478 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 2, FEBRUARY 2007

A Study of Minimum Classification Error (MCE)
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Abstract—In this paper, we present a formulation of minimum
classification error linear regression (MCELR) for the adap-
tation of Gaussian mixture continuous-density hidden Markov
model (CDHMM) parameters. Two optimization approaches,
namely generalized probabilistic descent (GPD) and Quickprop
are studied and compared for the optimization of the MCELR
objective function. The effectiveness of the proposed MCELR
technique is confirmed via a series of supervised speaker adapta-
tion experiments on a task of continuous Putonghua (Mandarin
Chinese) speech recognition.

Index Terms—Hidden Markov model (HMM), HMM adapta-
tion, minimum classification error linear regression (MCELR),
speaker adaptation.

1. INTRODUCTION

O FAR, three design principles have been widely used to
Sconstruct a modern automatic speech recognition (ASR)
system (readers are referred to [18] for a discussion on theo-
retical foundation of modern ASR formulations from a decision
theoretic viewpoint):

1) using plug-in MAP (maximum a posteriori probability) as
a decision rule for the recognition decision and maximum
likelihood (ML) as a criterion for the estimation of decision
parameters (e.g., [3]);

2) using maximum discriminant as a decision rule for the
recognition decision and minimum classification error
(MCE) as a criterion for the estimation of decision param-
eters (e.g., [1], [19], and [29]);

3) using plug-in MAP or maximum discriminant as a deci-
sion rule for the recognition decision and maximum mu-
tual information (MMI) (e.g., [4]) or minimum phone error
(MPE) (e.g., [36]) or minimum word error MWE) (e.g.,
[16], [36]) as a criterion for the estimation of decision
parameters.

It has been demonstrated by many research groups that

when a sufficient amount of representative training data are
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available, an ASR system constructed under the second or third
principle can outperform its counterpart constructed under the
first principle for many ASR applications (see, for example, [7],
[22], [30], [33], and [36] and the references therein). Consistent
with the first design principle, many successful adaptation
techniques have been developed in the past two decades to
cope with the possible problem of mismatches between training
and testing conditions (see, for example, a review [25] and the
references therein). Consistent with the second or third design
principle, MCE adaptation of parameters of Gaussian mixture
continuous-density hidden Markov model (CDHMM) was first
reported by authors of [28]. Several follow-up studies were also
reported by other research groups (e.g., [23], [31], and [38]).
One reported in [24] demonstrated that direct MCE adaptation
for MCE-trained HMM parameters works well when a suffi-
cient (w.r.t. the number of parameters being adapted) amount
of adaptation data are available. However, when only a small
amount of adaptation data are available, direct MCE adaptation
of HMM parameters does not work so well. Even more recently,
techniques for direct adaptation of HMM parameters under the
criterion of MMI or MPE [35] were developed. Experimental
results were reported on how they work for the adaptation of
the ML-, MMI-, and MPE-trained seed models [35].

Inspired by the success of maximum-likelihood linear regres-
sion (MLLR) approach (e.g., [26]) for efficient HMM adapta-
tion when only a small amount of adaptation data are available,
in the past several years, there were some efforts to develop
discriminative linear regression (DLR) adaptation techniques
under different criteria and notions such as MCE [5], maximum
scaled likelihood [42], maximal rank likelihood [10], MMI [40],
and conditional maximum likelihood (CML) [13].! Although all
of them were developed with the aim of an efficient discrimina-
tive adaptation, they were applied to adapting the ML-trained
seed models in the first attempt. In our opinion, applying DLR
approaches to adapting the discriminatively trained seed models
is more desirable. In this way, because a consistent criterion
can be used in both seed model training and the succeeding
adaptation, better performance may be expected. It was this
conjecture that motivated our study on MCE linear regression
(MCELR) as reported in [45] and [46]. Since then, follow-up
studies on MCELR were also reported (e.g., [14], [15]), where

! An extension of the work was reported in [39], where linear regression trans-
formations were trained by using CML criterion and were applied to either fea-
ture normalization or discriminative speaker adaptive training.
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different optimization approaches are used for optimizing the
MCE criterion. Another recent DLR approach was reported in
[6], where the LR parameters were estimated under the criterion
of a so-called aggregate a posteriori probability originally pro-
posed in [27] for discriminative training of Gaussian mixture
models. In these studies, DLR was reported to achieve better
performance than MLLR, though the DLR technique was only
applied to adapting the ML-trained seed models. An MPE-based
DLR approach was proposed in [43], where experimental results
were reported for the adaptation of both ML- and MPE-trained
seed models. It was demonstrated that the MPE-LR approach
achieved better performance than MLLR in both of the experi-
mental setups. All of the above findings are consistent with our
findings in MCELR reported originally in [45], [46], and further
here.

In this paper, we expand on our previous work [45] and [46],
providing a more detailed description of the MCELR formu-
lation and the algorithm derivation, additional implementation
details, new experiments, and an expanded discussion of the re-
sults. The rest of the paper is organized as follows. In Section II,
we extend the MCELR formulation in [5] to a more general
one in the context of CDHMM and large-vocabulary ASR. In
Section III, we present an alternative optimization algorithm,
namely Quickprop, for MCELR. In Section IV, we report ex-
perimental results to demonstrate the behavior of the MCELR
in a supervised speaker adaptation application. We also compare
the performance achieved by the MCELR with that of MLLR.
Finally, we summarize our findings in Section V.

II. MCELR FORMULATION

In most of linear regression-based adaptation approaches,
such as MLLR (e.g., [9] and [26]), all of the Gaussian com-
ponents from all CDHMMs will be clustered into several
regression classes as determined by a regression class tree.
Two linear transformations, Wm and ﬁm, are assigned to
a particular regression class m, which consists of R similar
Gaussian components {m,.} le. They can be used to estimate
the new mean vector fi,,, and the covariance matrix ﬁlmr for
the m,.th Gaussian component as follows:

ﬂmr = mfmr

S, = BL" Hy Bon,

ey
©))

where &,,. = (1,1, p2,...,p)T" is the extended vector of
a D-dimensional mean vector i, before transformation, B,
is the inverse of the Choleski factor of the inverse covariance

matrix E;}T before transformation such that

B, =C;t
S = C, O 3)
In MLLR, an ML criterion is used for estimating the linear trans-
formations, {W,,, } [26] and { H,,, } [9], from adaptation data. Of
course, they can also be estimated by using other criteria, for ex-
ample MCE.

In the MCE framework formulated in [20], which is the basis
for our MCELR approach, a sigmoid function is adopted to
approximate the empirical classification error of each training

sample Y with a word string label Z. under the current model
parameter set A as follows:

1

l(Y;A) = 1+exp(—ad(Y;A)+ ﬂ)

“)

In the above equation, d(Y’; A) is a misclassification measure
defined as follows:

d(Y;A) = —g(Y;A) +g(Y; A) ©)
where g(Y'; A) is a discriminant function for recognition deci-
sion-making, and §(Y; A) is a term referred to as antidiscrimi-
nant function in this paper for the convenience of reference. For
a particular training sample Y, the definition of g(Y’; A) and
g(Y'; A) should satisfy that: g(Y;A) < g(Y;A) implies false
classification, and g(Y;A) > g(Y; A) means correct classifi-
cation. The specific forms of g(Y; A) and g(Y'; A) used in our
MCELR formulation will be explained in detail in the next two
subsections, respectively. Given the above definitions, an MCE
objective function can then be formed as the empirical average
loss on the training set Y = {¥1,Y5,..., Yk}

1 K
) =& > Ui, ). (6)
k=1

In [5], MCE has been used to estimate a single global linear
transformation for mean parameters in a trended HMM. In the
following, we present a more general version of the MCELR for
estimating multiple linear transformations in a regression tree
that can be used in turn for the adaptation of both mean vec-
tors and covariance matrices of CDHMMs. Our MCELR for-
mulation can be treated as an MCE counterpart of the traditional
MLLR formulation described in [9] and [26].

In order to minimize the above MCE objective function, we
use the following sequential gradient descent algorithm, coined
as generalized probabilistic descent or shortly GPD by the au-
thors of [22] due to the fact of that GPD was a slightly modified
version of the probabilistic-descent (PD) method proposed orig-
inally by Amari in [1]

)

where k refers to the cumulative number of training samples
presented so far. Let us use ™ to denote generically the linear
transformation W,, or H,,. The updating formula of (7) be-
comes

A1 = Ap — Ele(Yk;ANA:A,\.

ol

6k+1 :Hk — Ekag—m

gm :gln

:9? — ekal<1 - l) <—W + aﬂ—m>

Other optimization algorithms can also be used. In Section III,
we describe how to use an optimization algorithm called Quick-
prop [8] for MCELR. Because most optimization algorithms
need to calculate the derivatives of the discriminant and an-
tidiscriminant functions with respect to the parameters to be
optimized, in the following, we present the specific formula-
tion of discriminant and antidiscriminant functions we used for
MCELR and how to calculate their derivatives.
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A. Discriminant Function and Its Derivatives

In our MCELR formulation, the discriminant function of a
given observation Y is defined as follows:

g(Y;A) =log (p(Y|Z.)) = log Y _p(Y,5|Z:) (9
S

where S represents a possible state sequence for the given word
string Z... To make good use of the limited adaptation data, the
discriminant function in (9) considers all of possible state align-
ments, which is different from the one used in a conventional
segmental MCE training formulation, but its rationale has been
discussed in, e.g., [20]. Given an adaptation sample with a se-
quence of T feature vectors, Y = (y1,¥2,...,yr), the deriva-
tive of the discriminant function g with respect to 8™ is

09 e~
g = 2o O L, (8) - @y m,)

t=1r=1

(10)

where Ly, (t) = p(gm, (t)|Z.,Y) is the occupation probability
of the Gaussian component m,. at time ¢, and ®(-, -) is a matrix
that takes different forms for the following two cases.

1) If ™ represents the mean transformation Wm, then

O (ye,me) = S0 (Ye = fim, ) - - (an
In particular, if a diagonal covariance matrix is used for
each Gaussian component, the above result can be further
simplified as a matrix with its (u, v)th element ¢, being

(yt,u - ﬂmr,1t) fmr,1)

52
O—m,,u

¢11,1)(yt; mr) = (12)

where fi,,, ., i8 the uth element of the mean vector fi,,,
&m.. v is the vth element of the extenQed vector &,,,., and

&72,%“ is the uth diagonal element of ¥,, .
2) If 8™ represents the covariance transformation H,,,, then
1raa N
Py my) = 3 [GGT’" - H;}] (13)

with G = H U (BED) ™ (e = fim,)-
A sketch of derivation of the above derivatives is given in
Appendix L.

B. Lattice-Based Antidiscriminant Function and Its
Derivatives

The calculation of 95/96™ in (8) relates to the definition of
the antidiscriminant function g(Y; A). In this subsection, we
discuss how to deal with this important issue. In MCELR, there
are several possible ways to define the antidiscriminant function,
depending on how the competing hypotheses for a given adapta-
tion utterance Y are chosen and used among the following three
possibilities, namely, 1) the most confusable word sequence,
2) a list of N-best word sequences, and 3) a word lattice. Given
the fact that only a small amount of adaptation data are avail-
able, yet the word lattice contains the richest information about

»
»

Fig. 1. Illustrative example of a word lattice for the definition of antidiscrimi-
nant function.

the competing hypotheses with respect to the correct word se-
quence, we adopt a lattice-based approach to define the antidis-
criminant function.

For each adaptation utterance Y, a “competing word lattice”
as illustrated in Fig. 1 is generated by performing a recognition
of Y, in which each arc [, e.g., the arc m, represents a word
2 with its word boundary being (a(l) = t3,b(l) = t4). In
the simplest case, if the word boundaries are fixed during the
parameter updating, the set of active arcs at arbitrary time ¢, de-
noted as A;, can be determined in advance. In the case of the
lattice illustrated in Fig. 1, A; = {n2n4, nan, n3ng}. Based
on the above notations and according to the general formula-
tion of MCE training, the lattice-based antidiscriminant function
g(Y; A) in our MCELR approach can be defined, by expanding
the “competing word lattice” into a long N-best list, as follows:

[Zz 1(Z # Z.)exp (nlogp(Y|Z))

1
g=7 s VYA

n

(14)

1, if the word sequence 7 is different
from the word sequence 7.

otherwise

1<Z¢zp>={
0

?

the summation is taken over all the possible word sequences
represented by the word lattice, and 7 is a scaling factor. The
purpose of adding this scaling factor is to adjust the contribution
of different paths to the antidiscriminant function. When  —
0, (14) is equivalent to

g = max logp(Y|Z). (15)
However, a straightforward implementation, using (14) to cal-
culate the derivatives, will incur too many redundant computa-
tions simply due to the sharing of the same arc in different word
sequences. An efficient algorithm making good use of the com-
pact structure of the lattice is desirable.

It is noted that the lattice-based approach has been used in
different ways in several research groups for MMI training (e.g.,
[37], [41], and [44]). As discussed in, e.g., [37], the situation
for MCE training is slightly different from that of MMI training
because the “competing word lattice” should exclude the correct
word sequence. Because each arc in the lattice could be part
of several word sequences, in general, a word sequence could
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not be excluded from the lattice without affecting other word
sequences.2

In our MCELR approach, we define the following auxiliary
probability term P(l ¢ Z.) to exclude the correct word se-
quence from the lattice

. ZZz!Zz?éZc p"(Y|Z1)
P(l ¢ Zc) - ZZI p"(Y|Z;)

(16)

where Z; refers to a possible word sequence in the lat-
. . T
tice passing through the arc [, for example, SnynynsFE or

P ——— . . . .

Sngngn7E in Fig. 1. Using the above notion of P(l & Z..), the
derivative of g with respect to #”* can be derived as sketched in
Appendix IT and is listed as follows:

T R

g _
o = 2 2 2RI (1) - By m,) (A7)
t=11€A; r=1
where
o) — — PUE Z)ernlan) )

T Yven, PUE Zoyexp(ar)

In the above equations, E%{ (t) p(gm, ()20, YO =
(Ya@y> -+ +Yp@y)) 1is the occupation probability of the
Gaussian component m, at time ¢ with respect to the arc
L g1 = log(X_z p"(Y|Z1)) is the log of the scaled total
likelihood of all the word sequences passing through the arc [
in the lattice, and ®(.,.) is defined as in one of the equations
in (11)-(13). Both P(l ¢ Z_.) and g; can be decomposed into
the forward/backward parts and be calculated by a recursive
procedure similar to the ones described in, e.g., [34], [37],
and [41]. In this way, the redundant computations incurred by
expanding a word lattice into a long N-best list as in (14) are
avoided, yet the convergence property of our MCELR approach
can be justified in the same way as the conventional N-best-list
based MCE training (e.g., [20]).

The rationale of using P(l ¢ Z.) can be further clarified by
using the following examples. Based on the above definition,
if Z. is not in the “competing word lattice,” (i.e., any word se-
quence from S to F is different from Z.), P(l ¢ Z.) = 1 for
any arc [. On the other hand, if the arc [ appears only in the cor-

_—
rect word sequence, for example, Z. = SnangF and [ denotes
nang, we have P(I ¢ Z.) = 0. In all other cases, P(l € Z.)
takes a value between 0 and 1. Therefore, P(l ¢ Z.) can be used
to characterize the actual contribution of a particular arc made to
the antidiscriminant function in MCE training by excluding the
contribution of all correct word sequences (with different word
boundaries) passing through this arc in the lattice.

With the above formulas for relevant derivatives, the updating
formula in (8) can be used to update the transformation parame-

2A lattice-based procedure for the MCE training of CDHMMs was described
briefly in [37], and experimental results were reported more recently in [30].
Inspired by the discussion on the possibility of using a lattice-based approach for
MCE training in [37], we developed our own lattice-based method for MCELR
as described in the following. Due to the lack of knowledge about the technical
details of the lattice-based approach reported in [30] and [37], we are not able
to discuss the specific differences between our treatment and the one in [30] and
[37].

ters. In the following subsection, we discuss several implemen-
tation issues. A good treatment of them can help the MCELR
work better.

C. Implementation Issues

1) Initialization of Transformations: It is well known that in
any gradient descent approach, a good initialization of the pa-
rameters is important to make the algorithm converge to a good
local optimum. We have studied two strategies for parameter
initialization. In the first approach, an identity matrix is used to
initialize the relevant transformations. Given the available adap-
tation data, information about the occupation counts of each
Gaussian component is first collected before the MCELR up-
dating. Using this information, the regression classes can then
be determined. The identity matrices are assigned to those nodes
with sufficient adaptation data in the regression tree as initial
values for the relevant linear transformations.

In the second approach, a supervised MLLR adaptation is per-
formed first. Then, the regression classes suitable for MCELR
are determined based on the same regression tree built by MLLR
but different cutting thresholds are allowed. The initial transfor-
mation for each regression class is set as the associated MLLR
transformation if itis available; otherwise, the valid MLLR trans-
formation associated with its nearest ancestor in the regression
tree is used. In this way, the MCELR can start from a more in-
formative transformation for each regression class.

In MLLR implementation [26], there is an operation of matrix
inversion in solving linear equations for estimating individual
regression matrix. To avoid the possible numerical problem as-
sociated with the matrix inversion, each regression class should
be “assigned” enough adaptation data. Consequently, an appro-
priate threshold has to be set for determining the number of re-
gression classes that can be used for a given amount of adapta-
tion data. However, in MCELR updating, no matrix inversion is
involved. Therefore, we can use a looser threshold to determine
the number of regression classes. Consequently, more transfor-
mations could be used in MCELR than that in MLLR for the
same amount of adaptation data.

There are other possible ways for parameter initialization.
Readers are referred to [6] for another example.

2) Scaling of Variables: For an unconstrained optimization
problem, the accuracy of the solution can be greatly affected
by the conditioning of the Hessian matrix at that solution (e.g.,
[11]). In MCELR, although it is difficult to calculate the Hes-
sian matrix of the objective function, it is still helpful to use a
diagonal scaling based on the diagonal elements of an approx-
imate Hessian matrix. Therefore, the following scaling can be
performed on the (u,v)th element, w!”, of the transformation
matrix Wm. For the extreme case where each mean vector has
its own transformation, we can use

~ ", fm,r,v

whr = w

uv uv

19)
As for the general case where a transformation is shared by
many Gaussian components, the following approximate up-
dating formula is used as an alternative to (12)

d)uu (yh mT) = (yt,u - ﬂm,‘,u) /fmr,v' (20)
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Another appropriate approach of scaling the transformation
matrix elements is to first normalize the mean vector during the
transformation as follows:

/j’/mr - Cmrﬂlmr (21)
where C,,, is the Choleski factor of inverse covariance matrix
E;lr as shown in (3). Then the linear transformation W,, is
applied to the normalized mean vector. The new mean vector
i, Will be
where &, = (1, /i1, jia,-..,jip)"" is the extended vector of
fim, > and W, = {w; } is the D x (D + 1) matrix to be esti-
mated. Based on the above notations, the gradient direction {™
used for the optimization of W,,,, given an adaptation utterance
with a sequence of T feature vectors, Y = {yt}z;l, is derived
as

oW,
T
=al(1=0) x> 3| eO)LY (t) = Ly, (t)
t=1r=1 licA,
- ®(y;,m,.) (23)
where
Oy, my) = Con, (Yo — fim, ) - & - (24)

Although different scaling schemes will result in different op-
timal values for adapted model parameters, it was observed in
our speaker adaptation experiments that the performance differ-
ence between the above two scaling approaches is very small.
Therefore, only the experimental results using the first scaling
technique are reported in this paper.

3) Learning Rate Schedule: The learning rate ¢j, is another
important control parameter in MCELR. In this study, the fol-
lowing schedule is used:

€0 ~Tk
E-K
j=1 Lk

€hyl = € — (25)

where T}, is the number of frames in the kth cumulative training
sentence, I is the total number of training epochs to be per-
formed in MCELR (one pass of training samples is called an
epoch), and ¢ is a control parameter need to be carefully deter-
mined by experiments.

III. ALTERNATIVE OPTIMIZATION METHODS FOR MCELR

A. First-Order Versus Second-Order Optimization

Although the efficacy of the sequential procedure like GPD
for MCE training has been demonstrated by many experiments,
it is not so easy to use in the optimization of MCELR. First, the
sequential procedure has to be used if the training samples are
not available before learning starts. However, if all samples are
available in the case of batch-mode supervised adaptation, col-
lecting the total gradient information before deciding the next

step can be useful to avoid a mutual interference of the param-
eter changes, especially for the large-scale problems. Undoubt-
edly, one of the reasons in favor of the sequential approach is
that it can introduce some randomness that might be helpful in
escaping from a “bad” local optimum. However, there is also
the risk of missing a good local optimum for the same reason.
Actually, the choice of using a sequential or a batch mode op-
timization depends on the nature of the task under investiga-
tion. Second, GPD needs a careful tuning, via “trial-and-error,”
of the learning rate, to achieve a good learning behavior. Un-
fortunately, according to our speaker adaptation experiments on
MCELR, the GPD optimization process is sensitive to the ini-
tial value ¢ of the learning schedule, yet the most suitable value
varies greatly for different speakers. Therefore, it is difficult to
exploit the full potential of MCELR if only a fixed learning
rate schedule can be used for different speakers with different
amounts of adaptation data, that is unfortunately the case in
speaker adaptation application.

An alternative approach for mitigating the above drawbacks
of a simple gradient scheme is to use second-order informa-
tion to decide the parameter updates. Usually, the second-order
methods are implemented in a batch mode. For example, the
batch mode Newton’s method will adopt the following formula
to update the parameters:

wm(p+1) = wm(p) — [HM(p)]_l lm(p)

if the J x .J Hessian matrix H,, (p)(é Vi, (p)) is positive def-
inite. To facilitate a clear presentation of the algorithms in this
section, W™ and I™ are rewritten as the .J-dimensional vectors
Wm = {w;”}]]: , and I = {l;"}j: | Tespectively, where there
is a unique index pair (u,v) associated with each index j, and
J = D>+ D.In (26), "(p) = S, ™(p,k)/K reflects
the total gradient information of the pth epoch, where l;” (p, k)

(26)

denotes l;" calculated by using the current transformed HMM
parameters and the kth adaptation sample in the pth epoch. The
exact implementation of such second-order methods demands
a Hessian matrix that can be either calculated analytically or
approximated via some computationally intensive procedures
[2]. However, for an objective function like (6), the compu-
tation of the Hessian matrix is very complicated. Therefore,
for large-scale optimization problems like in MCELR, some
heuristic strategies have to be adopted to make the algorithms
practical. Among many approaches, the Quickprop approach [8]
is demonstrated to be useful in several ASR applications (e.g.,
[21], [32], and [33]).

B. Quickprop Algorithm

The Quickprop algorithm approximates the jth diagonal ele-
ment h;; of the Hessian matrix as

Al ) =1

hii(p) = ~
1) = B X ) —wr -1

and treats the other off-diagonal elements as zeros. Combining
(26) and (27) gives

27

- ) )
Wi (p+1)=wi(p) o) - e-1 [wi ()} (p=1)] -

(28)
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The rationale behind the diagonal approximation of the Hes-
sian matrix by the Quickprop algorithm can be explained
in another way based on two “risky” assumptions made by
Fahlman [8].

1) The curve of objective function with respect to each in-
dividual linear transformation parameter can be approxi-
mated by a parabola whose arms open upward.

2) The change in the slope of the curve, as seen by each indi-
vidual transformation parameter, is not affected by all the
other transformation parameters that are indeed changing
at the same time.

Therefore, for each parameter, we can use the gradient vectors
measured in the previous and current iterations, say, l;” (p—1)
and l;" (p), and the related parameter update, Aw}*(p — 1) a
wi(p) — wT*(p — 1), to predict independently the next step ac-
cording to the upward parabola determined by these measure-
ments. It thus needs only simple computation to jump directly
to the minimum point of the suppositional parabola:

Awj'(p) = K(p)Aw]* (p — 1)
7 (p)
= - J - Aw™ (p —
1) ) P

(29)

which is in concordance with that of (28).

It is noted that (26) can lead to a local optimum only when
the Hessian matrix H,, is positive definite and the initial point
is sufficiently close to the optimum. The Quickprop also suffers
from such limitations. Hence, for the case where the current gra-
dient has the same sign as the previous gradient but has the same
or even a larger magnitude, which leads to a zero or negative h ;,
the assumptions of Quickprop will not be true any more. If (29)
is followed blindly, an unreasonable infinite or actual backward
step will occur, which would end up the iteration at a point out
of the trustworthy region or even lead to a local maximum. In
this case, a limit on the next step size has to be set as the p times
the previous update step. This parameter p is called “maximum
growth factor” and usually is set as 1.75 [8]. On the other hand,
when the current gradient direction l;” (p) is the same in sign as
the previous gradient l;” (p — 1) but is less in magnitude, x(p)
will be positive which means the direction of the minimization
has not changed yet and the previous step should be maintained
in sign for the current update. When the current gradient is op-
posite in sign with the previous gradient, «(p) will be negative,
which means the local optimum was crossed just now and a back
step should be taken.

Another requirement in implementing Quickprop is to boot-
strap the learning process when there is no previous update and
gradient direction at the beginning of the first epoch. Also a sim-
ilar case will occur when the process should be restarted for a
particular parameter for which a step of zero was taken previ-
ously but which is now located in a nonzero-gradient region be-
cause of the change caused by the update of other parameters. In
our experiments, a GPD term, where the learning rate ¢, tends
to zero from ¢ with the increase of the epochs, is used for boot-
strapping purposes.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup and Baseline Systems

To examine the viability and the efficacy of the proposed
MCELR method, a series of experiments for continuous speech
recognition of Putonghua (Mandarin Chinese) are performed.
The recognition task is the recognition of 410 Putonghua base
syllables disregarding tones. For the syllable language model,
a uniform grammar with a syllable perplexity of 411 (i.e., each
syllable can be followed by any of the 410 syllables and silence)
is used. All of the recognition experiments are performed with
the search engine of HTK3.0 toolkit [47]. Other details of the
experimental setup are the same as that in [17] and is outlined
in the following.

Two speech corpora are used for our experiments. The first
speech corpus is the HKU96 Putonghua Corpus [49], which
consists of a total of 20 native Putonghua speakers, ten females
and ten males, each speaking hundreds of sentences from news-
paper text. 18224 sentences (about 15.5 h of raw speech) from
18 speakers (nine males and nine females) are used to train two
baseline speaker-independent (SI) ASR systems, one is based
on ML training, and another is trained by using the MCE cri-
terion. The second database is the 863 Putonghua Corpus ac-
quired from mainland China [48]. Twelve speakers (six males
and six females) are randomly chosen from this corpus to serve
as the SI testing speakers. Among all of the 519 sentences by
each speaker, 100 sentences are reserved for testing and the rest
are used for adaptation.

To construct our baseline systems, for each speech frame, a
39-dimensional feature vector is generated which consists of 12
MEFCCs and log-scaled energy normalized by the peak of the
individual sentence, plus their first- and second-order deriva-
tives. Sentence-based cepstral mean subtraction is applied in
both training and adaptation/testing. The first baseline system
is a speaker-independent decision-tree-based mixture Gaussian
tied-state HMM system trained by using the ML criterion
from the speech data in HKU96 corpus as described in detail
in [17]. The basic speech units are the triphones considering
both the within-syllable and cross-syllable contextual depen-
dencies. Each triphone is modeled by a left-to-right three-state
CDHMM. There are 3000 tied-states in total, each having
four Gaussian mixture components with diagonal covariance
matrices. For this baseline system, an average syllable accuracy
of 60.66% is achieved over 12 testing speakers on 863 corpus.
Starting from the set of SI seed models in the first baseline
system, a new set of models are estimated by minimizing
the embedded syllable string error rate. For each Gaussian
component, only the mean vector is modified while the other
parameters are kept unchanged during the MCE training. The
second baseline system using this set of MCE-trained seed
models achieves a syllable recognition accuracy of 64.34%. In
comparison with the performance achieved by the first baseline
system, a relative error rate reduction of 9.4% is achieved.

For simplicity, in all of the following speaker adaptation ex-
periments, only mean vectors of the Gaussian components are
adapted by using linear transformations. In [15], positive results
were observed when MCELR was applied to adapting the vari-
ance parameters as well.
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Fig. 2. Performance (syllable accuracy in percent) comparison averaged over
12 speakers with respect to the amount of adaptation data per speaker (in min-
utes): MCELR from ML-trained versus MCE-trained seed models.

B. Comparison of Performance of MLLR and MCELR
Approaches for Supervised Speaker Adaptation

Starting from the above two baseline systems, we performed
supervised batch-mode speaker adaptation experiments on
12 testing speakers by using both MLLR- and GPD-based
MCELR. A common regression tree derived from the first
baseline system and with 161 leaf nodes is used, but different
numbers of transformations are chosen for MLLR and MCELR,
respectively, by using different thresholds for the occupation
counts [9], [26]. The threshold is set to be 700 for MLLR and
400 for MCELR. For all the experiments, full transformation
matrices are used. The total number of training epochs are set
to be 20 for each experiment of MCELR. For the experiments
of MCELR starting from identity matrices, the initial learning
rate ¢ is set to be 0.05 while it is set to be 0.001 for MCELR
starting from the transformation matrices of MLLR. The other
parameters are set as « = 0.001 and 8 = 0. The word lattices
used for MCELR are also generated by using the HTK3.0
toolkit, which uses four tokens in each state and a uniform
grammar with a syllable perplexity of 411.

In all the speaker adaptation experiments, the silence model
is not adapted because there are much more silence frames
than speech frames in the adaptation data we used, and a
single learning schedule for MCELR is applied to all of the
parameters. It was observed in some preliminary experiments
that the learning process might be directed to a wrong direction
if the silence model was adapted. The possible ways to address
the above issue could include the following.

1) A VAD procedure is applied to adaptation sentences and

only speech portions are used for model adaptation.
2) A different learning schedule is used for the silence model.
3) A specific regression class is used for the silence model
only.
These could be the topics for future investigation. As a remark,
the silence model was not adapted either in [6], [14], and [15].

Fig. 2 shows the performance comparison of two sets of
speaker adaptation experiments on 12 speakers with respect to the
amount (in minutes) of adaptation data per speaker. In the figure,
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Fig. 3. Performance (syllable accuracy in percent) comparison averaged over
12 speakers with respect to the amount of adaptation data per speaker (in min-
utes): the effect of different initialization methods for MCELR.

“MCELR(MCE-Seed,I-Init)” and “MCELR(ML-Seed,I-Init)”
refer to the MCELR adaptation starting from the MCE-trained
and ML-trained CDHMM seed models, respectively, where the
transformation parameters are initialized as identity matrices. Itis
observed that starting from both sets of SI seed models, MCELR
can achieve a significant performance improvement with an in-
creasing amount of adaptation data, yet the performance differ-
ence of two adaptation curves is maintained for different amount
of adaptation data. For example, a relative error rate reduction
of 8.8% is achieved by the “MCELR(MCE-Seed,I-Init)” in
comparison with that of the “MCELR(ML-Seed,I-Init)” with
10-min adaptation data. By using the “simple testing approach”
described in [12], the above improvement is statistically signif-
icant at the P = 7.8 x 1077 level.

Fig. 3 shows the performance comparison of two sets
of MCELR speaker adaptation experiments using dif-
ferent initialization methods for linear transformations. In
the figure, both “MCELR(MCE-Seed, MLLR-Init)” and
“MCELR(MCE-Seed,I-Init)” refer to the MCELR adaptation
starting from the MCE-trained CDHMM seed models, in which
the transformation parameters are initialized as identity ma-
trices in the “MCELR(MCE-Seed,I-Init)” and MLLR matrices
in the “MCELR(MCE-Seed, MLLR-Init),” respectively. It is
observed that the “MCELR(MCE-Seed, MLLR-Init)” performs
much better than the “MCELR(MCE-Seed,I-Init).” This con-
firms the importance of having a good initialization for the
GPD-based MCELR approach.

Fig. 4 shows the performance comparison of MCELR
and MLLR speaker adaptation experiments. In the figure,
“MCELR(MCE-Seed, MLLR-Init)” and “MLLR(MCE-Seed,I-
Init)” refer to the MCELR and MLLR adaptations, respectively,
in which both approaches start from the MCE-trained CDHMM
seed models, while the transformation parameters are initialized

3By using the testing approaches described in [12], the improvement from
the “MLLR(MCE-Seed,I-Init)” to the “MCELR(MCE-Seed, MLLR-Init)”
at 10 min is statistically significant at the P = 0.071 level according
to the “simple approach,” and at the P = 0.0278 level according to the
McNEMAR'’s test under the assumption that half of the recognition errors
made by the “MCELR(MCE-Seed, MLLR-Init)” are the same as that of the
“MLLR(MCE-Seed,I-Init).”
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Fig. 4. Performance (syllable accuracy in percent) comparison averaged over
12 speakers with respect to the amount of adaptation data per speaker (in min-
utes): MLLR versus MCELR.

as MLLR matrices in the “MCELR(MCE-Seed, MLLR-Init)”
and identity matrices in the “MLLR(MCE-Seed,I-Init),” re-
spectively. Furthermore, “MLLR(ML-Seed,I-Init)” refers to
the MLLR adaptation experiments starting from ML-trained
CDHMM seed models with the transformation parame-
ters initialized as identity matrices. It is observed that,
although MCE seed models perform much better than that
of ML seed models, after MLLR adaptation (even with
only 30-s adaptation data), the difference between two sets
of adapted models (i.e. “MLLR(ML-Seed,I-Init)” versus
“MLLR(MCE-Seed,I-Init)”’) becomes much smaller. Further-
more, by comparing the curves of “MLLR(MCE-Seed,I-Init)”
and “MCELR(MCE-Seed,MLLR-Init),” it is observed that
the “MCELR(MCE-Seed, MLLR-Init)” performs consistently
better than the “MLLR(MCE-Seed,I-Init).” With the increasing
amount of adaptation data, the gap between these two curves
becomes larger, from a relative error rate reduction of 1.8% at
30s to the one of 3.7% at 10 min.3 This is partly because more
transformations can be used in MCELR than in MLLR without
causing numerical problems as explained in Section II-C1. In
[6], it is reported that MCELR performs better than MLLR,
where both approaches start from ML-trained seed models and
use the same number of regression classes.

C. Comparison of Learning Behavior of GPD and Quickprop
Algorithms

Starting from the MCE-trained speaker-independent
CDHMMs, we performed supervised MCELR adaptation
experiments on 12 testing speakers by using both sequential-
mode GPD and batch-mode Quickprop algorithms for opti-
mization. One set of experimental results when the amount of
adaptation data for each speaker is 6 min are plotted in Fig. 5.
In these experiments, different values of ¢y for both GPD and
the bootstrapping process to start/restart Quickprop are chosen
while all the other control parameters, such as « and 3, are
kept the same. It is observed that in terms of objective function
(empirical classification error), the convergence of sequential
gradient descent method is much slower than that of Quickprop

0.3 GPD J
\ GPD
3 Quickprop
0.25 | ¥x Quickprop 1

Quickprop

0.15

Empirical Classification Error

a2

35 40 45 50

Fig. 5. Learning curves, in terms of empirical classification error, averaged
over 12 speakers with respect to the number of epochs (The number within
parentheses denotes the value of €).
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Fig. 6. Learning curves of 12 individual speakers.

algorithm, albeit the optimization of Quickprop is not fast either
and sometimes oscillates during the first several iterations.

By comparing the learning behavior of GPD and Quickprop
algorithms with different learning rates, it is observed that GPD
is more sensitive to the ¢y value than Quickprop. Furthermore,
when we plot individually, in Fig. 6, the learning curves of 12
speakers, it is observed that, for Quickprop algorithm, the ob-
jective functions for all speakers are reduced to a similar low
level after several epochs. However, the dynamic range of the
learning curves by GPD is almost unchanged, which implies
that the objective functions for some speakers may not reach
their optimum, given the common parameter value €.

D. Comparison of Performance of GPD and Quickprop
Algorithms

The total number of training epochs is set to be 10 in this set
of MCELR experiments. Fig. 7 shows the performance com-
parison of three sets of speaker adaptation experiments on 12
speakers with respect to the amount (in minutes) of adapta-
tion data per speaker. In the figure, MCELR-Quickprop and
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Fig. 7. Performance (syllable accuracy in percent) comparison averaged over
12 speakers with respect to the amount of adaptation data per speaker (in min-
utes): GPD-based versus Quickprop-based MCELR.

MCELR-GPD refer to the MCELR adaptation starting from the
MCE-trained seed models by Quickprop and GPD algorithms,
respectively.

Itis observed that although MCELR-Quickprop decreases the
objective function much more than MCELR-GPD, it cannot as-
sure a similar impressive performance improvement in recog-
nition accuracy. The performance of MCELR-Quickprop only
outperforms slightly over that of MCELR-GPD. For the case of
the small amount of adaptation data, Quickprop is even worse
than GPD algorithm. It might be attributed to the “over-training”
problem when the adaptation data are not sufficient and repre-
sentative enough.

V. DISCUSSION AND CONCLUSION

We have presented a new formulation of MCELR for
CDHMM adaptation. It is demonstrated that the MCELR
can be used to adapt the MCE-trained HMM parameters under a
consistent criterion. In a supervised speaker adaptation applica-
tion, it is observed that such adapted models perform better than
the ones adapted using MLLR from the ML-trained seed models.
We have also presented a heuristic approach of an approximate
second-order optimization algorithm, namely Quickprop, for
MCELR adaptation. By a series of comparative experiments, we
demonstrate that in comparison with GPD, Quickprop algorithm
can achieve a faster convergence yet be less sensitive to the
setting of the initial learning parameter in the optimization of
the objective function for MCELR adaptation.

As a final remark, it is well known that the interaction be-
tween acoustic model and language model (LM) in discrimina-
tive training and adaptation is a very complicated issue, both the-
oretically and practically. We deliberately bypass this issue by
not using any LM (except for syllable pronunciation) in our ex-
periments. Although much insight has been gained on this issue
via collective efforts and wisdoms of the speech community, it
seems that no definite conclusion can be drawn according to ex-
perimental results reported by different research groups (e.g.,
[301], [33], [36], [37], and [44]). This is definitely an important
research topic for future research.

APPENDIX |
A SKETCH OF DERIVATION OF THE DERIVATIVES
OF DISCRIMINANT FUNCTION

Given an adaptation sample with a sequence of 7" feature vec-

tors, Y = (y1, Yo, - . ., yr), the likelihood of Y can be expressed
as

p(YIA) = ai(1)Bi(1) (30)
where «;(t) = p(yi,...,yt,5¢ = JA) and B;(t) =

p(Yts1,---,yr|st = i,A) are the standard forward and
backward terms in CDHMMs. Using the recursive update
formulae of o; and f;, it is derived that
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Also, since a;(1) = m;b;(y1) and 3;(T) = a;n, we can have
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Based on the general formulation of MCELR, the sate-depen-
dent output probability density function b; (y; ) is represented by
a mixture of Gaussian components

ZcijN(yﬁﬂijyiij)

i

Sy
= (2m)P/2|(/2

1 e A
X exp <—§(yt — i) T8 (e — Nz’j)) :

bi(ye) =

Therefore, the derivative of the discriminant function g with re-
spect to W™ can be derived as follows:

g ai(t)B; ()
owm ZZZ[ p(Y[A) ]

ciiN (e fuijs i)

= bi(y)
1(j € {m,}) 25 (e — f1ij)ij
=33 Lo, ()25 e = fim,) (33)
t=1r=1
where
1, if the jth Gaussian component
1(j em,) = belongs to the regression class m

0, otherwise

and L, (t) = p(qm, (t)|Z, Y') is the occupation probability of
the Gaussian component m,. at time .

The derivative of the discriminant function g with respect to
H,, can be derived similarly by making use of the relevant rules
in matrix calculus and the symmetric property of the covariance
matrix 3 and the transformation matrix H,,. The result is as
follows:

APPENDIX II
A SKETCH OF DERIVATION OF THE DERIVATIVES OF
LATTICE-BASED ANTIDISCRIMINANT FUNCTION

Given the definition of the lattice-based antidiscriminant
function g in (14), its derivative with respect to the linear
regression parameters #(™) is

B Z 1(Z # Z.)0p"(Y|Z) )06
o = S 17 # Zop (Y1 7)

_ Z 1(Z # Z.) [p"(Y12) [p(Y12)] [0p(Y|2)/06™)
S, W7 # 2oy (Y| 2))

Then, according to (32), 9g/00™ becomes

L ()®(ye, my)

>

T R
t=1r=

1(Z # 29" (Y|2)
2 S

‘ 1(Z' £ Z)p(Y|Z')

where L(Z’) (t) = p(gm,.(t)|Z1,Y") is the occupation probability
of the Gaussian component m,,. at time ¢ for hypothesized word
sequence Z;, and ®(-, -) represents one of the matrices as shown
in (11)—(13).

It is noted that given the definition of P(Il ¢ Z.) in (16), the
following equation is always true for an arbitrary time ¢:

SYUZEZW(YVIZ) =Y, Y (VI
VA €A, Z1:Z,#Z.
= Z P(l ¢ Z:)exp(gi) (34

leA;
where g; = log(>_,, p"(Y|Z1)) is the log of the scaled total
likelihood of all the word sequences passing through the arc [
in the lattice. Therefore, by reordering and combining all the
items in the above equations, the formula in (17) can be derived
as follows:

)3

P(l & Zc) exp(g1)

86m s o fpyryg Zl’eAt P(l/ g ZC) exp(gl,)
XI/%)T (t>q)(yt7m7“)
where Ev(rlz)r(t) = P((Imr(t)|z(l)7y(l) = (ya(l)7 ce ,yb(l))) is the

occupation probability of the Gaussian component m,. at time ¢
with respect to the arc /.
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