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Just Curious: 

This computer architecture leader’s curiosity led him to discover several of 
the field’s most significant advances. 

lcgcnd in the computer arcliitccture coin- 
muuity, John Cockc has been involved i n  
tlie design of several machines that have 
made a tremendous impact ou current 
processor design, including the IBM Stretch; 

the Advanced Computer System (ACS); and the 801, 
RS/6000, and I’owerPC proccssors. 

Pcrhaps best known as a pionccr of ideas that lcd to 
reduccd iiistruction set computing (RISC), Cocke is 
also much admired for a broad intcrest in and under- 
standing of techuology that spans mathematics, com- 
pilers, architecture, circuits, packaging, and design 
automation, to namc a few. In conjunction with his 
winning the inaugural Seymour Cray Award, Com- 
puter visited Cocke in his Westchcstcr, New York, 
home, located near the T.J. Watson Research Center, 
where he worked for iiearly four decades until his 
retirement. 

Beginnings 
Computer: Let’s start at the bcginning. How and 

whcn did you initially become acquainted with com- 
puters? And when did thcy begin to fascinate you? 

Cncke: Sullivan Camphell, who worked with IBM 
for several years, came to Duke after working on 
Oracle at Oak Ridge, Tennessee. Oraclc was essentially 
a 40-hit-wide parallcl von Neumann computer like the 
one at the Institutc for Advanccd Study. I Iiad just grad- 
uated and had planncd to spend the summer at Duke 
working for J.J. Gurgen, 3 mathcmatician who was 
hired to study which computers the Army might use. 
I rented a room from Sully Campbell-he was working 
for Gurgen too-and we drank a lot of becr and spent 
a lot of time talking about computers. I had studied 
mathematics but didn’t know auythiug about com- 
puters until I sat around and talked to Campbell ahout 
Oracle, and lxiilding faster adders-siinple-minded 
things like that. The field just interested me. 

Computer: llow did you come to work for IBM? 
Cockc: I was thinking of going to work for Arthur 

U. Little, so I went by thcrc and by GE. I had a friend 
at IBM-a logician named Brad Dunhan-who took 
me around to see Steve Dunwell, the hcad of the 
Stretch project, which was just starting. Dunwell con- 
vinccd me that working on Stretch would be interest- 
ing-one of the main goals was to make it run 
fast-and so I joined IBM in 1956. 

Wc had a very interesting group that included Jim 
Pomerene-who huilt the CRT memory for tlie 
Institute machine, thc Jirhnuiac-and Fred Brooks. 
I had a desk in between them. I learned about Fortran 
from Irv Ziller, who worked on the original compiler 
and invented Fortran 3 .  Our tCam also had Gerry 
Blaauw and John Fairclough. John later worked as 
manager of the IBM Hurslcy lab and tlicn for the 
prime minister, and he was later knighted. 

I was delighted that the people I met knew some- 
thing ahout computers hecause I didn’t. Subsequently, 
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I talked Sully Campbell into coining to IBM, which 
had an outrageous reputation in those days. At the 
time, IBM was basically a punch card business, so 
Campbell sent me up as a trial balloon. If I didn’t quit 
immediately, he would takc a chancc on coming. 

Influences 
Compter: Seymour Cray frequently set the stan- 

dard for competition in high-pcrformancc computing. 
Did understanding his machine design tcchniques give 
you any insights into what could or should be done 
in computer architecture? 

Cocke: Yes. I always liad the greatest admiration for 
Cray as a computer architect. He liad a lot of good idcas, 
not just the 6600, but his earlier machines. He had pro- 
gressive indexing and many other things that gave you 
high speed. I think he was a real computer man. Me 
knew a lot about everything. I never met him or heard 
him speak, but some of those who did have told me hc 
had a terrific sense of humor, which I didn’t suspect. 

Computer: Does anyone besidcs Cray fit your def- 
inition of a real computer man? 

Cncke: Campbell around IBM knew a lot about 
various parts of computers, but not as much as Cray, 
who excelled at circuit design, logic design, packag- 
ing-everything. He built them, cooled them, and 
wrote his own operating system. I don’t know anyone 
else like him. I wish I had met him; I’m sure Cray 
would have been great fun to talk to. I also liked that 
he wasn’t afraid to start his own company. 

Computeu: Do you havc any thoughts on how coni- 
puter architecture should he taught today? 

Cncke: When I started out, I worked with a lot of 
people who didn’t take any courses in computer sci- 
ence, because thcre weren’t any. Until Don Knutli 
came along, no one wrote any really good computer 
science books. After hc wrote his fundamental-algo- 
rithms book, lots of other books came out. 

I think you should-depending on how elementary 
the course-teach how computers work: logic, adders, 
ways to make them go faster, hut especially memory. 
There’s bccn a l o7  improvement in cost-performancc 
since Dennard invented DRAM. We uscd to get a dol- 
lar a bit for memory, and it’s now down to about a 
dollar a megabytc. And performance is much better, 
too. We had 12-b~ memory on the 704, and now we 
have 100-ns memory. And Dcnnard also worked on 
scaling-what happens when you shrink circnits in 
size and kecp the power density constant. That work 
was a major contribution. So wc have Dcnnard to 
thank for two major accomplishments. 

Computer: You seem to admirc Don Knuth. Did 
your many talks with Knuth on computer-related 
issues have an impact on your thinking? 

Cocke: Absolutely. For examplc, hefore profiling, I 
thought we should compilc in comm and understand 

the frequencies. He gave a coiirsc about profiling 
where he got frequcncies and had schemes that 
allowed compiling in fewer counts, and calculated the 
rest. He also knew a lot about compilers and lan- 
guages-how many doubly subscriptcd, singly sub- 
scripted, and unsubscripted variables thcrc were in 
Fortran programs and so on. We agreed that devel- 
opers should have access to a lot of facts when work- 
ing with compilers. Knuth is a hard-working, 
organized man, and I fccl he made more of a differ- 
ence in the computer industry than anybody. 

System design 
Compter: You’ve designcd several machines that 

have inadc a tremendous impact on current processor 
design, including Stretch; ACS; and the 801, RS/6000, 
and PowerPC processors. Let’s talk about them. 

Stretch 
Strctch may have been thc first machine to include 

partitioning of the instruction execution proccss into 
the instruction fetch-decode phase and the data execu- 
tion phase. This development gavc rise to instructinn 
look-ahead, pipelining, short-circuit data forwarding, 

our Cray Computer Sci 

as the father ofsupercomputing. In 1997, to honor Cray’s legacy, the IEEE 
Computer Society and Silicon Graphics Inc. established a award 
recognizing innovation in high-performance networking puting. 
Cocke was chosen this year as the first recipient of the r Cray 
Computer Science and Engineering Award. 

Cocke’s Cray Award citation reads, “for unique and creative contribu- 
tions to the computer indu 
tern designs.” He will rece 
$10,000 endowed by a gift from Silicon Graphics, the current producer of 
Cray Supercomputer products. 
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partitioned memory, and instruction backout to pre- 
scrvc hard interrupts. What Icd you to develop these 
innovative featurcs! 

Cocke: Stretch was a joint project betwecn I.os 
Alamos and IBM. During our discussions with thcrn, 
wc gave a sense of how thc timing on Stretch-and 
more particularly look-ahead-would work. I said I'd 
just write a simulator for it in Fortran. To wrirc thc 
simulator, I had to dream up what lool~-aliead would 
be like: Whcn you gave a load, it was not held up hy 
the next op; you gave a load, then you gave an add, 
and the load would load a buffer, the add would load 
a buffer, and tlic actual operation wnuld execute. Bot 

thc next op was not held up by thc add being execurcd 
on the basis that it was tied to the rcfereiice from incin- 
ory. So you put an op in a buffer to bc cxcciited later 
and went ahead and loaded the data into a buffer, too. 

Cornputen. Stretch's goal was to be a hundrcd times 
faster than the 704. To achieve spced required a corn- 
plex machine that, in turn, rcquired a complex siinu- 
lator. How practical was it to run code sequcnces 
through that kind of simulator so they would bc of 
any value to you! 

Cocke: The sequenccs made it clcar that we were 
not going to make that performance in good timc. The 
simulator helped us find out a lot of information about 

Because Stretch's act ance did not meet expectations, 
IBM lowered its price to the point where the product would not 
he profitable and stopped marhttngit. But Stretch did contribute 
much technology to what pioved to be commercially successful 
IBM products, such as the 7090 computer The late 
cariied forward many of the concepts from Stretc 

einory addiessing in power-of-two increments (with 64 
kt words for high-speed arithmetic and %hit bytes for 

* 72-bit words in memory, including 8 hits for automatic error 
inputloutput); 

detection and correction; 
* magnetic disks instead of drums fur secondary storage 
* provisions for safely running multiple programs sirnul 

OUSlV. 3lld 
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* a standard interface for attaching different I/O devices. 
Further readlng 

Stretch also introduced some new terininol Bashcetal ,IBM'sEarly Computets, Chapter Zl,MITPress, Cam- 
bridge, Mass., 1986. re-now in common use. John Cocke's two major con- 

were the deaign and implementation of a detailed tiin W Ruchholz, ed., Planning o Computer Yyrt 
mg simulator and an iimnucti 
overlapped operation within a 
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the machine’s design and uncovered several had ideas. 
One of the worst ideas we found involved having reg- 
isters be addressable as part of mcmory. The justifi- 
cation for that was to make things “clcan”-that’s thc 
worst word in computer architecture. Say we had a 
store instruction. You can’t figure nut what is affected 
by the store. This screwed up all hopcs of writing a 
decent register allocator. 

Computer: Given all of Stretch’s unique features 
that are so important today, such as the partitioning 
of instruction exccution, the execution process, short 
circuiting, look-ahead, partitioned memory, and so 
forth, which feature do you consider most important? 

Cocke:Tliat’s hard to say. Partitioned memory was 
sort of a dcfault. We had a very fast 1,000-word mein- 
ory, and we decided to partition it to usc its perfor- 
mance, as well as have a much larger memory to keep 
our instructions in. 

Computer: Was partitioned memory a result of the 
instruction look-ahead that let you keep fctching 
instructions? 

Cockc: We felt that partitioned nicmory would not 
destroy look-ahead performance, though it actually 
did slow a Monte Carlo simulation wc bad that was 
full of branches. So when we got to ACS, we incor- 
porated some vcry fancy branch prcdiction. We had a 
prepare-to-branch instruction and added skips-skip 
on bit, skip on no bit-whereby you could mark an 
instruction with a bit, and conditionally execute it. 
You could prepare to branch, execute as many instruc- 
tions as you wanted, come to this hit, and then go. If 
we hadn’t prepared thc branch, we couldn’t have an 
instruction set up for skipping. Uranch preparation let 
us take sonic of the burden off branchcs. 

Rdvanced Campuler System 
Computer: ACS was pcrhaps thc first project that 

pushed very hard simultaneously nn all aspects of its 
design: thc machine wganization, the compilcr, the 
packaging tcchnology, and reliability. Did the expcri- 
encc with Stretch lead you to rcalize that ACS’s com- 
piler and hardware should hc designed in tandem? 

Cocke: When we first started the ACS project, one 
of cnir main concerns was when we would do the 
instruction set design. As we wrotc the compiler, wc 
wanted to make sure it provided consistently good 
coinpilation of the instructions wc were providing. 

We worked on things like the number of registers, 
particularly things dependent on the architccture of the 
machine, but also machine-independent things like com- 
mon subexpression elimination. We worked on reduc- 
tion of strcngth. That was a bad name; wc should have 
called it “Bahhagc differencing.” In other words, when 
you’re calculating a subscript, as you are going around 
the loop as you incrcment i, for instance, all you have to 
do is add the dimension of a times i to get the suhscript 

updated. You don’t have to do i times mul- 
tiply and calculate it all. That was indepcn- 
dcnt of the machine to the extent that you 
assume that multiply was slower than add. 

Computer: Given that you undertook 
development of the optimizing compilcr 
and nlachine design simultaneously, did the 
results of the compiler impact thc dcsigii 
of the machine and vice versa? 

Cocke: Yes. We found that we could do 
a lot of things that we didn’t think practi- 
cal a t  first. Cray had progrcssive index- 
ing-whcn you give a load, you increrncnt 
the address pointer-and we had that too. 
We thought that it might he hard for the 
compiler to implement and found it wasn’t. 
We would use the same algorithm for 
reduction of strength and so forth. We got 
a lot of ideas from the 704 compiler, thc 
first Fortran compiler. It didn’t have w h -  
routines but did have a lot of optimization 
and was terrificallv clever. In fact. some of 

When the queen asked 
who was second, the 

observer replied, 
“Madam, there is no 

second.” 

the code it produced was so good that I was reading 
the object code and thought it had a bug, but then real- 
ized it was j u t  amazingly clever, 

Computer: One of ACS’s most important concepts 
is the decoding and issuing of multiplc instructions per 
cycle. How did you arrive at  this idea? 

Cocke: I credit Gcnc Anidahl with that idea. He 
wrote a paper that said the fastest single-instructioo- 
counter machine has an upper hound on its perfor- 
mance. I wanted to make a faster machine. So we 
looked at his paper, which said you can only decode 
and issue one instruction pcr cycle, and we decided to 
get around that limitation. The paper helped us a lot 
because, even though many of his hypotheses were 
wrong, it helped us sec them. Hc appreciatcd that all 
computers at that time had certain properties that pre- 
vented them from going faster. So we designed a 
machine with different properties. 

RISC: 801, RS16000, PawerPC 
Computer: You also workcd on the 801. I believe 

it was code-named America after the first America’s 
Cup Race off the coast of Wales, and is widely re- 
garded as the first RISC processor. 

Cocke: Yes, 1 actually gave it that namc, hased on a 
story I heard. While attending the first America’s Cup 
llace, Queen Victoria had some gcntlcman observe tlic 
race’s progress for hcr. As the lead ship rounded the 
island, Victoria asked, “Who is first?” “America,” her 
ohserver replied. When the queen asked who was sec- 
ond, the observer replicd, “Madam, there is no scc- 
ond.” That’s why I picked the name. 

Computer: What was the impetus behind the pro- 
ject? 
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IBM’s ACS-1 Machine ... .......................... . ........................ .....,. 
uth 

IBMs System1360 line of computers was announced in April 
1964. It was expected to do well in coniinercial markets, but its 
attractiveness to the scientific market was uncertain. Several pro- 
jects were started to address the high-performance scientific mar- 
ket. Project X began in 1963 and became the 360191. Project Y 
was begun as a norr-System/360 compatible research effort in late 
1963, and in the summer of 1965 it was transferred to a devel- 
opment organization and renamed Advanced Computing System 
1 or ACS-1. 

was 1,000 times the performance of the IBM 
million instructions per second. That goal was 

to he achieved in several ways. The 7090’s hardware ran at 20 
nanoseconds per circuit; ACS’s would run at 1.6 nanoseconds- 
a factor of 12.5. An additional factor of four was required from 
the machine architecture and organization. To achieve this, many 
independcnt units were to operate concurrently: instruction fetch, 
instruction dccode, data fetch and store, index arithmetic, float- 
ing-point arithmetic, and branch calculation. Moreover, multi- 
ple instructions were to be executed on each machine cycle. The 
remaining overall improvement was to be achieved by additional 
circuits providingparallelism and optimizations to be done in the 
compiler. cs.clemson.edu/-marWacs.htm1. 

ACS had numerous innovations; here I list a few of the high- 
lights. Key among these was the instruction sequencing logic, 
which examined eight instructions per cycle and dispntclied as 

many as seven for execution, possibly out-of-order. Branch 
instructions were overlapped with computation, with prefetching 
down multiple paths, and a deferred-branch architecture. Backup 
registers provided a precursor to various register-renaming 
schemes. 

Among John Cocke’s hey contributions to the ACS effort was 
his insistence that the compiler, architecture, and machine orga- 
nization be developed in concert. To aid this, the perforniaiice of 
ACS was simulated during development 011 a cycle-by-cycle basis. 
This allowed a complete source program-to-timing analysis view 
of the operation of real problems with the design 

Delays in the development of the ACS circuit 
ing problems, and an excess number of circuits forced ACS-1 to 
continually slip its original schedule. Moreover, it was determined 
that most of the ACS-1 innovations were applicable to 360-class 
computers, and the line of 360 computers was selling well. In 
1968, ACS-1 was phased out. 

Further readlng 
H. Schorr, “Design Principles for a High-l’erformance System,” Symp. 

Computersand Automata, New York, Apr. 1971, j’p. 165-192. 
M. Smothcrman, ”IBM Advanced Computer System-A Secret, Scien- 

tific, Superscaler Supercomputer from the 1960s;” http://www. 

Ed Sussenguth was a major nrcbitect ofthe AC,Y project and later can- 
trihurcd to IBM’s System Network Architecture, 

Cockc: At the tinic, IBM and LM Ericssoii were dis- 
cussing a joint project to develop a controller for a 
telephone cxchange. We wcre going to build a time- 
division switch and control it with the 801. In the end, 
though, thc project fell through. 

Computer: Was the 801 effort prompted or influ- 
enccd by experiments that indicated thc Systeid360 
compilers only generated a subset of the Systed360 
instruction set? 

Cocke: YCS. One thing wc did with RSl6000 was 
try to make surc thc compiler could easily generatc 
cvcry instruction we had. We took the point of vicw, 
which you should always take, of being flexible. 
Initially, we said every instruction was siniplc: It did 
something, not something and something more. Then 
we said, the heck with that, why not havc it do and- 
branch and count and sct a bit. You start off and 
clear a bit. First time through a loop, you did the 
count and sct a hit so that you weren’t dclayed by 
the time it took to do thc count, and tlic next time 
around the loop, you test the hit and take the branch. 

Computer: What was the major architectural dif- 
fcrcnce between the 801, the RSl6000, and thc l’ower- 
PC processors that evolved from the 801? What 
motivated those changes? 

Cocke: Well, IBM Austin started to build a thing they 
called ROMP, which came out of the 801 effort. We 
went down to Austin, and they askcd LIS to build a float- 
ing-point machine. We threw out ROMI’and dcsigned 
a floating-point machine that bccame the RSI6000. 

Computer: In addition to the flaating-point unit, 
what were the RS/6000’s other architectural differ- 
cnccs? Could you do different multiple issues, differ- 
ent decodings? 

Cocke: Well, thc opcodes wcrc vastly diffcreut. We 
had a triple address machine and 32 registers. Wc’d 
also learncd from Strctch to avoid indexing throngh 
registers. 

Computer: Stretch and the ACS can be described as 
having a gond dcal of complcxity in the hardware; 
they also implcniented rathcr complex instructions. 
The 801 and KSl6000 processors contained much less 
hardwarc complexity, which implemented much sim- 
plcr instructinns and relied incrcasingly on more com- 
pilcr knowlcdgc. So we can scc an evnlntian from 
complex machines and semi-intelligcnt compilers to 
simple instructions and very intclligent compilers. Can 
you tcll us how your thinking evolvcd over those three 
or four machines and compilcrs? 

Cocke: We saw that we could create-and had, by 

Computer 
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the time RS/6000 came along-a very good compiler. 
Nowadays, everybody in graduate school takes a 
course on how to write compilers. Now, courses cover 
cvery kind of optimiaation, including a lot of things 
we didn’t do. We didn’t do profiling, which in rctro- 
spect we should have done. Profiling involves the opcr- 
ating system-you have to go beyond the compiler. 
You want to compile, run, and count frequencies, and 
then decide where to emphasize your optimization. 

Computer: Are you suggesting that the compiler 
design really involves the concurrent evolution of the 
compiler to both the hardware and the operating sys- 
tem? 

Cocke: If you want to do things like profiling, you 
want the operating systeni’n cooperation. Now, a lot 
of peoplc want intcrpretation as part of that cooper- 
ation. You interpret and comit, then compile. Peoplc 
have all kinds of opinions on this, and you can choose 
from a great numhcr of approaches. You can scan the 
program every timc, keep going and execute, or you 
can scan and translate it into an intermediate lan- 
guagc, then interpret that intermcdiatc language. Once 
yon have done the interpretation, you can compile. 

Computer: Given this range of approaches, which 
do you support? 

Cockc: I favor translating into an intermediate lan- 
guagc, interpreting, gcttitig a count, and then compil- 
ing it. 

Parallel computing 
Computer: Some in the industry have ascribed ti) 

you the ambition of designing the fastest possible 
uniprocessor. Somc have even suggested that ynii may 
he ambivalent about designing and implerncnting par- 
allel computers. What are your views on dcsigning 
parallel systems? 

Cocke: When you couple machines tightly, you get 
a lot of interfercnce, and the addition of the sccond 
machinc doesn’t come close to donbling performance. 
With closely rather than tightly coupled machines, it’s 
easier for the hardware. The SP2s do a decent job in 
achieving a fair percentage of two machines’ combined 
performance. Ramesh Agrawal has programmed a 
iiiultidimensioiial Fourier transform that performs 
better as you get up to higher and higher dimcnsions. 
He’s also done this excellent bucket sort that gives you 
almost linear performance mi multiple machines. Hut 
all those enhancements don’t come easily. 

Computer: What conclusions do yon draw from 
this situation-that it’s jnst algorithm-smart pro- 
gramming? 

Cocke: If we build the right type of communication 
hetween the memories of the various processors, we 
will ultimately obtain good performance. But in the 
end, it’s the algorithms: If you lonk at things like fast 
Fourier transform, it went from N squared tn N log n. 

There is no way you can makc an improvc- 
ment in computer architecture that conics 
close to that. 

Computer: Do you think parallelism, 
say, in  pairs of multipliers is useful? 

Cocke: Wcll, the utility of the second 
multiplier isn’t as valuable as the first, and 
by a large amount. I don’t remcmber the 
figures, but thcy aren’t good. 

Future architectures 
Computer: So, how would you summa- 

rize this situation? Can we cxpect technol- 
ogy or architecture improvements that 
achieve 10 to 20 percent or-if we’re very 
lucky-50 perccnt per generation? 

Cocke: If, for instance, you make an 
improvemcnt in the compiler and you get a 10 tn 15 per- 
cent pcrformance boost, you would consider that a very 
good rcsult. You might get a multiple of that perfor- 
mance boost in hardware by making your CI’U clock 
run a lot faster. I believe we are going to be doing that 
in the next few years. 

Computer: Where do you see the clock speeds going 
in the next few years? 

Cocke: Up to 200 gigahertz. 
Computer: We arc currently close to one gigahertz, 

and so you are projecting a two-orders-of-magnitude 
improvement? 

Cocke: In 15 years we will get there. It’s still just a 
multiple, not large. l h e  hard part will he a 100-picosec- 
ond clock distribution without skew, but we have some 
good ideas about how to distribute the clock. 

IBM has copper wiring. Several years back, I saw a 
photomicrograph of wiring that looked like the framc- 
work of a skyscraper, with the wires in the air. We’ll 
have X-ray lithography so we can get normal scaling 
rules, or better. As you shrink the chip, the scaling and 
cooling get better, so we can let power density grow by 
cooling the chip. Thus, we will have less capacitance 
and less resistance-that is, very low RC timc cnn- 
stants-so that perfornlance can go way up. Wc will 
also have good programs for optimizing the circuits; 
it’s quite clear that as circuits become faster, it’s easier 
til make them faster still. 

Say I use X-ray lithography to make a chip 3m1ii2, 
so that I have a four-processor CPU with a 3-mm‘ 
cache. 1’11 need to worry ahnut main memory scaling 
in perfnrniance, hut if I map this 3-mmz chip on a 
memory chip that’s, say, one centimeter nr two cen- 
timeters on a side, that gets me to 256 Gbytes. So I 
have a lot of memory, and I can make fast memory 
accesscs-say 5-ns memory. That’s 50 cycles. That’s 
straining cache a little, but it’s close to bcing okay. 
Then I read out interleaved and so forth and have 
what they call nonblockiiig cache-that is, a queue 
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The compiler generated v ode from the contribw 

for my cache-so that makes it a littlc bit better. I’m 
not saying that IBM will achieve this immediately, but 
five or 10 years is a very long time in computing. 

Reconllnuralle computing 
Cornputen What docs the future hold for reconfig- 

urahle computing systems? 
Cocke. I’m a great believer in them, because that’s 

the way to build a simulator fairly fast. But if I con- 
sider the domain and range, let’s say i have a 32-bit 
word, how many functions do I have? The answer is 
approximately 270, which is a lot. Take a normal 32- 
hit adder, what functions do I have? Add, subtract, 
multiply, divide. That’s what math is. So how do I 
think of 2’Ouseful binary combinations? Reconfigura- 
bility won’t be uscd in the functional unit, to do a 
square root, hut it will be good for a hashing scheme 
or encryption-70 hits is a long-enough key. 

Reconfigurability is also good for control. Say I 
want to run a dataflow machine or something. I have 
a machine like an evaporator or etcher that is auto- 
matically controlled. If I give you thc instructions, how 
long docs it takc you to build a computer? But if I have 

this reconfigurable machine, and I dcbug and assem- 
ble it and tell this other machine to huild it. Say it takes 
two weeks to make the machine. So what? Big prob- 
lems like that take a lot longer. 

Quantum compullnu 
Cornputen What about compnting at  the molecu- 

lar lcvel? 
Cockc: I believe the situation’s like this: In quantum 

computers, Pis cqual to NP. Now, that’s only a theo- 
retical result, and nobody knows how to build these 
quantum computers, but they’re working like hcll to 
figure out how to do it. I saw an article in Physics 
Today on how you can use a laser to shape the wave 
function of an electron. Somebody will obviously fig- 
ure it out-remember that Kelly at Bell Labs said huild 
a transistor, and Shockley, Bardeen, and others did it. 
I don’t know how it will work out, hut pcople are a lot 
more sophisticated today, and so eventually wc will 
have quantum computers. 

If P is equal to NP, that is a giant difference. If I have 
a proof checker, for example, I scan over the proof 
and I check it and make sure it’s okay. Now, the dif- 

Computer 



ferencc between a proof checkcr and a theorem prover 
is the difference hetwccn P and NI’, right? I mean, that 
is fantastic. It’s like you start out trying to prove every- 
thing in every direction, and whenever I find the one 
that’s been chccked, I say here is a proof. But with a 
molecular computcr I’m proving cvcrything, right? 
That’s a Turing machinc. 

Just curious 
Computer: You have been described as having a 

very fertile mind, inspiring and guiding your col- 
lcagucs both within and outside of IBM. What would 
you advise others to do as mentors and catalysts in 
industrics and universities? 

Cocke: I just do what I do hccause I am interested 
in computers. I don’t have a plan to make myself effec- 
tive. Almost nothing about computers escapes my 
attention, including the people interested in thcm. I 
can’t say that I have any systematic idca of how to 
movc things along. 

Computer: Would you dcscribe yourself as driven? 
Cocke: No. I inst get along with a normal amount 

Computer:Is that your main motivator? Curiosity? 
Cocke: Well, I don’t know. My father, when he 

graduatcd from law school at something like 18, wcnt 
to work for his uncle’s law firm. Hc couldn’t takc the 
bar cxam because he wasn’t old cnough. So hc was 
kind of like an officc hoy-and they teased him a lot 
ahout his curiosity. One day, he wcnt by a drugstore, 
saw a black box with a hole in it, and wondcred what 

of curiosity. 

it was for. He stuck his finger inside and got a bad cut. 
Turns out the box cut off cigar ends-something my 
father found out the hard way. I think I’ve inherited 
my curiosity from him. Hopefully, I haven’t had quite 
as had an expericnce with it, though. 

Computer: Is there any advice you would like to 
give the next gcncratkm’s computcr architects? 

Cocke: I don’t know. I do what I do, and I don’t 
plan how I ought to do it. I never havc. I don’t believe 
in being rigid ahout anything. If I sec an opportunity, 
I will drop all the rules, even when doing so is proba- 
bly a mistake. 0 
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