture?

Cocke: Yes, I always had the greatest admiration for
Cray as a computer architect, He had a lot of good idcas,
not just the 6600, but his earlier machines, He had pro-
gressive indexing and many other things that gave you
high speed. I think he was a real computer man. He
knew a lot about everything, I never met him or heard
him speak, but some of those who did have told me he
had a terrific sense of humor, which I didn’t suspect.

Computer: Does anyone besides Cray fit your def-
inition of a real computer man?

Cocke: Campbell around IBM knew a lot about
various parts of computers, but not as much as Cray,
who excelled at circuit design, logic design, packag-
ing—everything. He built them, cooled them, and
wrote his own operating system. I don’t know anyone
else like him. I wish T had met him; I'm surc Cray
would have been great fun to talk to. [ also liked that
he wasn’t afraid to start his own company.

Computer: Do you have any thoughts on how com-
puter architecture should be taught today?

Cocke: When I started out, I worked with a lot of
people who didn’t take any courses in computer sci-
ence, because there weren’t any. Until Don Knuth
came along, no one wrote any really good computer
science books. After he wrote his fundamental-algo-
rithms book, lots of other books came out.

I think you should—depending on how elementary
the course—teach how computers work; logic, adders,
ways to make them go faster, but especially memory.
There’s been a 107 improvement in cost-performance
since Dennard invented DRAM. We used to get a dol-
lar a bit for memory, and it’s now down to about a
dollar a megabyte. And performance is much better,
too. We had 12-us memory on the 704, and now we
have 100-ns memory. And Dennard also worked on
scaling—what happens when you shrink cireuits in
size and keep the power density constant. That work
was 4 major contribution, So we hayve Dennard to
thank for two major accomplishments.

Computer: You seem to admire Don Knuth. Did
your many talks with Knuth on computet-related
issues have an impact on your thinking?

Cocke: Absolutely, For example, before profiling, [
thought we should compile in counts and understand

the frequencies. He gave a course about profiling
where he got frequencies and had schemes that
allowed compiling in fewer counts, and calculated the
rest. He also knew a lot about compilers and lan-
guages—how many daoubly subscripted, singly sub-
scripted, and unsubscripted variables there were in
Fortran programs and so on. We agreed that devel-
opers should have access to a lot of facts when work-
ing with compilers. Knuth is a hard-working,
otganized man, and I fecl he made more of a differ-
etice in the computer industry than anybody.

System design

Computer: You've designed several machines that
have made a tremendous impact on current processor
design, including Stretch; ACS; and the 801, R$/6000,
and PowerPC processors, Let’s talk about them,

Stretch

Stretch may have been the first machine to include
partitioning of the instruction execution process into
the instruction fetch-decode phase and the data execu-
tion phase. This development gave rise to instruction
look-ahead, pipelining, short-circuit data forwarding,

- Seymour Cray, a mntemporzuy of Johni Cocke; has long been regarded
ds-the father of supercomputing, In: 1997, to honer: Cray s legacy, the IEEE
Computer Society and Silicon Graphies Inc, established an annual awdrd
recognizing inncvation in high-performance. networking and computing.
Coicke was chosen this year as the first Tecipient’ of the Seymour Cray'

Compiiter Sciznce and Enginecring Award.

- Cacke’s Cray Award citation reads, “for umque and creative contrnbu~
tions to the computer. mdustry through innovative high-performance sys-
He will receive a crystal memento and. an-honprarium of
$10,000 endowed by a gift from Silicon Graphics, the current produccr of

tem designs,”

Cray Supercomputer products.

Seymour Cray :

November 1999

Cray erystal memento



partitioned memory, and instruction backout to pre-
serve hard interrupts, What led you to develop these
innovative features?

Cocke: Stretch was a joint project between Los
Alamos and IBM. During our discussions with them,
we gave a sense of how the timing on Stretch—and
mote particularly look-ahead—would work. [ said I'd
just write a simulator for it in Fortran. To write the
simulator, I had to dream up what look-ahead would
be lile: When you gave a load, it was not held up by
the next op; you gave a load, then you gave an add,
and the load would load a buffer, the add would load
a buffer, and the actual operation would execute. But

the next op was not held up by the add being executed
on the basis that it was tied to the reference from mem-
ory. So you put an op in a buffer to be cxecuted later
and went ahead and loaded the data into a buffer, too.

Computer: Stretch’s goal was to be a hundred times
faster than the 704, To achieve speed required a com-
plex machine that, in turn, required a complex simu-
lator. How practical was it to run code sequences
through thar kind of simulator so they would be of
any value to you?

Cocke: The sequences made it clear that we were
not going to make that performance in good time, The
simulator helped us find out a lot of information about

ProjectStretch

" Project Stretch-developed ‘the first commercial supercom-

puter<the IBM 7030 .or, less formally, Stretch, Stephen W,
Dunwell at IBM led the effort, which began in 1955 and pro-
ceeded in close cooperation with the Los Alamos Scientific
-Labératory. The first systern was delivered thiere in 1961, a'vear

late, but it was ip. and ruaning reliably a month after arrival and-

remained inuse forthe next 10 years,

Project Stretch was a highly ambitions attempt.to “stretch Hthe

available rechnology beyond what would have béen the tsual
nextstep in development.:At a time when all electronie comput-

ers in production were still using vacoum tubes; Stretch was to be |

an all-solid-state machine with high performance and reliability.
The perforimance goal was 100 times thatof the fastest machme
IBM had in pmducuon—the 704,

" Inaddition to the high-speed drift transistors, circuir. boards,

and magnetic core memary that were developed for the project;
Stretch pioncered a number of techniques and concepts, incluid-

- ing

PR

"+ memory addressing in power-of-two increments {with 64-
bit words for high-speed ar1thrnct1c and- 8-bir b} tes for
inputfoutpur);

* 72-bit words in memory, including 8 h1ts for 1utomat1c errar -

detection and correction;

magetic disks instead of denris for secondary storage'
provisions for safely: rurmmg muitlple programs SJmulcaneﬂ
ously, and
.a standard mterface for. attachmg cllfferem: I/O dewces.

Stretch also incr(_)duccd _some new t_erminologym'byre and _ijste_m

drchitecre—now in comimoh use, John Cocke’s twa'major cons’

t;ibuti'or'is_ were the design and implementation of a derailed tim-
ing simitlator and awinstruction lock-ahead, which permitted
overlapped operation within a single instruction stream,

Nine systerns were built, iricluding oneithat was part ofa spe-”

cial product for:thé National Security Agency, called Harvest:

Computer

" Werner Buchholz

ﬁﬁhm cmourtesy of IBM Archévc_s

Becayse Stretch’s actiial performance did not meet expectations,
IBM lowered its price to the point whete the prodiuct wounid not
be profitable and stopped marketing it. But Srerch did contribuce
much technology to what proved to be commercially successful
IBM products, such as the 7050 computer The later Systern/360

. “cartied forward many of the conéepts from Stretc.h sincluding
“ that of a line of compatible. machmes, whlch wag planned but'
 néver rmplemented for Stretch . o

Furlhar raading
C.J. Basheetal,, IBMs E,arly Compme:s, Chapter 11, MIT Press, Camn

bridge, Mass., 1986,
W. Buchholz, ed., Plarmmg a Computer System»—-l’mfect Slretch
McGsaw-Hill, New York 1962. S .

Werner Buchho[z contributed ta a number'of IBM sys.tenf;sf inéiﬁdiﬁg;_ )

-the 701, 702, Stretch, and Systemi370. He retired from IBM in-1987.



the machine’s design and uncovered several bad ideas.
One of the worst ideas we found involved having rep-
isters be addressable as part of memory. The justifi-
cation for that was to make things “clean”—that’s the
worst word in computer architecture, Say we had a
store instruction. You can’t figure out what is affected
by the store. This screwed up all hopes of writing a
decent register allocator,

Computer: Given all of Stretch’s unique features
that are so important today, such as the partitioning
of instruction exccution, the execution process, short
circuiting, lock-ahead, partirioned memory, and so
forth, which feature do you consider most important?

Cocke: That’s hard to say, Partitioned memory was
sort of a defaule, We had a very fast 1,000-word mem-
ory, and we decided to partition it to usc its perfor-
mangce, as well as have a much larger memory to keep
our instructions in.

Computer: Was partitioned memory a result of the
instruction look-ahcad that let you keep fetching
instructions?

Cocke: We felt that partitioned memory would not
destroy look-ahead performance, though it actually
did slow a Monte Carlo simulation we had that was
full of branches. So when we got to ACS, we incor-
porated some very fancy branch prediction, We had a
prepare-to-branch instruction and added skips—skip
on bit, skip on no bit—whereby you could mark an
instruction with a bit, and conditionally execute it.
You could prepate to branch, execute as many instruc-
tions as you wanted, come to this bit, and then go. If
we hadn’t prepared the branch, we couldn’t have an
instruction set up for skipping. Branch preparation let
us take some of the burden off branches.

Rdvanced Computer System

Compuier: ACS was perhaps the first project that
pushed very hard simultaneously on all aspects of its
design: the machine organization, the compiler; the
packaging technology, and reliability. Did the expeti-
ence with Stretch lead you to realize that ACS’s com-
piler and hardwarc should be designed in tandem?

Cocke: When we first started the ACS project, one
of our main concerns was when we would do the
instruction set design. As we wrote the compiler, we
wanted to malke sure it provided consistently good
compilation of the instructions we were providing.

We worked on things like the number of registers,
particularly things dependent on the architecture of the
machine, but also machine-independent things like com-
mon subexpression climination. We worked on reduc-
tion of strength. That was a bad name; we should have
called it “Babbage differencing.” In other words, when
you're calculating a subscript, as you are going around
the loop as you increment 7, for instance, all you have to
do is add the dimension of a times 7 to get the subscript

updated. You don’t have to do £ times mul-
tiply and calculate it all. That was indepen-
dent of the machine to the extent that you
assumne that multiply was slower than add.

Computer: Given that you undertook
development of the optimizing compiler
and machine design simultancously, did the
results of the compiler impact the design
of the machine and vice versa?

Cocke: Yes, We found that we could do
a lot of things that we didn’t think practi-
cal at first. Cray had progressive index-
ing—when you give a load, you increment

the address pointer—and we had that too,

We thlou.ght. that it might be hard for tl}e who was Sﬂﬂﬂﬂd,.thﬂ
compiler to implement and found it wasn’t. S : -

We would use the same algorithm for ohserver replied,
reduction of strength and so forth. We got “Madam, there is no
a lot of ideas from the 704 compiler, the second.”

first Fortran compiler. It didn’t have sub-

routines but did have a lot of optimization

and was terrifically clever, In fact, some of

the code it produced was so good that I was reading
the object code and thought it had a bug, but then real-
ized it was just amazingly clever,

Computer: One of ACS’s mast important concepts
is the decoding and issuing of multiple instructions per
cycle, How did you arrive at this idea?

Cocke: 1 credit Gene Amdah] with that idea. He
wrote a paper that said the fastest single-instruction-
counter machine has an upper bound on its perfor-
mance. 1 wanted to make a faster machine. So we
loaked ar his paper, which said you can only decode
and issuc one instruction per cycle, and we decided to
get around that limitation. The paper helped us a lot
because, even though many of his hypotheses were
wrong, it helped us sec them, He appreciated chat all
computers at that time had certain properties that pre-
vented them from going faster. So we designed a
machine with different properties.

RISC: 801, RS/6000, PowerPC

Computer: You also worked on the 801, T believe
it was code-named America after the Arst America’s
Cup Race off the coast of Wales, and is widely re-
garded as the first RISC processor.

Cocke: Yes, [ actually gave it that name, based on a
story [ heard. While attending the first America’s Cup
Race, Queen Victoria had sorme gentleman observe the
race’s progress for her. As the lead ship rounded the
island, Victoria asked, “Who is first?” “America,” her
observer replied. When the queen asked who was sec-
ond, the observer replied, “Madam, therc is no sec-
ond.” That’s why I picked the name.

Computer: What was the impetus behind the pro-
ject? ’

Movember 1999

When the queen asked _



IBM’s ACS-1 Machine

Ed Sussengu th

- TBMPS System/360 line of computers was announced in April
1964 It was expected to do well in commercial markers, but its
attractiveness to the scientific market was uncertain. Several pro-
jects were started to address the high-performance scientific mar-
ket. Project X began in 1961 and became the 360791, Project Y
was begun as a non-System/360 compatible research effort in late
1963, and in the summer of 1965 it was transferred ro a devel-
opinent organization and renamed Advanced Computing System
1or ACS-1.

Project Y’ goal was 1,000 times the performance of the [BM
7090 or abour 160 mllhon instructions per second, That goal was
to be achieved in several ways. The 7090’ hardware ran at 20
nanoseconds pet circuit; ACS's would run at 1.6 nanoseconds—
a factor of 12,5, An additional factor of four was required from
the machine architecture and organization. To achieve this, many
independent units were to operate concurrently: instruction fetch,
instruction decode, data fetch and store, index arithmetic, float-
ing-point arithmetic, and branch.caleuladon. Moreover, multi-

" ple instructions wereto be executed on each machine cycle. The
remaining overall improvement was to be achieved by additicnal
_circuits prov1dmg parallellsm and optlmizanons to be done i ny rhe
“compiler.
ACS had numerous mnovatlons, here’ 1ist'a few of the high-

lights. Key among these was the insteuction sequencing logic, -

which examined eight instructions per cycle and dispatched as

Cocke: At the time, IBM and LM Fricsson were dis-
cussing a joint project to develop a controller for a
telephone cxchange. We were going to build a time-
division switch and control it with the 801, In the end,

though, the project fell through.

Computer; Was the 801 effort prompted or influ-
enced by experiments that indicated the System/360
compilers only generated a subset of the System/360

instruction set?

Cocke: Yes. One thing we did with RS/6000 was
try to make surc the compiler could easily generate
cvery instruction we had. We tock the point of view,
which you should always take, of being flexible.
Initially, we said every instruction was simple: It did
something, not something and something more, Then
we said, the heck with that, why not have it do and—
branch and count and set a bit. You start off and
clear a bit, First time through a loop, you did the
count and sct a bit so that you weren’t delayed by
the time it took to do the count, and the next time
around the loop, you test the bit and take the branch.

Computer: What was the major architectural dif-
ference between the 801, the RS/6000, and the Power-
PC processors that evolved from the 8017 What

motivated those changes?

Computer

many as seven for execution, possibly out-of-order. Branch
instructions were overlapped with computation, with prefeiching
down multiple paths, and a deferred-branch architecture. Backup
registers provided a precursor to yarious register-renaming
schemes. .

Among John Cocke’s key cmltrlbunons to.the ACS effort was
his insistence that the compiler, architecture, and machine orga-
nization be developed in concert. To aid this, the perfermance of
ACS was simulated during development on a cyclé-by-cycle basis.
This allowed a complete source program-to-timing analysis view
of the operation of real problems with the design.

Delays in the development of the ACS circuit famlly, packag-

‘ing problems, and an excess number of ¢ircuits foreed:ACS-1 to
continually slip its-original schedule: Moveover, it was determinied

that most of the ACS-1 innovations were-applicable 1o 360-class
computefs, and the line of 360 computers was selhng well. In
1968, ACS-1 was phased out.

Further reading :

H, Schorr, “Design Principles for a High-Performance System,” Symp,
“Computers and Automata, New York, Apr. 1971, pp. 165-192.

M. Smotherman, “IBM Advanced Computer Systern—a Secrét, Seion-
tific, Superscaler Supercomputer from the 1960s;* hrep/iwww.
cs.c[emson.cdul~m_ark/acs._html.

Ed Sussenguth wis a ma;or architect of the ACS pro;cct and Jm’er can:
tributed to IBM's Systemis Netiwork Architecture,

Cocke: Well, IBM Austin started to build a thing they
called ROMP, which came out of the 801 effort. We
went down to Austin, and they asked us to build a float-
ing-point machine. We threw out ROMP and designed
a floating-point machine that became the R8/6000.

Computer: In addition to the floating-point unit,
what were the R$/6000’ other architectural differ-
ences? Could you do different multiple issues, differ-
ent decodings?

Cocke: Well, the opcodes were vastly different. We
had a triple address machine and 32 registers, We’d
also learned from Stretch to avoid indexing through
registers.

Computer: Stretch and the ACS can be described as
having a good deal of complexity in the hardware;
they also implemented rather complex instructions.
The 801 and RS/6000 processors contained much less
hardware complexity, which implemented mach sim-
pler instructions and relied increasingly on more com-
piler knowledge. So we can sce an evolution from
complex machines and semi-intelligent compilers to
simple instructions and very intelligent compilers, Can
you tell us how your thinking evolved over those three
or four machines and compilers?

Cocke: We saw that we could create—and had, by


http://www

the time RS/6000 came along—a very good compiler.
Nowadays, everybody in graduate school takes a
course on how to write compilers. Now, courses cover
cvery kind of optimization, including a lot of things
we didn’t do. We didn’t do profiling, which in retro-
spect we should have done. Profiling involves the oper-
ating system—you have to go beyend the compiler.
You want to compile, run, and count frequencies, and
then decide where to emphasize your optimization,

Computer: Are you suggesting that the compiler
design really involves the concurrent evolution of the
compiler te both the hardware and the operating sys-
tem?

Cocke: If you want to do things like profiling, you
want the operating system’s cooperation. Now, a lot
of people want interpretation as part of that cooper-
ation. You interpret and count, then compile. People
have all kinds of opinions on this, and you can choose
from a great number of approaches. You can scan the
program every time, keep going and execute, or you
can scan and translate it into an intermediare lan-
guage, then interpret that intermediate language. Once
you have done the interpretation, you can compile.

Computer: Given this range of approaches, which
do you support?

Cocke: I favor translating into an intermediate lan-
guage, interpreting, getting a count, and then compil-
ing it,

Parallel computing

Computer: Some in the industry have ascribed to
you the ambition of designing the fastest possible
uniprocessor. Some have even suggested that you may
be ambivalent about designing and implementing par-
allel computers, What are your views on designing
parallel systems?

Cocke: When you couple machines tightly, you get
a lot of interference, and the addition of the second
machine doesn’t come close to doubling performance.
With closely rather than tightly coupled machines, it’s
easier for the hardware. The SP2s do a decent job in
achieving a fair percentage of two machines’ combined
performance, Ramesh Agrawal has programmed a
multidimensional Fourier transform that performs
better as you get up to higher and higher dimensions,
He’s also donc this excellent bucket sort that gives you
almost lincar performance on multiple machines. But
all those enhancements don’t come easily,

Computer: What conclusions do you draw from
this situation—that it’s just algorithm-smart pro-
gramming?

Cocke: If we build the right type of communication
between the memories of the various processors, we
will ultimately obtain good performance. But in the
end, it’s the algorithms: If you look at things like fast
Fourier transform, it went from N squared to N log 7.

There is no way you can make an improve-
ment in computer architecture that comes
close to that.

Computer: Do you think parallelism,
say, in pairs of multipliers is useful?

Cocke: Well, the utility of the second
multiplier isn’t as valuable as the first, and
by a large amount. I don’t remember the
figures, but they aren’t good,

Future architectures

Computer: So, how would you summa-
rize this situation? Can we expect technol-
ogy or architecture improvements that
achieve 10 to 20 percent or—if we’re very
lucky—350 percent per generation?

Cocke: If, for instance, you make an
improvement in the compiler and you geta 10 to 15 per-
cent performance boost, you would consider that a very
goad result. You might get a multiple of that perfor-
mance boost in hardware by making your CPU clock
run a lot faster, [ believe we are going to be doing that
in the next few years.

Comfruter: Where do you see the clock speeds going
in the next few years?

Cocke: Up to 100 gigahertz.

Computer: We arc currently close to one gigahertz,
and so you are projecting a two-orders-of-magnitude
improvement?

Cocke: In 15 years we will get there. It’s still just a
multiple, not large. The hard part will be a 100-picosec-
ond clock distribution without skew, but we have some
good ideas about how to distribute the clock.

1BM has copper wiring, Several years back, [ saw a
photomicrograph of wiring that looked like the frame-
work of a skyscraper, with the wires in the air. We’ll
have X-ray lithography so we can get normal scaling
rules, or better, As you shrink the chip, the scaling and
cooling get betrer, so we can let power density grow by
cooling the chip. Thus, we will have less capacitance
and less resistance—that is, very low RC time con-
stants—so that performance can go way up. We will
also have good programs for optimizing the circuits;
it’s quite clear that as circuits become faster, it's easier
to make them faster still,

Say [ use X-ray lithography to make a chip 3mm?,
so that T have a four-processor CPU with a 3-mm?
cache. Pl need to worry about main memory scaling
in performance, but if I map this 3-mm? chip on a
memory chip that’s, say, one centimeter or two cen-
timeters on a side, that gets me to 256 Gbytes. So 1
have a lot of memory, and I can make fast memory
accesscs—say S-ns memory. That’s 50 cycles. That’s
straining cache a little, but it’s close to being okay.
Then I read out interleaved and so forth and have
what they call nonblocking cache—that is, a queue

November 1899

- - 10100 gigahertz in the
- next 15 years. . .



e B0 was a research pro;ect

' rsued in: i
beeweer 11975 arid 1980, John Cocke was _t.he.mtel-:.

lectugl leader of the téam of about 30 compiter sGis

entists and enginecrs thiat worked on the projeet; The .
project developed.a processor architectiire and-design; -

a PL/L-like programming language and optimizing
cortipiles; and an operating system, The overal| goal
Was 0 exploit the synergistic advantages of design-

ing:all.the componerits fogether inorderto steetchi the. - i

limiss of-unxprocessor performance wlr.hm in
puter cost coltstains,

+ Mare speaﬁcally, the emphasxs was on mmlmlzmgf :
the processor cycle time, the average number of cyeles.
per mstrucrmn, and the number of instructions-exe:

cuted. The system organization featured a simple, Teg-

ular dara flow to minimize the cycle time and to-pro-
vide'a gnod compller target, and inclided separate:
caches for'instpuctions angd data, 'The instruction: set__';'
_mcorpotarccl delayed branching; multiple condition -

. sguce program-—th“:t is, code for an archltecmre sirir

GeorngaI_n =

,uscd in mamframe I/O processors and in the IBM

The 801 research effort led d:rectly to the Power
archltecture used i the RS$/6000. That in turn formed
the basis for the PowerPC archltecture now_used fn

9370: It alsg seems clear that; by the tiine the 801:pr0¢

et was complited, several- 801- based jdéas werebeing

mdependantly mvestngated by othen_' groups The'

reglsters, instructions to: allow: the operating system- -} € ]‘_ _

to redrice unnécessary cache misses, and an interpupt. _
definition that avoided the need to:flish the plpehne'- ‘
: _G._Radm “The 801 Mmlcompute'r,” BM ] Researck rmd

across interrupts of staté changes

Ini' addition to'pioneering a nunibér of program—'

rewriting-and code-motion’ optimizations, the:coms
piler used & coloring algorithm for register allocation.
The compller generated very. sunp!e code from the

for my cache—so that makes it a little bit better. 'm
not saying that IBM will achieve this immediately, but
five or 10 years is a very long time in computing.

Reconfigurahle computing

Computer. What does the future hold for reconfig-
urable computing systems?

Cocke. I'm a great believer in them, because that’s
the way to build a simulator fairly fast. But if I con-
sider the domain and range, let’s say I have a 32-bit
word, how many functions do [ have? The answer is
approximately 279, which is a lot. Take a normal 32-
bit adder, what functions do I have? Add, subtract,
multiply, divide. That’s what math is. So how do I
think of 277 useful binary combinations? Reconfigura-
bility won’t be used in the functional unit, to do a
square root, but it will be good for a hashing scheme
or encryption—70 bits is a long-enough key.

Reconfigurability is also good for control. Say [
want to run a dataflow machine or something, I have
a machine like an evaporator or etcher that is auto-
matically controlled. If I give you the instructions, how
long docs it take you to build a computer? But if [ have

Computer

Deyelopment, May 1983, pp. 237-248:

Gearge Radiriwas the manager - of the 801 pro;ect He also
. conmbmed to the PLA language. :

this reconfigurable machine, and I dcbug and assem-
ble it and tell this other machine to build it. Say it takes
two weeks to make the machine. So what? Big prob-
lems like that take a lot longer,

Quantum cemputing

Computer: What about computing at the molecu-
lar level?

Cocke: I believe the situation’s like this: In quantum
computers, P is equal to NP. Now, that’s only a theo-
retical result, and nobody knows how to build these
quantum computers, but they’re weorking like hell to
figure out how to do it. I saw an article in Physics
Today on how you can use a laser to shape the wave
function of an electron, Somebody will obviously fig-
ure it our—remember that Kelly at Bell Labs said build
a trangistor, and Shockley, Bardeen, and others did it.
[ don’t know how it will work out, but people are a lot
more sophisticated today, and se eventually we will
have quantum computers.

I P is equal to NP, that is a giant difference. I[f T have
a proof checker, for example, I scan over the proof
and I check it and make sure it’s okay. Now, the dif-



ference between a preof checker and a theorem prover
is the difference between P and NP, right? I mean, that
is fantastic. It's like you start out trying to prove every-
thing in every direction, and whenever I find the one

that’s been checked, I say here is a proof. But with a
" molecular computer ’m proving cverything, right?
That’s a Turing machine.

Just curious

Computer: You have been described as having a
very fertile mind, inspiring and guiding your col-
leagues both within and outside of IBM, What would
you advise others to do as mentors and catalysts in
industrics and universities?

Cocke: 1 just do what I do because T am interested
in computers. I don’t have a plan to make myself effec-
tive, Almost nothing about computers escapes my
attention, including the people interested in them. I
can’t say that I have any systematic idea of how to
move things along,.

Computer: Would you describe yourself as driven?

Cocke: No. I just get along with a normal amount
of curiosity.

Computer: Is that your main motivator? Curiosity?

Cocke: Well, 1 don’t know. My father, when he
graduated from law school at something like 18, went
to work for his uncle’s law firm. He couldn’t rake the
bar exam because he wasn’t old cnough. So he was
kind of like an office boy—and they teased him a lot
about his curiosity. One day, he went by a drugstore,
saw a black box with a hole in it, and wondered what

it was for, He stuck his finger inside and got a bad cut.
Turns out the box cut off cigar ends—something my
father found out the hard way. I think I've inherited
my cutiosity from him. Hopefully, I haven’t had quite
as bad an expericnce with it, though.

Computer: Is there any advice you would like to
give the next pencration’s computer architects?

Cocke: T don’t know. I do what T do, and I don’t
plan how I ought to do it. I never have. I don’t believe
in being rigid about anything. If I see an opportunity,
I'will drop all the rules, even when doing so is proba-
bly a mistake,

Acknowledgments

We thank Vicky Markstein of SilverMark, Chris
Sciacca of Technology Solutions, Takako Yamakura
of IBM, and Robert Godfrey of the IBM Archives for
their help in locating images.

Bruce Shriver consults for Genesis 2 Inc. He is a pro-
fessor-at-large at the University of Tromso in Norway
and an honorary professor at the University of Hong
Kong. Shriver is a Fellow of the IEEF, and a past-pres-
ident of the Computer Sociery. Contact him ar
b.shriver@computer.org.

Peter Capek is a vesearch staff member at the IBM TJ.
Watson Research Center and a member of the IEEE.
Contact bim ar capek@us.ibm.com.

Set Industry Standards

Our members write important IT standards. Our members
wrote IEEE 802.3, the standard for Ethernet, the most widely
deployed LAN. But technology networks are not the only kinds
developed here.
Grow Your Career * Find Out How @
http://computer.org/standard/index.htm

November 1999


mailto:b.shriuer@compMter.org
mailto:capek@us.ihm.com

