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Abstract—A conventional feature compensation module for
robust automatic speech recognition is usually designed separately
from the training of hidden Markov model (HMM) parameters of
the recognizer, albeit a maximum-likelihood (ML) criterion might
be used in both designs. In this paper, we present an environ-
ment-compensated minimum classification error (MCE) training
approach for the joint design of the feature compensation module
and the recognizer itself. The feature compensation module is
based on a stochastic vector mapping function whose parameters
have to be learned from stereo data in a previous approach called
SPLICE. In our proposed MCE joint design approach, by initial-
izing the parameters with an approximate ML training procedure,
the requirement of stereo data can be removed. By evaluating
the proposed approach on Aurora2 connected digits database,
a digit recognition error rate, averaged on all three test sets, of
5.66% is achieved for multicondition training. In comparison
with the performance achieved by the baseline system using ETSI
advanced front-end, our approach achieves an additional overall
error rate reduction of 12.4%.

Index Terms—Feature compensation, hidden Markov model
(HMM), minimum classification error training (MCE), noise
robustness, robust speech recognition, stochastic vector mapping.

I. INTRODUCTION

I T IS WELL known that the performance of an automatic
speech recognition (ASR) system will be deteriorated

in mismatched training and test conditions. In the past two
decades, there were many efforts proposed to alleviate such
degradation caused by the additive noise and convolutional
distortion. However, the performance achieved by most of them
are unable to reach that under matched training and test condi-
tions. Recently, Microsoft researchers [9], [10] demonstrated
that this performance limit could be surpassed by using a
feature compensation technique called Stereo-based piecewise
linear compensation for environments (SPLICE) and a noise
adaptive training (NAT) strategy. SPLICE is an extension of the
feature compensation techniques developed at Carnegie Mellon
University (CMU) in the past decade (e.g., [1], [26], [31], [32]).
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NAT is a combination of ideas of multistyle training [23] and
irrelevant variability normalization (e.g., the simple practice
of performing cepstral mean normalization in both training
and testing, and other more complex techniques described
in, e.g., [2], [7], [14], [15], [17], [18], [25], [34], [35]). As a
further exploration, removing the requirement of stereo-data
in SPLICE yet achieving a high performance is the primary
motivation of the work reported in this paper.

For SPLICE and many other frame-dependent bias removal
algorithms (e.g., [1], [21], [26], [29], [31] and references
therein), in both training and testing, “corrupted” speech fea-
tures are mapped into “clean” speech features by a simple
transformation, which is referred to as a stochastic vector
mapping (SVM) in this paper. After each training utterance is
enhanced, a multistyle training is performed on all of the “pseu-
doclean” feature vectors to estimate the hidden Markov model
(HMM) parameters of a speech recognizer. Apparently, the
success of such a framework relies on at least the correctness
of the following assumptions.

• The mismatch between clean and noisy data in feature do-
main can be compensated by the assumed stochastic vector
mapping.

• The residue distortion after feature compensation can be
modeled and absorbed by the collectively trained HMMs.

However, two sets of parameters, namely, the parameters of fea-
ture compensation module and the HMM parameters of the rec-
ognizer, are typically estimated separately using a maximum-
likelihood (ML) criterion. This cannot guarantee to achieve the
objective of minimum classification error (MCE) in recognition.
Historically, a pioneering work on discriminative feature extrac-
tion (DFE) using MCE criterion [19] was first reported in [3].
Since then, it has been demonstrated by many researchers in
various speech applications that MCE criterion can be benefi-
cially applied to the design of a feature extractor either sepa-
rately from or jointly with the training of recognizer parameters
(e.g., [4], [5], [24], [27], [28], [33], [39]). In [7], a signal-condi-
tioned MCE training approach was proposed and demonstrated
to be effective for compensating distortions caused by both the
channel mismatch as well as additive noises [6], [7]. Although
the HMM parameters are MCE-trained on the compensated fea-
ture vectors, the feature compensation module is derived di-
rectly under another criterion [29] from the updated HMM pa-
rameters during their MCE training. It is thus well-motivated to
use an MCE criterion for the joint design of the above two sets
of parameters. This explains the second motivation of the work
reported in this paper.
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Inspired by the performance potential demonstrated in
“SPLICE + NAT” approach and the past success of MCE-based
DFE approach, we proposed in [36] an environment com-
pensated MCE training approach for the joint design of the
feature compensation module and the recognizer itself. The
effectiveness of the proposed approach has been confirmed
([36], [37]) in a series of benchmark test on Aurora2 connected
digits database [16]. In this paper, we summarize our previous
work on this topic with additional experimental results and
hopefully make it more accessible to the general readership.

The rest of the paper is organized as follows. In Section II,
we review the framework of the conventional stochastic vector
mapping approach using stereo data for environment compen-
sation and establish the necessary notations. In Section III, we
describe the proposed approach of joint design where stereo data
are not required. In Section IV, we report the evaluation results
on Aurora2 database to demonstrate the effectiveness of the pro-
posed approach. Finally, we conclude the paper in Section V.

II. ML-BASED ESTIMATION OF STOCHASTIC VECTOR MAPPING

FUNCTION PARAMETERS FROM STEREO DATA AND HMM
DESIGN FOR ENVIRONMENTAL COMPENSATION

Let us assume that a speech utterance corrupted by additive
noise and convolutional distortion is transformed by signal pro-
cessing operations into a sequence of feature vectors. Then, the
task of frame-dependent feature-based environmental compen-
sation is to estimate the clean speech feature vector From
the noisy speech feature vector , by applying the environment
dependent transformation , where represents the
trainable parameters associated with the transformation and
denotes the corresponding environment class (e.g., a combina-
tion of noise type and noise level) to which belongs. For the
simplicity of notation, the subscript in will be ignored here-
inafter if no confusion arises. Obviously, is a highly non-
linear function of that is difficult to characterize analytically.
One of the feasible solutions used in most of successful feature
mapping approaches such as CMUs algorithms and SPLICE, is
to approximate it by using a stochastic vector mapping approach
as described in the following.

A. Estimating Correction Vectors Using Stereo Data: SPLICE
Approach

Given a set of training data , where
is a sequence of feature vectors of noisy speech,

suppose that their distortions can be partitioned into classes
of background environments. Assume that the -dimensional
feature vector under an environment class follows the dis-
tribution of a mixture of Gaussian probability density functions
(PDF)

(1)

where is a normal distribution with mean vector
and diagonal covariance matrix . These model parameters can
be estimated easily from the corresponding set of training data

with EM algorithm [8]. Based on the above notations, in the sto-
chastic vector mapping approach like [36], the mapping func-
tion can be defined as follows [10]:

(2)

where

(3)

and is the set of mapping function parameters
(also referred to as correction vectors hereinafter) that can be
estimated from the training data by using an ML criterion.

If stereo data for both clean and noisy speech are available
and used to estimate , this becomes the SPLICE approach
[10], which is a modification and extension of the fixed code-
word-dependent cepstral normalization (FCDCN) algorithm de-
scribed in [1]. For example, suppose that denotes
the set of corresponding pairs of clean and noisy speech feature
vectors recorded under a particular environment class . Let us
consider a particular environment class and use to denote
the set of subscripts of training utterances belonging to the en-
vironment class . Then, the correction vectors can be trained
based on an ML criterion as follows:

(4)

B. Training CDHMMs With Pseudoclean Speech

As assumed previously, each training environment class
can be characterized by a Gaussian mixture model (GMM) as
shown in (1) and a stochastic vector mapping function as shown
in (2). If we transform each training feature vector accordingly,

a pseudoclean training set, , can be created. Fur-
ther suppose that in our speech recognizer, each basic speech
unit is modeled by a Gaussian mixture continuous-density
HMM (CDHMM), whose parameters are denoted as

,
where is the number of states, is the number of Gaussian
components for each state, is the initial state distribution,

’s are state transition probabilities, ’s are Gaussian mix-
ture weights, is a -dimensional
mean vector, and is a diag-
onal covariance matrix. Consequently, the set of pseudoclean
HMM parameters in our speech recognizer, , can be
estimated by using an ML- or MCE-based training strategy.

C. Recognition Process Using Stochastic Vector Mapping

In recognition, given an unknown utterance , the most
similar training environment class is first identified as that
of having the maximum-likelihood
for . Then, the corresponding GMM and the
mapping function are used to derive a pseudoclean version of
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from . For the convenience of notation, we also use here-
inafter to denote the enhanced version of the utterance

by transforming individual feature vector as defined in
(2). After feature compensation, is finally recognized by a
pseudoclean CDHMM-based recognizer trained as described.

III. JOINT DESIGN OF STOCHASTIC VECTOR

MAPPING FUNCTION AND CDHMMS

WITHOUT USING STEREO DATA

In many application scenarios, stereo data are too expensive
to collect, thus not available for estimating vector mapping
function parameters. In this section, an environment-compen-
sated MCE training approach is proposed for the joint design
of the mapping function parameters and CDHMM parameters
that does not rely on the availability of stereo data.

A. ML-Based Joint Design Approach

In order to provide reasonable initial values for MCE training,
an approximate ML training procedure is developed to estimate
the vector mapping function parameters and CDHMM pa-
rameters and is described as follows.

1) Initialization: First, a set of CDHMMs are trained
from multicondition training data and used as the initial values
of HMM parameters. Initial values of the correction vectors

are set to be zero.
2) Estimating Vector Mapping Function Parameters:

Second, for each environment class , one EM iteration is
performed to estimate the environment dependent mapping
function parameters to increase the log-likelihood function

.
By using the general EM algorithm [8] and the specific map-

ping function in (2), the auxiliary -function for can be
derived as

(5)

In the previous equation, is the occupation probability
of Gaussian component in state , at time of current ob-
servation. It can be calculated with a Forward-Backward proce-
dure using training utterance (enhanced from with cur-
rent ) against current HMM parameters in the E-step.

is the feature vector of utterance at th
frame. is a term irrelevant to .

By setting the derivative of with respect to as zero,
we have

(6)

Since above equation holds for all , it is equivalent to solve
the root of vector in the following
equation:

(7)

where is a matrix with the th element being

(8)

and is a -dimensional vector
with

(9)
for all . Therefore, the estimation of involves
the calculation of solving equations like (7), of which each
needs an inverse operation of the matrix.

To reduce computational efforts for estimating as de-
scribed above, we can instead adopt a vector mapping function
simpler than (2) as

(10)

where for the environment class

that belongs to [9]. Then, it can be simply derived as

(11)
where

if equals to
otherwise.

(12)

This is the approach we used in our experiments for this study.
It is noted that the above updating formula is similar to the bias
estimation formulas of feature-space stochastic matching ap-
proach reported in [30].

3) Estimating CDHMM Parameters: Third, we transform
each training utterance using (2) with the relevant mapping
function parameters . Using the resulted pseudoclean ut-
terances, one EM iteration is performed to reestimate CDHMM
parameters , with an increase of the likelihood function

.
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After the above three steps, we obtain the and as an ap-
proximate ML estimation of mapping function parameters and
CDHMM parameters, which are used for recognition directly or
as initial values for further MCE training.

B. MCE-Based Joint Design Approach

In the proposed environment compensated MCE training ap-
proach, it still uses the stochastic vector mapping function as
defined in (2). However, the mapping function parameters
and the CDHMM parameters are estimated jointly by min-
imizing the following empirical classification error defined on
the training data

(13)

with being the loss function for the training ut-
terance defined as follows:

(14)

where and are two control parameters (e.g., [20]). In the
previous equation, is a misclassification measure defined
as

(15)

where is a discriminant function for recognition decision-
making, and is an antidiscriminant function. The form of
these two functions depends on the definition of the “class” in
the context of MCE. In our experiments, the entire word string
is referred to as a “class.” Therefore, the discriminant function

of a given observation with a word string label
is defined as

(16)

where represents the log-likelihood of the
current enhanced feature vector sequence under
the current HMM parameters against word string . The
antidiscriminant function is defined by using the -best
competitive word strings other than the for each
training utterance as follows:

where is a positive control parameter, and represents
the log-likelihood of against the word string .

As mentioned previously, both the mapping function parame-
ters and the HMM parameters will be jointly updated using
the following sequential gradient descent algorithm. Let us use

to denote generically the parameters to be estimated .
Given , we first randomize the ordering of , and then we
present the training samples sequentially. Upon the presentation
of the th training sample, is updated as follows:

(17)

where “ ” represents the cumulative number of training sam-
ples presented so far, is a positive definite scaling matrix,
and is the learning rate. One pass of the training samples is
called an epoch. After the completion of each epoch, one could
randomize the ordering of again, to decrease the chance of
being trapped in a local optimum with the same order of learning
sequences. However, for the sake of simplicity, this step was
skipped in our experiments. The learning rate is an important
control parameter in MCE training. In this study, the following
schedule is used:

(18)

where is the frame number of the th cumulative training
sentence, is the total number of training epoches to be per-
formed in MCE training, and is a control parameter need to
be carefully determined by experiments. The scaling matrix
is set according to the method described in [20]. In all of the
MCE training experiments to be reported in the next section,
the following setting is used for the relevant control parameters:

, , , , .
In order to find the gradient , the following partial deriva-

tive is used:

(19)
The remaining partial derivative (or ) is
formulated differently depending on the parameters to be op-
timized. Since the process of updating HMM parameters has
been described in [20], only the formula related to the updating
of is presented in the following ( denotes or
generically)

(20)

In the above equation, is the occupation probability of
Gaussian component in state , at time of current enhanced
observation . For each , from (2), it follows that

if belongs to environment class
otherwise

Therefore

(21)

if belongs to environment class .
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IV. EXPERIMENTS AND RESULTS

A. Aurora2 Database

In order to verify the effectiveness of the proposed approach,
a series of experiments are performed for the task of speaker
independent recognition of connected digit strings on Aurora2
database. A full description of the Aurora2 database and a test
framework is given in [16], and a brief description is given in the
following to help readers understand better our experiments.

All speech utterances in Aurora2 are derived from the
TIDigits database [22] with an original high-quality recording
by downsampling to 8 kHz, filtering with G.712 or modified
intermediate response system (MIRS) filter, and the controlled
addition of noise to cover a wide range of signal-to-noise
ratios (SNRs) under eight interesting noise conditions, namely,
Suburban Train (denoted shortly as Sub hereinafter), Crowd
of People (Bab), Car, Exhibition Hall (Exh), Restaurant (Res),
Street (Str), Airport (Apt), and Train Station (Sta). According
to [16], two training modes are defined as follows:

• clean-condition: training on clean data only;
• multicondition: training on clean and noisy data.

For the first mode, 8440 sentences are selected from the training
part of TIDigits containing the recordings of 55 males and 55
females. They are filtered with the G.712 filter without adding
noise. For the second mode, the same 8440 utterances are di-
vided into 20 equally sized subsets, each containing a few ut-
terances from all training speakers. The 20 subsets are distorted
with four kinds of noises, including Sub, Bab, Car, and Exh,
at five different SNRs, namely, clean condition, 20, 15, 10, and
5 dB. Again, the speech and noise are filtered with the G.712
filter before adding.

According to [16], three different test sets are also defined to
simulate three different application scenarios. 4004 utterances
from 52 male and 52 female speakers in the TIDigits test part are
split into four subsets with 1001 utterances in each. Recordings
of all speakers are present in each subset. Test Set A is formed
by adding the same four types of noise signals as used in gener-
ating the multicondition training data to four subsets of testing
utterances at SNRs of 20, 15, 10, 5, 0, and 5 dB, respectively.
By further including the set of clean testing utterances before
adding noises, the Test Set A consists of 4 7 1001 28 028
utterances that match the conditions of multicondition training
data. The creation of Test Set B is exactly same as Test Set A ex-
cept for using four different kinds of noises, i.e., Res, Str, Apt,
and Sta. Both speech and noise signals in test sets A and B are
filtered by G.712 filter before adding. Therefore, the Test Set B
can be used to simulate application scenarios in the presence
of distortions caused by mismatched additive noises only. Test
Set C consists of two of the four subsets, which are distorted by
noise signals of Sub and Str, respectively. This time, speech and
noise are filtered by MIRS filter before adding them at SNRs
of 20, 15, 10, 5, 0, and 5 dB, respectively. Again, by further
including the clean testing utterances in the above two subsets,
Test Set C consists of 2 7 1001 14 014 utterances that
can be used for performance evaluation under a condition of
mismatched channel only, or a condition with both mismatched
channel and additive noises.

B. Baseline Systems

The recognition results presented in this section are pro-
duced on the Aurora2 database using two types of front-ends:
the modified reference of Aurora front-end WI007 [12], [16]
and the advanced front-end proposed in [13]. In the original
WI007 front-end, for each frame, a 39-dimensional feature
vector is generated, which consists of 12 mel frequency cepstral
coefficients (MFCCs) (MFCC of order 0 is not included) and
logarithmic frame energy, plus their first and second-order
derivatives. The major modification on WI007 front-end in this
evaluation is to use MFCC of order 0 but not log-energy for
each frame. Another modification on WI007 is that the cepstra
are computed based on the power spectral density instead of
the magnitude spectrum. It was shown by experiments that
the modified front-end is better than WI007 at the presence of
noise distortion. Hereinafter, this modified version of WI007
front-end is called the standard front-end.

The advanced front-end is proposed in [13] as standard of
the activity for distributed speech recognition by ETSI. This
standard describes the front-end algorithm based on mel-cep-
stral feature extraction technique. It includes the feature ex-
traction module and the feature compression/transmission part
at both the terminal and server sides. In the feature extraction
part, a two-stage mel-warped Wiener filter is designed and per-
formed for noise reduction first. Then, the waveform processing
is applied to the denoised signal and cepstral features are cal-
culated. Last, the blind equalization is applied to the cepstral
features, which are then fed to the further compression process
for channel transmission. In our evaluation, we ignore all the
operations of that standard at the server side in the distributed
speech recognition. In other words, we will only use the cepstral
features and their derivatives calculated in the feature extraction
module as the front-end for Aurora2 evaluation.

The experiments are designed to recognize ten digits from
“zero” to “nine,” plus an “oh” which is another possible pronun-
ciation of the digit “0.” Whole word left-to-right CDHMMs are
created for all digits. The CDHMM of each word consists of 16
emitting states, each having 20 Gaussian mixture components
with diagonal covariance matrices, and two dummy states at the
beginning and end for the easy implementation with HTK [40].
Besides, two pause models, “sil” and “sp,” are created to model
the silence before/after the digit string and the short pause be-
tween any two digits. The model of “sil” is defined as a five-state
(including two dummy states) CDHMM with a flexible transi-
tion structure [16]. Each emitting state is modeled by a mixture
of 36 Gaussian components. The model of “sp” consists of two
dummy states and a single emitting state which is tied with the
middle state of “sil.”

During recognition, an utterance can be modeled by any se-
quence of digits with the possibility of a “sil” model at the be-
ginning and at the end and an “sp” model between any two
digits. All of the recognition experiments are performed with
the search engine of HTK3.0 toolkit [40].

The experimental results reported in this paper only include
those achieved under multicondition training of Aurora2 data-
base and tested on all of three test sets. The performance (word
accuracy in %) of our baseline systems using standard front-end
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and advanced front-end are listed in Table V and VI of the
Appendix, respectively. To compare and evaluate different ap-
proaches described in this paper, for each type of noise, a perfor-
mance measure is introduced as an average over SNRs between
0 and 20 dB. The overall performance measure is averaged over
all noises and over SNRs between 0 and 20 dB. For example, as
shown in Table V, the average accuracy over Test Set A using
standard front-end is 91.93%, while the overall average accu-
racy over three test sets is 90.96%. It is observed from the re-
sults that the advanced front-end removes much distortion in
both training and testing noisy utterances, thus it is much more
robust than the system using standard front-end, especially for
the mismatched conditions, i.e., test set B. On average, the word
error rate is reduced by 28.54% with advanced front-end in com-
parison with that of standard front-end.

C. Performance of SPLICE-Based Approaches Using Stereo
Data

In this set of experiments, the SPLICE algorithm using avail-
able stereo data is implemented to construct a reference system
for comparison with our joint design approach. In this reference
system, 17 GMMs, each having a mixture of 256 Gaussian com-
ponents with diagonal covariance matrices as described in (1),
are trained for clean speech and the noisy speech under each of
four noise types (Sub, Bab, Car, and Exh) and four SNR levels
(20, 15, 10, and 5 dB). Sentence-based cepstral mean normal-
ization (CMN) is performed before the GMM training as well
as before the feature compensation.

The correction vectors for the full feature vectors, including
the static features as well as the dynamic features, are estimated
according to (4) and then used to calculate the pseudoclean
feature vectors. The procedure of noise mean normalization
(NMN) described in [11] is not implemented in our reference
system, although it is reported by Microsoft researchers that
the performance in mismatched conditions can be improved by
doing so. Indeed, since the so-called NMN procedure cannot
iteratively estimate the distortion on the dynamic cepstral
features caused by the additive noise, it can just be integrated
with the stochastic vector mapping approach where the trans-
formation is merely applied on static features. However, by
experiments, it is observed that such a system cannot even
outperform the reference system of applying SPLICE on the
full feature vector, as implemented in this study. Therefore, the
NMN procedure is skipped in our experiments.

As mentioned in Section II-B, the CDHMMs used to rec-
ognize the digit strings can be trained by an ML principle or
MCE principle over all of the pseudoclean feature vectors en-
hanced by SPLICE algorithm. The results of the reference sys-
tems exploiting both training schemes and using the standard
front-end are summarized as average word error rates (in %)
on three test sets in Table I, in which SPLICE stands for the
experiments of collectively training the CDHMMs by ML cri-
terion and SPLICE-MCEH stands for its MCE training coun-
terpart (for HMM means only). Five epoches are conducted for
MCE training. The experimental results show that the overall
error rate is reduced from 9.04% of that without any noise

TABLE I
SUMMARY OF DIGIT RECOGNITION ERROR RATES OF STOCHASTIC VECTOR

MAPPING APPROACHES USING STEREO DATA (STANDARD FRONT-END)

TABLE II
SUMMARY OF DIGIT RECOGNITION ERROR RATES OF STOCHASTIC VECTOR

MAPPING APPROACHES USING STEREO DATA (ADVANCED FRONT-END)

TABLE III
SUMMARY OF DIGIT RECOGNITION ERROR RATES OF STOCHASTIC

VECTOR MAPPING APPROACHES WITHOUT USING STEREO DATA

(ADVANCED FRONT-END)

TABLE IV
PERFORMANCE COMPARISON IN TERMS OF AVERAGE DIGIT RECOGNITION

ERROR RATES ON TEST SET A FOR TWO TYPES OF SYSTEMS WITH A SIMILAR

NUMBER OF MODEL PARAMETERS: CDHMM VERSUS SVM-CDHMM
(ADVANCED FRONT-END)

compensation to 7.21% by using SPLICE and ML trained
CDHMMs. The relative error rate reduction is about 20.2%.
From Table I, we can also find that the SPLICE works much
better in the condition where stereo training data exists (i.e.,
Test Set A) than in unseen condition (i.e., Test Set B). Appar-
ently, the correction vectors estimated by ML criterion with
stereo data are not representative enough to enhance the noisy
speech in unseen environment and the ML-trained HMMs of
different classes seem not discriminative enough to warrant
a good performance. By simply training CDHMMs by MCE
principle, i.e., SPLICE-MCEH, which is a natural extension of
above experiments, the word error rate can be further reduced
to 6.88%.

Similar experiments are also carried out on the advanced
front-end, of which the results are summarized in Table II.
Although the word accuracies of the baseline system using
advanced front-end have been relatively high, the approach
of “SPLICE-MCEH” can still reduce the word error rate by
12.23%, which demonstrates the effectiveness of MCE training.
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TABLE V
PERFORMANCE (WORD ACCURACY IN %) OF BASELINE SYSTEM (STANDARD FRONT-END)

D. Performance of Joint Design Approaches Without Using
Stereo Data

In order to examine the efficacy of the joint design ap-
proaches for training correction vectors and CDHMMs, two
sets of experiments are performed by ML training (labeled as
“Joint-ML”) and MCE training (labeled as “Joint-MCE”) of all
the parameters. In all of the experiments, the same number of
correction vectors and the same environment dependent GMM
for environment identification as that of the experiments with
stereo data are used. The “Joint-ML” approach is to estimate the
correction vectors and CDHMMs from nonstereo clean/noisy
training utterances. The values of mapping function parameters
and HMM parameters in the “Joint-ML” system are also used
to initialize the “Joint-MCE” training procedure. In the exper-
iments of “Joint-MCE,” eight best competitive word strings
are generated by using the “Joint-ML” trained pseudoclean
HMMs for each pseudoclean training utterance enhanced by
stochastic vector mapping. For simplicity, the optimization of
mapping function parameters and the HMM parameters are not
performed simultaneously but alternately. At the beginning,
the ML-trained parameters are treated as the initial values of
the first iteration. The MCE training of correction vectors with
five epoches for stochastic vector mapping is performed firstly.
Then, starting from the newly estimated correction vectors
and the initial ML-trained pseudoclean HMMs, the new HMM
parameters (mean vectors only) are estimated by MCE training
with five epoches. Finally, the resulted correction vectors and
the pseudo-clean HMMs will be used as the initial values of
the next iteration. The training process can thus continue as
described above. In our experiments, we used only one itera-
tion. From the above description, it can be seen that all of the
experiments in this subsection do not need any stereo data.

Experiments of using the above two schemes are conducted
for both standard front-end and advanced front-end. The trends
of word error rate reduction are similar for both front-ends,
thus only experimental results for advanced front-end are
summarized in Table III. It is observed in Table III that
“Joint-MCE” can achieve an error rate reduction of 12.4%
in comparison with the baseline system performance. This
performance improvement is similar to what was achieved by
“SPLICE-MCEH” using stereo data as shown in Table II. By
examining the detailed results listed in Tables II and III, it is not
surprising that the system using stereo data can provide better
performance under matched conditions, i.e., Test Set A, than
that without using stereo data. However, the systems trained by
using the joint design approaches (both ML and MCE) without
using stereo data shows their ability in tolerating somehow
mismatched testing conditions, i.e., Test Set B, such that the
overall performances of two types of systems using and not
using stereo data are almost the same. The effectiveness of the
joint design approaches proposed in this paper is confirmed.

In order to further demonstrate the effect of feature com-
pensation module based on stochastic vector mapping, the
performance of MCE trained CDHMMs without using sto-
chastic vector mapping-based feature compensation is also
studied, which is shown as “MCEH” in Table III. Although the
MCE trained CDHMMs outperform the ML trained CDHMMs
in baseline system, they are worse than the “Joint-MCE”
trained CDHMMs when the stochastic vector mapping is used
to compensate for the noisy speech. This is consistent with
our findings in [36], where more detailed results were reported
in a different experimental setup on the effects of using MCE
training for stochastic vector mapping parameters only, or
HMM parameters only, or both. Readers are also referred to
[38] for more experimental results on Aurora3 task.
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TABLE VI
PERFORMANCE (WORD ACCURACY IN %) OF BASELINE SYSTEM (ADVANCED FRONT-END)

E. Discussion

In the above systems based on stochastic vector mapping,
model parameters consist of two parts: SVM parameters

and CDHMM parameters . The total number of pa-
rameters in SVM-CDHMM systems is more than that in a
CDHMM-based baseline system. It would be interesting to
see whether an SVM-CDHMM system can still perform better
than a CDHMM-based system with a similar number of model
parameters. Another set of experiments are conducted to verify
this issue. We simply increase the number of Gaussian mixture
components per state from 20 to 32 for each digit CDHMM,
and from 36 to 48 for “sil” CDHMM. Such a CDHMM-based
system has a similar number of model parameters with that of
an SVM-CDHMM system in the previous experiments. Two
new CDHMM-based baseline systems are trained by using ML
and MCE training, respectively. Their performances in terms of
average digit recognition error rates on Test Set A are compared
with that of the corresponding SVM-CDHMM systems with a
similar number of model parameters in Table IV. It is observed
that the SVM-CDHMM systems outperform the traditional
CDHMM systems. This confirms again the usefulness of using
the SVM for environment compensation.

Another concern of an SVM-CDHMM system is the in-
creased computational complexity during recognition stage.
To get a clear idea, a timing experiment is conducted on a
“Pentium-4” PC with a 2.4-GHz clock by using a randomly
selected testing sentence with a length of 2.8 s. The user
CPU time for a full Viterbi decoding of the above sentence in
our baseline system (i.e., 20 mixtures per state for each digit
CDHMM) is 0.63 s. The user CPU time for recognizing the
above sentence in our SVM-CDHMM system is 1.33 s that
include 0.64 s for “environment condition” labeling, 0.06 s
for feature vector mapping, and 0.63 s for Viterbi decoding
of the “denoised” sentence. The main overhead comes from

the “environment condition” labeling because a large number
of Gaussian components are involved. How to speed up the
relevant operations is a topic for further research.

V. SUMMARY

In this paper, we have presented an environment-compen-
sated MCE training approach for the joint design of the feature
compensation module and HMM parameters of a speech
recognizer. The feature compensation module is based on a
stochastic vector mapping function whose parameters have
to be learned from stereo data in a previous approach called
SPLICE. In our proposed MCE joint design approach, by
initializing the parameters with an approximate ML training
procedure, the requirement of stereo data can be removed
without causing performance degradation as demonstrated
in benchmark evaluations on Aurora2 connected digits data-
base. Although the baseline system using the ETSI advanced
front-end has achieved an overall word error rate of 6.46% on
Aurora2 benchmark test sets, an additional 12.4% error rate
reduction is achieved by using our proposed MCE training
approach based on stochastic vector mapping. As a future
work, we will study its effectiveness in a subword-based large
vocabulary ASR application.

APPENDIX I
FULL RESULTS OF BASELINE SYSTEMS WITH STANDARD

AND ADVANCED FRONT-ENDS

See Tables V and VI.
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