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Abstract—This paper presents a new distributed disk-array architecture for achieving high I/O performance in scalable cluster
computing. In a serverless cluster of computers, all distributed local disks can be integrated as a distributed-software redundant array
of independent disks (ds-RAID) with a single I/O space. We report the new RAID-x design and its benchmark performance results. The
advantage of RAID-x comes mainly from its orthogonal striping and mirroring (OSM) architecture. The bandwidth is enhanced with
distributed striping across local and remote disks, while the reliability comes from orthogonal mirroring on local disks at the
background. Our RAID-x design is experimentally compared with the RAID-5, RAID-10, and chained-declustering RAID through
benchmarking on a research Linux cluster at USC. Andrew and Bonnie benchmark results are reported on all four disk-array
architectures. Cooperative disk drivers and Linux extensions are developed to enable not only the single I/O space, but also the shared
virtual memory and global file hierarchy. We reveal the effects of traffic rate and stripe unit size on I/O performance. Through scalability
and overhead analysis, we find the strength of RAID-x in three areas: 1) improved aggregate /O bandwidth especially for parallel
writes, 2) orthogonal mirroring with low software overhead, and 3) enhanced scalability in cluster I/O processing. Architectural
strengths and weakness of all four ds-RAID architectures are evaluated comparatively. The optimal choice among them depends on
parallel read/write performance desired, the level of fault tolerance required, and the cost-effectiveness in specific I/O processing
applications.

Index Terms—Distributed computing, parallel I/O, software RAID, single I/O space, Linux clusters, fault tolerance, Andrew and Bonnie
benchmarks, network file servers, scalability and overhead analysis.
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ANY cluster computing tasks are I/O-centric such as

transaction processing, pervasive computing, and
E-commerce applications [21]. We present a new distrib-
uted architecture for building Redundant Array of Indepen-
dent Disks (RAID) [7] to solve the collective I/O problem in
PC or workstation clusters. We concentrate on serverless
cluster of computers in which no central server is used. The
client-server architecture does not apply here. Instead, all
cluster nodes must divide the storage and file management
functions in a distributed fashion [1].

A serverless cluster demands a distributed software
RAID (henceforth ds-RAID) architecture, which embodies
dispersed disks physically attached to client hosts in the
cluster [20]. A ds-RAID is also known as a distributed RAID
[30] or a software RAID [9] due to the fact that distributed
disks are glued together by software or middleware in a
network-based cluster. This paper presents a new RAID-x
architecture for building ds-RAIDs in serverless clusters.

In the past, the Princeton TickerTAIP project [5] offered a
parallel RAID architecture for supporting parallel disk
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I/0O with multiple controllers. However, the TickerTAIP
was implemented as a centralized 1/O subsystem. The
HP AutoRAID [35] was built as a hierarchy of RAID-1
and RAID-5 subsystems. These two disk arrays are not
really distributed in nature. The distributed RAID concept
was originally explored by Stonebraker and Schloss [30]

Prototyping of ds-RAID started with the Petal project
[25] at Digital Laboratories and with the Tertiary Disk
project [3] at UC Berkeley. The Petal was built with a disk-
mirroring scheme, called chained declustering [17]. The
Tertiary Disk adapted a parity-checking RAID-5 architec-
ture, using the serverless xFS file system [1]. Our RAID-x
was built in the USC Trojans cluster project. The level x in
RAID-x is yet to be assigned by the RAID Advisory Board.

Single I/O space for a cluster was first treated in [20].
Different aspects of this work have been presented in two
IEEE Conferences: The 20th International Conference on
Distributed Computing Systems paper [15] covers various
single I/O issues and the International Symposium on High
Performance Distributed Computing paper [22] shows
some preliminary benchmark results of RAID-x. A
grouped-sector approach was suggested in [23] for fast
access of a ds-RAID subsystem. This journal paper provides
a comprehensive treatment of the RAID-x architecture
supported by extensive benchmark results. We compare
RAID-x with three known ds-RAID architectures for cluster
I/0 processing.

Besides presenting architectural innovations, we report
benchmark results on RAID-x, RAID-5, RAID-10, and
chained-declustering RAID. To build a ds-RAID, one
must establish three fundamental capabilities: 1) a single
I/0 space for all disks in the cluster, 2) high scalability,
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TABLE 1
Notations and Abbreviations Used
Parameter Definition Abbr. Meaning
n No. of disks in a ds-RAID ds-RAID | Distributed software RAID
B Max. bandwidth per disk RAID-x | RAID at level x
s Disk block size (stripe unit) OSM | Orthogonal stringing and mirroring
R Ave. read time per disk block SIOS Single I/O space in a cluster
W Ave. write time per disk block CDD Cooperative disk drivers
m No. of disk blocks in a file NFS Network file system

availability, and compatibility with I/O-centric cluster
applications, and 3) local and remote disk I/O operations
with reduced latency. These requirements imply a total
transparency to all users.

We concentrate on ds-RAIDs that are specially designed
for parallel I/O in cluster computing. We emphasize
distributed environment in which hardware disks may be
scattered around a system-area network or a local-area network.
It is up to the communication middleware, file manage-
ment, and operating system extensions that glues the
distributed disks together for collective I/O operations.
The quality of such a ds-RAID is highly relevant to network
bandwidth, disk characteristics, and software overhead
involved. We will attack these issues in the paper.

To benefit the readers, notations and abbreviations used
in this paper are summarized in Table 1. Let  be the size of
the disk array and B is the maximum bandwidth per disk. R
and W stand for the average read or write times (latencies) per
block of 32KB. Normally, W is slightly longer than R, both
in the order of a few ms based on the disk technology. The
file size, denoted by m, is the number of blocks in the file
being read or written.

The rest of the paper is organized as follows: Section 2
introduces three approaches to building single I/O space in
a ds-RAID embedded in a cluster. Several related parallel
and distributed RAID projects are discussed. Section 3
introduces the orthogonal architecture and functions.
Section 4 specifies the detailed RAID-x design and bench-
mark experiments performed in the USC Trojans cluster.
Section 5 describes the architecture of the cooperative disk
drivers, which enables the single I/O space. The perfor-
mance results are presented in Sections 6-10.

Through Andrew benchmark in Section 6, we compare
the relative performance of four ds-RAIDs against the
central NFS approach. In Section 7, we report the traffic
effects on the aggregate I/O bandwidth in clusters. The
effects of distributed striping are discussed in Section 8.
Section 9 analyzes the scaling effects on cluster I/O
performance. Bonnie benchmark results are presented in
Section 10 to reveal the software and network overheads
experienced. Finally, we summarize the research contribu-
tions, identify some shortcomings, and suggest directions
for further research.

2 DiISTRIBUTED SOFTWARE RAID ARCHITECTURES

First of all, we characterize the concept of single I/O space
in distributed RAID and the corresponding file systems in
network-based clusters. Then, we present the design
objectives of ds-RAID. To assess state-of-the-art distributed

storage subsystems, we compare five related parallel and
distributed disk array projects.

2.1 Single I/0O Space

In a cluster with a single I/O space (SIOS), any cluster node
can access either local disk or remote disk without knowing
the physical location of the I/O device [20]. Such a
collection of distributed disks forms essentially a ds-RAID
subsystem. All distributed disks can access each other in a
single address space. The SIOS capability is crucial to
building a scalable cluster of computers. The ultimate goal
is to realize a single system image (SSI) [28] in the cluster.

The SSI capability covers a wide areas of services,
including cluster job management, parallel programming,
collective 1/0O, and availability support, etc. [20]. Our
primary design objective of a ds-RAID is to achieve a
single address space for all disk I/O operations. Without
the SIOS, remote disk I/O must go through a sequence of
Unix or Linux system calls over a centralized file server
(such as the NFS). Once the SIOS is established, all
dispersed disks in the ds-RAID can be used collectively as
a single global virtual disk, as illustrated in Fig. 1.

There are three advantages to have the SIOS in a ds-RAID.
First, the problem of unequal latencies in local and remote
disk accesses is greatly alleviated. Remote disk access does
not have to be handled by system calls from the
requesting host. Instead, the requester can address the
remote disks directly by a lightweight driver process.
Second, the SIOS supports a persistent programming
paradigm. It facilitates the development of SSI services
such as distributed shared memory (DSM) and global file
hierarchy [15]. All I/O devices and their physical locations
are transparent to all users. Third, the SIOS allows striping
across distributed disks. This will accelerate parallel 1/O
operations in clusters.

Cluster Network (SAN or LAN)

==

PCs or
workstations

""'ll FEERNEEEEEEsMussEEEEEEEEEEEEEEEEEEER

ds-RAID

eEEEEEEEE

Fig. 1. A distributed software RAID with a single I/O space embedded in
a serverless cluster of computers.
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TABLE 2
Related Research Projects on Parallel or Distributed RAID
System USC Princeton Digital Petal | Berkeley [3,31] | HP
Attributes RAID-x [22] TickerTAIP[5] | Project [25] | Tertiary Disks AutoRAID [35]
RAID Orthogonal RAID-5 with Chained De- | RAID-5 built Hierarchical
Architecture | striping/mirroring | multiple clustering ina | witha PC with RAID-1
environment [ in a Linux cluster | controllers Unix cluster cluster and RAID-5
Enabling Cooperative Single RAID Petal device xFS storage Disk array with
Mechanism device drivers in | server with its drivers at servers designed | a single array
for SIOS Linux kernel own /O space uscr level at the file level controller
Data Locks at device Scquencing Lamport’s Dircctory-based | Usc mark to
Consistency | driver level of user requests | Paxos protocol in the update the
Checking algorithm xFS file system | parity disk
Reliability Orthogonal Parity checks Chained SCSI disks with | Mirroring and
and Fault striping and in RAID-5 Decclustering | parity in parity checks
Tolerance mirroring RAID-5

In the past, three approaches have been attempted to
achieve the SIOS capability at the user level, file-system
level, and device-driver level. The user-level SIOS is
implemented with I/O service routines or libraries. The
Parallel Virtual File System [6], and the remote 1/O project
[11] are typical examples of user-level SIOS. This approach
has two shortcomings: First, users have to apply specific
APIs and identifiers to explore parallelism in I/O. Second,
system calls are needed to perform network file accesses,
which is rather slow to meet realtime or cluster computing
requirements.

2.2 Distributed File Systems

A distributed file system achieves the SIOS across distributed
storage servers [8], [13], [19]. The file system must distribute
the data within the SIOS. The serverless xFS system built at
Berkeley [1] and the Frangipani system developed in the
Petal project [32] are two good examples. However, this file-
level approach has its own shortcomings. Changing the file
system does not guarantee higher compatibility with
current applications. Instead, it may discourage the deploy-
ment of the distributed file systems in clusters running
some well-established operating systems.

What we want to achieve is a SIOS supported by
device drivers at the kernel level. The SIOS applies to
both users and the file system used. Digital Petal [25]
developed a device driver at the user space to enable
remote I/O accesses. All physically distributed disks are
viewed as a single large virtual disk. Each virtual disk is
accessed as if it is a local disk. The Petal approach has
the difficulty to optimize the file distribution. Many
device drivers have their own custom-designed file
system to optimize the performance. Petal project has
later developed such a distributed file system, called
Frangipani [32].

2.3 Design Objectives of ds-RAID

Four objectives are identified below for the SIOS design in a
ds-RAID. These objectives are applicable to any ds-RAID
architecture, not necessarily restricted to the new RAID-x
being introduced.

1. A Single Address Space for All Disks in the Cluster.
We build the SIOS by designing a special device

driver for use in local disks. The drivers cooperate
with each other to form the single address space.
They work collectively to maintain the data consis-
tency among distributed data blocks. The file system
running on in each node has the illusion that there is
only one large virtual disk shared by all clients in the
cluster.

2. High Availability Support. High availability is
desired in a cluster by building some fault-tolerant
features in the ds-RAID. We have implemented in
RAID-x a new disk mirroring mechanism for this
purpose. Other architectures, such as RAID-5,
RAID-10, and chained declustering, have also
deployed some specific features for availability
enhancement.

3. Performance and Size Scalability. There is no central
server in our cluster design and the drivers maintain
a peer-to-peer relationship among themselves. The
size scalability must be guaranteed in a serverless
cluster design. Furthermore, the data striping
running across distributed disks leads to some
performance gains in benchmark experiments.

4.  Compatibility with Cluster Applications. This is a
“clean” design in the sense that we concentrate on
device driver modification without changing the file
system or user libraries. However, the ds-RAID
design must be compatible with existing cluster I/O
applications.

2.4 Relevant Research Projects

Table 2 compares our RAID-x features with four parallel or
distributed RAID projects. The TickerTAIP was jointly
developed at HP laboratories and Princeton University
[5]. It is a parallel RAID with multiple controllers. The
TickerTAIP applied a single RAID-5 server to achieve fault
tolerance. Data consistency was slowly handled with the
sequencing of user requests. This was the first parallel disk
array project exploiting parallelism at the controller level in
a centralized RAID.

The Petal project [25] offers a distributed storage
system consisting of network-connected storage servers.
The project was truly the very first ds-RAID implement-
ing the concept of a shared virtual disk array. It was
done with a global name space in a cluster environment.
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Fig. 2. The new RAID-x architecture (a) compared with three known RAID architectures (b, ¢, and d) for building distributed RAID
subsystems. (a) Orthogonal striping and mirroring (OSM) in the RAID-x, (b) data mirroring in RAID-10, (c) skewed striping in a chained-

declustering RAID, and (d) parity checking in RAID-5.

Petal developed device drivers to implement the SIOS at
the user level, rather at the kernel level. Our disk driver
was developed at the kernel level, which can apply most
available file systems without modification. Petal applies
the chained declustering architecture. An important
contribution of the Petal disk was the development of a
distributed file system, called Frangipani [32], to manage
its distributed disks.

Tertiary Disk from UC Berkeley [3], [31] is a highly
reliable storage system built with a PC cluster. So far, this is
the largest ds-RAID project ever built with 380 disks. Each
cluster node is composed of two PCs with up to 14 shared
disks. The shared disks are connected by doubly-ended
SCSI disks to yield higher reliability. Tertiary Disk applies
the RAID-5 architecture for data distribution. From fault
tolerance viewpoint, the TertiaryDisk offers higher fault
tolerance in the controller area than any of the four ds-RAID
configurations evaluated.

A log-structured serverless network file system, called
the xFS [1], runs on top of Tertiary Disk. The xFS distributes
storage, cache, and control over cluster nodes. It uses a
modified directory-based cache coherence protocol to
maintain data consistency. The xFS offers the very first
distributed file system for serverless Unix clusters. The
project demonstrated high scalability in very large-scale
database applications. The AutoRAID [35] was built as a
hierarchical storage consisting of a RAID-1 on top of a
redundant RAID-5 in two levels. Other related works
appeared in [4], [12], [14], [26], [34].

3 ORTHOGONAL STRIPING AND MIRRORING

The new RAID-x architecture is based on the orthogonal
striping and mirroring (OSM) described in this section. We
compare the RAID-x with three known RAID architectures.
Then, we discuss the peak bandwidth and assess the fault
tolerance of these disk arrays. All four ds-RAID architec-
tures have been implemented on the Linux cluster at USC.

3.1 The Orthogonal Architecture

In Fig. 2, the data blocks are denoted as B; in the white boxes.
The mirrored images are marked with M; in shaded boxes.
The orthogonal mapping of data blocks and their images in
RAID-x is illustrated in Fig. 2a. The data blocks are striped
across the disks horizontally on the top half of the disk
array. Their images are clustered together and copied in a
single disk vertically. All image blocks occupy the lower
half of the disk array.

This horizontal striping and vertical mirroring constitute
the orthogonality property. Four data stripes and their images
are illustrated in Fig. 2a by four different shading patterns.
On a RAID-x, the images can be copied and updated at the
background, thus reducing the access latency. Consider the
top data stripe consisting of three blocks: By, By, and Bs.
Their images, M;, M;, and M,, are stored in Disk 3.
Similarly, the images of the second stripe, B3, By, and Bs,
are mapped to Disk 2, etc.

The rule of thumb is that no data block and its image should
be mapped to the same disk. Full bandwidth can be also
achieved by reading or writing across all disks per each row
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TABLE 3
Theoretical Peak Performance of Distributed RAID Architectures
Performance RAID-10 RAID-5 Chained RAID-x
Indicators Declustering
Max. /O Read nB nB nB nB
Bandwidth | LargeWrite | n B (n-1)B nB nB
Small Write nB (n-1)B/2 nB nB
Parallel Large Read mR/n mR/n mR/n mR/n
Read/Write Small Read R R R R
Time Large Write | 2mW/n mW/(n-1) 2mW/n mW/n+mW/n(n-1)
Small Write 2w R+W 2W 4
Max. Fault Coverage n/2 disk Single disk n/2 disk Single disk
failures failure failures failure

in Fig. 2a. For example, all four blocks (By, By, By, Bs) in
each row of Fig. 2a forms a data stripe. Their images (M,
M;, My, M3) are written into disk 2 and disk 3 in a delayed
time at the background.

3.2 Orthogonal Mapping of Data Blocks
and Their Images

Formally, two mapping functions are given below to specify
how to map the data blocks and their images to physical
disk blocks orthogonally. Let b be the number of blocks per
disk. A logical data block addressed by d is mapped to the
ith disk and the jth block, where i=dmodn and
J = (2d/n) mod n. The image block of d is mapped to the
ith disk and jth block, where

i=n—1—(d/(n—1)) modn (1)

j=b/2+|d/(n—1)n|(n—1)+dmod (n—1). (2)

The orthogonality enables faster background copying of
data images in the lower half of the disk array, while the
striping is in progress. Like chained declustering (Fig. 2c),
the mapping of data blocks and their images can be also
interleaved. But we prefer to separate the data blocks and
their images at the upper and lower halves of the array. This
separation offers the advantage of sequential writes of all
image blocks from the same stripe to a single disk. The
striping and mirroring are thus done simultaneously.

3.3 Competing RAID Architectures

Fig. 2b, Fig. 2¢, and Fig. 2d show three competing RAID
architectures for building distributed RAID subsystems.
The RAID-10 duplicates each data block on an extra disk
without striping, making it easy to implement (Fig. 2b). The
chained-declustering RAID [17] allows a skewed striping of
image blocks (Fig. 2c). All mirroring schemes shown in
Fig. 2a, Fig. 2b, and Fig. 2c have 50 percent redundancy. The
RAID-5 does not apply mirroring at all. Instead, it uses a
redundant disk block per each stripe (each row in Fig. 2d)
as the parity check for that stripe.

In Table 3, parallel I/O of a file of m blocks depends on
the read or write latencies denoted as R and W per block. In
case of large reads, mR/n latency is expected to
perform m/n reads simultaneously. For a small read,
all RAID architectures require R time to complete the
read of a single block. Parallel writes, RAID-10, and
chained declustering require doubling the number of disk

accesses. In RAID-x, the image blocks are clustered
written into the same disk. That is, m/n(n —1) images
are written together to each disk. The large write
latency is reduced to mW/n+mW/n(n—1).

In a centralized RAID-5, it may take 2W + 2R time to
finish a small write cycle. However, the time can be
reduced to W+ R in a distributed RAID-5 because both
reads and writes can be done in parallel in the distributed
cluster environment. The maximum I/O bandwidth of a
ds-RAID-5 is (n — 1)B/2 instead of nB/4 as in a centralized
RAID-5. The RAID-x shows the same bandwidth potential
as provided by the RAID-10 and the chained-declustering
RAID.

3.4 Peak I/0 Bandwidth

Table 3 lists the theoretical peak I/O performance of four
RAID architectures. The maximum 1/O bandwidth reflects the
ideal cases of parallel reads or parallel writes of all data
blocks in the disk array.

The peak I/O bandwidth excludes the effects of caching,
software overhead, parity or mirroring penalties, or
network delays. In reality, the measured bandwidth of a
ds-RAID would be much lower than the peak values
presented in Table 3. In the best case, all four RAID
architectures can deliver a maximum I/0O bandwidth of nB.
For RAID-5, each stripe-write is an atomic operation. The
next stripe starts to write only after the previous stripe-
write finishes. So, the maximum I/O bandwidth for large
write on RAID-5 is (n — 1) B. For small writes, the RAID-5
yields a peak bandwidth of (n —1)B/2 due to excessive
parity update overhead. This shortcoming of ds-RAID-5
becomes more apparent in later sections.

3.5 Backgroud Image Writing

The advantage of RAID-x over other ds-RAID architectures
comes mainly from this orthogonal mapping of data and
image blocks to distributed disks. This overlapped
foreground and background writes of data and their
images are done simutaneously. Even other mirroring
RAID can also take advantage of this property, but not as
aggresively as RAID-x.

Our RAID-x takes only W time to write all data blocks
involved. The chained-declustering RAID needs to write a
data stripe and its image in 2/ time because interleaved
data and images must be written, separately, without the
property of orthogonality. The writing of the image blocks
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can also be done later when all stripe images are loaded. This
delayed writing is done at the background, overlapping with
the regular data writes.

3.6 Fault Tolerance

The bottom row of Table 2 shows the maximum number of
disk failures that each RAID architecture can tolerate. The
RAID-x can tolerate all single-disk failures, same as that of
RAID-5. Both RAID-10 and chained-declustering RAID are
more robust than RAID-x and RAID-5. Thus, the RAID-x
matches RAID-5 in terms of fault tolerance. The RAID-x
matches the costs of RAID-10 and the chained declustering
in terms of redundancy.

Among the four architectures, the RAID-5 achieves
single fault tolerance with a much lower cost for using a
fewer redundant disk space. The write bandwidth gain of
RAID-x comes at some loss in availability from the chained-
declustering RAID. The chained-declustering certainly has
the advantage of higher reliability, which can tolerate up to
n/2 disk failures, while the RAID-x tolerates only a single
disk failure. However, the advantage of RAID-x lies in its
much improved write performance, which is attributed to
the property of orthogonality.

3.7 Aggressive Implementation

To implement a ds-RAID aggressively, one must conecrn
about whether the image blocks are mapped contiguously
in the same disk. If so, they can be written to the disk in a
pipelined fashion. The mapping of image blocks in RAID-x
follows this principle. This cannot be applied to other RAID
architectures because successive image blocks are physi-
cally separate to take noncontiguous addresses on different
disks. Therefore, they cannot be implemented as aggre-
sively as the RAID-x.

The RAID-x architecture has no side effects on seek time
and disk cache hit ratio. The results on the Random-Seek
test in the Bonnie benchmark will verify this claim in
Section 10. For delayed image writing, we maintain a buffer
file to record all delayed blocks. When all delayed blocks
are written to the disks, this buffer is cleared. If a disk
failure occurs during delayed image writing, the lost data
blocks are recovered from this buffer. By so doing, the
reliability is preserved, even within a short delay period.
Comparing with the longer disk writing time, the overhead
to maintain this buffer can be neglected.

3.8 Advantages and Weakness

To sum up, the major strength of RAID-x lies in its much
improved write performance than the competing RAID
architectures. In terms of fault tolerance, the RAID-x
matches RAID-5 in tolerating all single disk failures.
However, the RAID-x performs much better than RAID-5
in small writes. Image copying in RAID-x is much faster
than the competing RAIDs. The experimental results in
Sections 6-10 will verify all the claimed advantages. The
major weakness of RAID-x lies in its 50 percent
redundancy, at the same level as the RAID-10 and the
chained-declustering RAID. However, the latter have
higher capability to tolerate some multiple faults.

4 THE RAID-X DESIGN AND EXPERIMENTS

The USC Linux cluster is introduced below. Then, we
describe the detailed architecture designs in the RAID-x.
Finally, we outline the experimental settings. All bench-
mark experiments were implemented with the integration
of hardware, software, and middleware on the USC cluster.
The overall purpose was to tune the Linux cluster system
for improving collective I/O performance.

4.1 Linux Cluster at USC

All ds-RAID architectures, including the new RAID-x, were
implemented in an experimental Linux PC cluster built at
USC. The prototype cluster was built with 16 Pentium PCs
running the Linux operating system. A switched Fast
Ethernet connects these PC nodes in full duplex operation.
This implies a peak bandwidth of 12.5 MB/s per switch
port. At present, each node is attached with an IDE disk. All
16 disks form a single I/O space. All PC nodes in the cluster
are homogeneous and supported by some middleware
packages.

At different experimenting stages, we reconfigure
thatthe hardware disk array in Trojans cluster into four
different ds-RAID configurations, namely, the RAID-5,
RAID-10, chained declustering, and RAID-x. The Redhat
Linux 6.0 version 2.2.5 has already built-in features to
support the RAID-0, RAID-10, and RAID-5 configurations.
Without the single I/O space built in the Trojan cluster, one
cannot implement any ds-RAID configurations. Our major
implementation effort was exerted on the RAID-x and
chained-declustering RAID configurations, which are not
commercially available.

The centralized NFS was used as a baseline for
comparison purpose. The mapping of the mirrored blocks
in RAID-x is done by a special address translation
subroutines built in disk driver. All ds-RAID configurations
were made possible with the SIOS features built in the
Trojans cluster. To study the aggregate I/O bandwidth, we
have to lift the caching restriction on local disks. This was
done in the Linux kernel by issuing a special sync
command.

4.2 Layout of the RAID-x

Fig. 3 shows the orthogonal RAID-x architecture with
three disks attached to each node. All disk blocks in the
same horizontal stripe, (By, Bi, B, B3) are accessed in
parallel. Consecutive stripe groups, such as (By, By, By, Bs)
and (B4, Bs, Bg, Br), etc., are accessed in a pipelined fashion
because multiple disks are attached to each SCSI bus.

In general, an n-by-k RAID-x has a stripe group of n disk
blocks from n disks. Each mirror group has n —1 blocks
residing on one disk. The images of all data blocks in the
same stripe group are saved on exactly two disks. The
block-addressing scheme stripes across all nk disks sequen-
tially and repeatedly. The parameter 1 represents the degree
of parallelism in accessing the disks. The parameter k implies
the depth of pipelining. Trade-offs do exist between these two
orthogonal concepts of parallelism.

The pipelining depth of successive stripe groups
depends on the I/O bus used. We plan to extend the
Trojans cluster with four disks per node. Using 40 GB SCSI
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disks, the RAID-x array may have 2.56 TB on 64 disks. In
next phase of construction, we may extend the Trojans
cluster to hundreds of PC nodes using the next generation
of microprocessors and Gigabit switches. For example, with
a 128-node cluster and eight disks per node, the disk array
could be enlarged to have a total capacity exceeding 40 TB,
suitable for any large-scale, database, multimedia, or
scientific applications. With an enlarged array of 128 disks,
the cluster must be upgraded to use a Gigabit switched
connection.

4.3 Experimental Settings

In our experiments, each disk block (stripe unit) is set
as 32 KB. A 20-MB file is striped uniformly across all
16 disks in consecutive stripe groups. For small reads or
writes, the data size is set 32 KB, retrieved from one block of
a disk. We have performed five benchmark experiments.
These experiments measure the parallel I/O performance in
terms of the aggregate 1/O bandwidth, elapsed time of
Andrew benchmark, and the I/O rate or seek rate in Bonnie
benchmark.

The first experiment is based on using the Andrew
benchmark to reveal the relative performance of various ds-
RAIDs against the use of a central NFS server. The second
test reveals the effects of traffic rate or of the number of
client requests in the disk array system. The third test
reveals the bandwidth scalability of the four ds-RAID
configurations. The fourth test checks the striping effects on
cluster I/O performance. Finally the last test uses the Bonnie
Benchmark to reveal the software overheads in various
cluster I/O operations on four ds-RAID configurations.

For both large and small writes, the RAID-x has a shorter
access time than either the RAID-10 or the chained
declustering RAID. These claims will be verified by the
benchmark results in Sections 6 through 10. To sum up, the
RAID-x scheme demonstrates scalable I/O bandwidth with
much reduced latency in a cluster environment. Using the
CDDs, the cluster is built serverless and offers remote disk
access directly at the kernel level. Parallel I/O is made
possible on any subset of disks. No heavy cross-space
system calls are needed to access remote files.

5 CooPERATIVE Disk DRIVERS IN CLUSTERS

Generally speaking, local disk access is faster than remote
disk access. This section describes how to reduce the latency
of remote disk access. We have developed a cooperative disk
driver (CDD) which can achieves this goal. The functional
structure of the CDD design and its implementation
requirements are in this section. In particular, we specify
the unique mechanisms used to reduce the remote acess
latency and to maintain data consistency in the ds-RAID.

5.1 Remote Disk Access

We choose to design the RAID-x with SIOS support at the
Linux driver level. This design provides a SSI to the users,
demanding no file system modification. The SIOS is
supported by a set of CDDs at the kernel level. There is
no need to use a central server in our design. Each CDD
maintains a peer-to-peer relationship with other CDDs.
Fig. 4 illustrates the difference of using the NFS and CDDs
for remote disk accesses.
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Fig. 4a shows six steps to access remote disks using a
central NFS server. Unix or Linux system calls take place in
Steps 3 and 5 crossing the user and kernel spaces. This may
introduce long delays in transferring data files between
distant disks.

Step 1. User requests to access the remote disk.

Step 2. Requests are redirected to the remote NFS server.

Step 3. NFS Server accesses the local disk by an I/0
system call.

Step 4. Data is copied back to the NFS server in the user
space.

Step 5. NFS server sends the data back by a network
system call.

Step 6. Data are transferred to the user application.

Fig. 4b shows the modified six steps that are implemented
with the CDDs. First, system calls are avoided in Steps 3
and 5. Second, cross-space data copying is avoided in
Steps 2 and 4. Steps 1 and 6 are identical to those in using
the NFS. In a serverless cluster design, each node can be
used either as a client or as a server, or both. Therefore,
removing disk access latency is significantly reduced.

Thus, the scalability is improved to build larger ds-RAID
for cluster I/O processing.

5.2 The CDD Architecture

The device masquerading technique [15] is the key concept
behind designing the CDDs. The idea is to redirect all I/O
requests to remote disks. The results of the requests,
including the requested data, are transferred back to the
originating nodes. This mechanism gives an illusion to the
operating systems that the remote disks are attached locally.

Fig. 5a illustrates the device masquerading technique.
For simplicity, consider the case of only one disk attached to
each cluster node. Multiple CDDs run cooperatively to
redirect I/O requests to remote disks. Each node perceives
the illusion that it has two physical disks attached locally.
Fig. 5b shows the internal design of a CDD. Each CDD is
essentially made from three working modules.

The storage manager receives and processes the 1/0
requests from remote client modules. The client module
redirects local 1/O requests to remote storage managers.
The data consistency module is responsible for maintaining
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Fig. 6. Maintaining consistency of the global directory /sios by all CDDs in any of the ds-RAID configured on the Trojans cluster.

data consistency among distributed disks. A CDD can be
configured to run as a storage manager or as a CDD client,
or both at the same time. There are three possible states of
each disk: 1) a manager to coordinate use of local disk
storage by remote nodes, 2) a client accessing remote disks
through remote disk managers, and 3) both of the above
functions.

The ds-RAID architectures can be implemented easily
with the support of CDDs. All data transfers and
consistency issues are handled transparently within the
CDDs. The RAID drivers only need to maintain data
distribution and related policies. Combining the CDD and
OSM, the RAID-x disk array shows four advantages. First,
it preserves the RAID-0 bandwidth, while adding the fault
tolerance capability. Second, it creates a SIOS across all
distributed disks. Third, the CDD can implement other
RAID configurations. Last, data consistency is maintained
by the CDD instead of the file system.

5.3 Data Consistency Checking

The data consistency problem arises when multiple cluster
nodes have cached copies of the same set of data blocks. The
xFS and the Frangipani maintain data consistency at the file
system level. In our RAID-x design, data consistency
checking is supported at the kernel level using special disk
drivers. Our approach simplifies distributed file manage-
ment. All CDDs in the same stripe maintain block-level data
consistency. Fig. 6 shows a scenario how the global file
directory /sios is mapped to each cluster node.

In a global file hierarchy, all files in a cluster are accessed
with a global directory. When a client executes a file
operation, the global file hierarchy (inode) is mapped to the
local ofs file system at that client. The File3 is distributed
among disks of nodel, node2, and node3. Data consistency
modules in CDDs of nodel, node2, and node3 collectively-
maintain the consistency of file3 inode entry in a global file
directory /sios, which is kept consistent after any local disk
update.

Similar to that used in the Frangipani file system, we
use multiple-read and single-write locks to synchronize
I/0O operations among the cluster nodes. A write lock on
a data block permits a client driver to read, to modify,
and to cache a modified copy in its local memory. A read

lock permits a client driver to cache a read-only copy of
the data block. A CDD must use the designated lock to
read or write a data block. If a block is not locked, any
client can read or write that block.

Only one CDD client can hold the write lock of a data
block at a time, however the read locks may be granted to
multiple CDD clients at the same time. If one CDD client
holds a write lock while another is requesting a read /write
lock on the same data block, the first client needs to flush its
cache entries to the disks. It releases the lock if a write lock
is requested; otherwise the lock will be downgraded to a
read lock. If one CDD client holds a read lock while another
is requesting a write lock, the first client will invalidate its
cache entries and release the lock.

A lock-group table is used to facilitate distributed file
management. Each entry in this table corresponds to a
group of data blocks that have been granted to a specific
CDD client with write permissions. The write locks in each
entry are granted and released atomically. This lock-group
table is replicated among the data consistency modules in
the CDDs. A set of query functions was developed to
support the checking purposes.

The consistency module not only checks the consistency
of the data blocks cached into the buffer, but also maintains
the consistency of the data structure inode in the Linux file
system. Based on the above facilities, the CDDs guarantee
that some file management operations are performed in an
atomic manner. To maintain data consistency, the lock
information is duplicated on every node. In case of a node
crash, the lock information is still available from the
remaining node. If the crashed node is the home node of
the lock, the lock will be released from the lock table on the
remaining nodes.

Distributed file systems running on top of the CDDs are
needed with a concurrent access policy. In our experiments,
the ext2 file system in Linux was used. Security, accounting,
and cooperative cache can be also built on top of the CDDs.
We overcome the scaling problem associated with the
Network File System (NFS) [29] and Andrew File System
[16]. When the number of clients becomes very large, the
SIOS provides a scalable performance through its serverless
cluster design. The global file hierarchy is useful for process
migration, where a process can access the opened files from
any cluster node.
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Fig. 7. Andrew benchmark results of four ds-RAID configurations compared with the NFS results on the Linux cluster at USC. (a) NFS
results, (b) RAID-x results, (c) chained declustering results, (d) RAID-10 results, and (e) RAID-5 results.

6 RELATIVE PERFORMANCE OF ds-RAID AND NFS

In the next four sections, we report the performance results
of four ds-RAID configurations running on the Trojans
cluster. The performance results are obtained from raw I/O
bandwidth measurements or from commonly accepted
benchmark experiments. We discuss specific performance
effects from the traffic rate, size scalability, and stripe unit
size. In this section, we compare the relative performance of
various ds-RAIDs with respect to a central NFS using the
Andrew benchmark [17].

6.1 Andrew Benchmark Suite

The Andrew benchmark was developed at Carnegie Melon
University. In the past, Andrew has been applied to test the
performance of NFS, AFS, Digital Petal disk array [25], and
the Berkeley LFS and xFS [1]. We execute the Andrew
benchmark on four ds-RAID subsystems running on the
Trojans cluster. We consider the effects of increasing
number of client requests. Fig. 7 plots the Andrew bench-
mark results on the Trojans cluster.

There are five phases in the Andrew benchmark. The
first phase recursively creates subdirectories. The second
phase measures the data transfer capabilities by copying
files. The third phase examines the status of every file. The
fourth phase scans every byte of every file. The final phase
compiles the files and links them together. Andrew bench-
mark is more effective for evaluating distributed file
management systems. We apply the benchmark here
because we want to reveal the relative performance of
various ds-RAIDs with respect to the central NFS approach.

The performance is indicated by the elapsed time in
executing the Andrew benchmark on the target RAID
configuration. These tests demonstrate how the storage
structure affects the performance of the file system. Each
local file system mounts the “virtual” storage device
provided by the CDD. The number of disk I/O nodes is
fixed at 16. Each client executes its private copy of Andrew
benchmark. We use the CDD on each node to keep the
metadata (inode in Fig. 6) atomic.
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6.2 Benchmark Results

Fig. 7a show the results of using the central NFS. Fig. 7b,
Fig. 7c, Fig. 7d, and Fig. 7e show the elapsed times in
executing the Andrew benchmark on four ds-RAID
configurations. The NFS time increases sharply with the
number of clients, while the ds-RAID configurations are all
scalable with quite flat elapsed time. The bar height in
Fig. 7b stays essentially constant. For 16 clients, the
elapsed time of the Andrew benchmark on four ds-RAID
architectures increases from 6.8 seconds to 7.9 seconds
slowly.

The benchmark shows that the NFS requires 33 seconds
to complete the execution. All four ds-RAIDs perform
well here, approximately at the same level. Their
differences in read performance are rather small. Among
the four ds-RAIDs, majority of the time (approximately
56 percent to 62 percent) was spent on the Compile phase.
The Read-File and Scan-Directory are both essentially read
operations, each consuming about 12 percent to 17 percent
and 9 percent to 11 percent of the time, respectively.
Copy-File times increase slightly with the traffic due to
parallel writes. The time to Make-Directory is very small
and thus can be ignored.

The NFS performance lags far behind, especially over a
larger number of clients. The NFS shows a linear increase in
times for Read-Files, Scan-Directory, and Copy-Files. The
Compile time is a constant because only CPU time is
involved in the compile process. The time to Make-
Directory is again too small to notice. As expected, the
elapsed time of NFS increases sharply with increasing
clients. The message is that all ds-RAIDs perform much
better than using the centralized NFS.

All four ds-RAIDs show a slow increase in elapsed time
with client traffic. This suggests that the performance of a
ds-RAID in a serverless cluster is relatively insensitive to
the traffic intensity, especially when the workload is light.
In other words, the Andrew benchmark implies that all four
ds-RAIDs are scalable with the increase of I/O requests.
This will be further studied in subsequent sections.

7 EFFecTS oF TRAFFIC RATE ON I/O
PERFORMANCE

In the following sections, we report the ds-RAID perfor-
mance using some synthetic workloads, representing uni-
form distribution of parallel reads and writes. These
experiments will reveal the raw aggregate I/O bandwidth.
The cluster network is a dedicated switched Fast Ethernet
with 16 ports. In theory, the aggregate /O bandwidth is
upper bounded by 12.5 x 16 =200 MB/s. However, our
experiments have never reached this peak network
bandwidth.

In fact, each IDE disk can only deliver at most 4 MB/s
due to network protocols and software overheads experi-
enced. This implies a peak value of 4 x 16 = 64 MB/s in
aggregate bandwidth, far below the above upper bound.
With 16 disks, we achieved at most 28 percent of the
peak bandwidth (18 MB/s) in all measurements. In this
section, we reveal the effects on I/O bandwidth perfor-
mance by increasing the total I/O traffic rate, which is the
number of simultaneous client requests to the ds-RAID

JANUARY 2002

subsystem. In subsequent sections, we reveal other
performance effects and provide scalability and overhead
analyses of the benchmark results.

7.1 Access Granularity

We consider parallel reads and parallel writes, separately.
Furthermore, we discuss the effects of having a large
number of such requests taking place at the same observa-
tion period. A large file access for either read or write is set
at 20 MB. With a block size of 32 KB, this implies a high
degree of striping and parallelism. A small access is set at
block level of 32 KB. Local or remote disk accesses are
generated with a uniform distribution. In Fig. 8, we plot the
measured aggregate I/O bandwidth as a function of the
number of client requests for parallel reads or writes in file
accesses.

We consider up to 16 client requests representing light to
heavy 1/O traffic rates. We compare the relative perfor-
mance of four RAID architectures, all of which are
implemented with n =16 disks in the Linux cluster at
USC. Large read and large write reveal the parallel 1I/O
capability of the disk arrays. Small read or write tests
individual disk performance plus the redundancy over-
head. Local or remote disk accesses are generated with a
uniform distribution.

All files are uncached initially and each client accesses its
private files from local or remote disks. All read or write
operations are performed simultaneously, using the
MPI_Barrier() command. For write operations, each client
write the files to the buffer and issues the sync() call to
stripe the data blocks to all 16 disks, repeatedly. The sync()
call is issued to eliminate all buffering or caching effects.

7.2 NFS Performance

In both read and write accesses, the centralized NFS shows
a flat or even declining performance. The NFS server
performance is limited between 2.1 and 3.9 MB/s regardless
of the number of client requests. This is due to the fact that
sequential I/O must be performed on a central NFS server.
As the request number increases, the NFS bottleneck effect
become worse and thus shows a declining performance.
The fact that the NFS performance being lower than the
Ethernet limit clearly demonstrates that the NFS is not
scalable in cluster I/O processing.

7.3 Parallel Reads

Forlargeread, in Fig. 8a, RAID-x performs only slightly lower
than chained declustering, bur far above the RAID-10
performance. Both chained declustering and RAID-x show
higher scalability that that of RAID-10. For 16 clients, RAID-x
and chained declustering can scale to a bandwidth approx-
imate to 16 MB/s. RAID-10 lags behind with a show of
10.7 MB/s bandwidth. The results for small read are shown in
Fig. 8b, which are very close to that for large read, except that
RAID-x occasionally has higher bandwidth than that of
chained declustering.

7.4 Parallel Writes

Fig. 8c shows the large write situations. In this test, each
client writes a 20MB file to the disk buffer to stripe the data
blocks to all 16 disks, recursively. For timing purposes, all
write operations among the clients are synchronized by
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Fig. 8. Effects of traffic rate on the aggregate 1/0 bandwidth performance of four ds-RAID architectures on the Trojans cluster. (a) Large read (20 MB
per client). (b) Small read (32 KB per client). (c) Large write (20 MB per client). (d) Small write (32 KB per client).

issuing a special sync() call. The NFS scales in performance
up to four requests, even higher than that of chained
declustering, due the caching effect at the NFS server. As
the requests exceed 4, the NFS bandwidth drops to a low
2.8 MB/s. For parallel writes of either a large file (Fig. 8c)
or a small block (Fig. 8d), the RAID-x achieves the best
scalability among the four with a highest 15.3 MB/s for
16 clients.

In contrast, chained declustering scales slowly due to the
heavy involved seek latency for the frequent change of disk
head position in writing data and mirroring. RAID-10 scales
slower than RAID-x, but faster than chained declustering.
This is due to the fact that only half of the disks are actually
accesses. To sum up, the RAID-x outperforms the others
because full parallelism is exploited to access all data blocks
in the upper half of the disk array (Fig. 2a). The parity
update overhead is totally eliminated in either RAID-10 or
RAID-x.

7.5 Summary on Traffic Effects

The aggregated 1/0O bandwidth is primarily limited by the
effective network bandwidth rather by the traffic density.
For parallel reads (Fig. 8a, Fig. 8b), the RAID-5, chained
declustering, and RAID-x have almost equal performance.
The RAID-10 scales slower than other mirroring RAIDs
does. For parallel writes, the RAID-x clearly outperforms
the others. The chained-declustering RAID ranks the second
and the RAID-10 the third. The low write performance of

RAID-5 makes it least scalable. This situation is especially
true for small write operations. The parity update overhead
in RAID-5 is totally eliminated in RAID-x based on
orthogonal striping and mirroring.

8 STRIPING EFFECTS ON CLUSTER I/O BANDWIDTH

This section is dedicated to the effects of data striping across
the distributed disks in a ds-RAID subsystem. Again, the
issues are answered by analyzing the experimental results
reported in Fig. 9.

8.1 Striping Issues

With striping, a client request may access a data file
spreading across many disks in the ds-RAID. The number
of disks accessed depends on the file size and the block size
(stripe unit). Disk array performance is sensitive to stripe
unit size because different stripe unit size may result in
different granularity of data to be accessed. In the past, Kim,
et al. [24] has studied the effects of striping and caching
effects.

In our study, assuming a sufficiently large data file
eliminates the caching effect. The reason is that we are
interested in the asymptotic behavior of the aggregate I/O
bandwidth, limited only by the network bandwidth and by
software overheads experienced. With a sufficiently large
data file, we were able to isolate the effects of striping by
changing the file and block sizes. Other factors affecting the
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Fig. 9. Effects of stripe unit size on the aggregate 1/0O bandwidth of four ds-RAID architectures on the Trojans cluster. (a) Large read (320 MB for
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performance include the disk characteristics, storage ser-
vers, and distributed file system used. We lump together all
of these effects in the following experimental data collected.

8.2 Parallel Reads

Fig. 9 reveals the effects of stripe unit size on the aggregate
I/0 bandwidth performance of four ds-RAID architectures.
We consider the stripe unit increasing from 16 KB to 128 KB
under the condition that 16 client requests are posted on
16 disks simultaneously. Again, the RAID-5, chained-
declustering and RAID-x have comparable read perfor-
mance. The RAID-10 lags far behind the other three RAIDs
in either large or small reads.

For small stripe unit sizes, the bandwidth gap is as wide
as 6 MB/s between RAID-10 and other three RAIDs. For
large read (Fig. 9a), all RAID architectures scale slowly with
increasing block size. In the best case, 18.6 MB/s through-
put was observed for RAID-x using 128-KB block size. For
small read (Fig. 9b), the optimal block size stays with 32 KB.
The bandwidth gaps among the four RAIDs widens and
none of them is scalable as seen by the flat curves in Fig. 9b.

8.3 Parallel Writes

For large writes (Fig. 9c), the RAID-x demonstrates higher
speed than what can be achieved in a chained-declustering
RAID or a ds-RAID-10. The RAID-5 shows a declining

bandwidth with increasing stripe size. The top three RAIDs
all perform well with larger data blocks. With small writes
in Fig. 9d, the optimal block size is 32 KB.

However, all four ds-RAID show a trend of slowing
down, as the block size increases. The optimal block size
varies with applications, disk types, workload conditions,
and even cluster platforms used. These results certainly
reflect the site factors. The USC Linux PC cluster uses
IDE disks and fast Ethernet connections. The results may
vary to some extent, if SCSI disks or Gigabit Ethernet
were used in the experimentation.

8.4 Optimal Stripe Unit

In an earlier paper [23], we have provided an analytical
model to determine the optimal size of a stripe unit as
2dKC bytes, where d is the number of disks per drive, K is
the number of sectors per track, and C is the sector size in
bytes. The above result implies that one should choose a
stripe unit approximately equal to the size of one cylinder,
if the file is manageable in size. Large stripe unit tends to
cluster the file in a few disks, hence reducing the
parallelism exploitable in an I/O request.

The optimal choice of stripe unit size lies in a trade-off
between the two conflicting goals. In the past [24], Kim et al.
has studied the effects of striping and caching. Caching
effect is ignored here using a sufficiently large data file. We
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Fig. 10. Scalability of four ds-RAID architectures with increasing number of disks under a heavy 1/O traffic conditions. (a) Large read (320 MB for
16 clients). (b) Small read (512 KB for 16 clients). (c) Large write (320 MB for 16 clients). (d) Small write 512 KB for 16 clients).

thus focus on the asymptotic behavior of I/O bandwidth,
primarily limited by the protocol and software overhead
experienced. With a sufficient large data file, we were able
to isolate the effects of striping by changing the file size and
stripe unit simultaneously.

9 ScCALABILITY ANALYSIS OF DISTRIBUTED RAID

This section discusses the scalability of various distributed
disk arrays in a cluster environment. We use the times for
parallel reads and parallel writes to assess the scalability of
ds-RAID architectures. Finally, we summarize the results
with improvement factors achieved in the scaling
experiments.

9.1 The Scaling Issues

Scaling of a disk array size may increase the aggregate I/O
bandwidth. More disks in the array may satisfy more client
requests. But it may also introduce more network conten-
tions. The effects of disk array size are very similar to the
effects of client request rate. In both cases, we consider the
cases of accessing a large number of user files simulta-
neously. We plot in Fig. 10 the measured aggregate 1/0
bandwidth against the disk-array size, increasing from two
to 16 disks.

The total number of client requests is fixed at 16. Since
the NFS does not scale well with increasing number of
disks, we do not include NFS in this experiment. The
workload is fixed at 320 MB for large read or for large write,

regardless of the array size. For small read or write, the
fixed workload is set at 512 KB for 16 clients. In what
follows, we realize that all four ds-RAIDs show some
scalable performance in read and write operations. How-
ever, the scalability rating varies among the four ds-RAID
architectures.

9.2 Parallel Reads

For parallel read, the RAID-5, chained-declustering RAID,
and RAID-x perform almost the same. They all scale well
with the increasing number of disks. Comparing Fig. 10a
and Fig. 10b, we realize that there exists very little
difference in bandwidth performance between large and
small reads. The RAID-10 is much less scalable for either
large or small reads. This is mostly attributed to the fact that
RAID-10 can not be aggressively implemented to assume
contiguous addresses as discussed in Section 3. For large
reads, more stripe groups must be retrieved recursively.
The RAID-5 has slightly higher performance, as shown in
Fig. 10a.

9.3 Parallel Writes

For large or small writes, the ranking changes sharply as
shown in Fig. 10c and Fig. 10d, respectively. The RAID-x far
outperforms the remaining disk arrays. The RAID-10 moves
ahead of the chained-declustering RAID. For 16 disks, the
write bandwidths of RAID-x, RAID-10 and chained-
declustering RAID are 15.3 MB/s, 9.9 MB/s, and 6.8 MB/s,
respectively. These bandwidth differences are attributed



40 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 1,

JANUARY 2002

TABLE 4
Achievable 1/0 Bandwidth and Improvement Factor of Three ds-RAIDs Compared with the NFS on the Trojans Cluster
I/0 NFS RAID-x
Operations 1 Client 16 Clients | Improve 1 Client 16 Clients | Improve
Large Read | 2.58 MB/s | 2.3 MB/s 0.89 2.59 MB/s | 15.63 MB/s 6.03
Large Write | 2.11 MB/s | 2.77 MB/s 1.31 2.92 MB/s | 15.29 MB/s 5.24
Small Write | 2.47 MB/s | 2.81 MB/s 1.34 2.35 MB/s | 15.1 MB/s 6.43
/0 Chained Declustering RAID-10
Operations 1 Client 16 Clients Improve 1 Client 16 Clients Improve
Large Read | 2.46 MB/s 15.8 MB/s 6.42 2.37 MB/s | 10.76 MB/s 4.54
Large Write | 2.62 MB/s | 12.63 MB/s 4.82 2.31 MB/s 9.96 MB/s 431
Small Write | 2.31 MB/s | 12.54 MB/s 543 2.27 MB/s 9.98 MB/s 4.39

mainly to their architectural characteristics. The strength of
the RAID-x lies mainly in its superior performance in
performing parallel write operations.

9.4 Improvement Factors

Table 4 compares the bandwidth improvement of using the
three RAID subsystems and the NFS. The improvement factor
is defined as the ratio of read or writes bandwidth of 16
clients over that of 1 client request on the cluster [1]. For
parallel reads, chained declustering and RAID-x have
almost equal performance and they scale at the same pace.
Therefore, we need only report the large read results. The
difference is attributed mainly to the CDD protocol and
TCP/IP overhead incurred. The gaps among them widen
rapidly, showing the superiority of RAID-x in parallel write
operations.

Comparing with Berkeley xFS results [1], our 1-client
bandwidth is quite high due to well-exploited parallelism in
16-way striping across the disk array. For this reason, the
improvement factor is lower than that achieved by the
xFS system. However, the RAID-x demonstrates the
highest improvement factor among the 3 RAID architec-
tures. The comparison separates the large read from write
situations. We ignored small reads because they are not
relevant to the saturated aggregate performance.

10 OVERHEAD ANALYSIS IN CLUSTER I/O
OPERATIONS

Cluster I/O operations are slowed down essentially by
limited network bandwidth, extensive software and
communication overheads experienced on distributed disk
accesses. This section focuses on all overhead issues. We use
the Bonnie benchmark to reveal the overheads in six different
cluster I/O operations. Cluster I/O is often slowed down by
these overheads experienced.

The overhead imposes a limit on cluster I/O performance.
The overheads are attributed to a number of factors,
including the network protocols, file size, access granularity,
access pattern, disk block size, internode communications, OS
system calls, and even the delays due to random seek time,
etc. The Bonnie benchmark offers various tests to answer
some of these concerns.

10.1 Bonnie Benchmark Suite

We report below the Bonnie benchmark results which
reveal the software overhead associated with various
cluster I/O operations. The benchmark is composed of six
parts. It writes data to the storage using character and block
based 1/0, reads, modifies, and rewrites the contents of the
whole file, reads the file using character and block-based
I/0, and seeks into the file. Bonnie reads and writes large
disk files and produces a dense report.

The benchmark tests the input rate, output rate, and
seek rate of parallel I/O operations. In our test, we used
500 MB data as the workload. The file size is large enough
to avoid the buffer caching effects so that the results
reported can truly reflect the performance of the I/O storage.
The OS overheads include the times to use the file system
to access the low-level storage. In Fig. 11, the input rate or
output rate is expressed as MB/s, while the seek rate is
measured as Seeks/s.

In Fig. 11, the I/O rates are plotted against the number of
disks in the disk array. The faster is the data transfer rate,
the less is the software overhead experienced. The client’s
work is to write or read the 500MB-long file. The server
could be on a remote CDD. Thus, very little CPU time is
spent locally in handling distributed I/O. This is very
different from the situation in accessing only the local disks.

10.2 Character Write

Fig. 11a shows the results of this. In this test, a 500 MB
long file is written to the storage byte-by-byte using the
putc() function. This is a typical small-write operation. The
RAID-x performs slightly better than the chained-decluster-
ing RAID and RAID-10. The write rate of the RAID-5 lags
far below because more software overhead experienced
with the parity update operation, while the other three
mirroring RAID experience no such parity overhead.

The RAID-x was measured at 3.4 MB/s with 16
disks. RAID-10 achieved 2.9 MB/s due to the fact that
only half of the disks providing useful bandwidth. The
gap among them increases with the disk array size. The
RAID-5 performs the worst with a low peak bandwidth
of 1.6 MB/s. In all ds-RAIDs, the output rate increases
only slightly with the array size. These results agree with
the small-write results reported in Fig. 10.
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10.3 Block Writes

Fig. 11b shows the results of writing a 500-MB file to the
ds-RAID in blocks. Again the top three ds-RAID config-
urations have the same output rate of 3.8 MB/s. This rate is
almost independent of the disk array size. The RAID-5 has a
rather flat low output rate (about 2 MB/s) due to excessive
parity update overhead experienced. Block-Write output
rates are higher in absolute value than in the Character-
Write test. This is because character-based operations
introduce a considerable amount of software overhead
in system calls, and in reconstructing the block-based
I/0 requests from the scattered characters. While lower
overhead is experienced when the whole data file is lumped
together for block write. Here, the size of disk array makes
very little difference in the raw output rate.

10.4 File Rewrite

Fig. 11c shows the output rate of the File-Rewrite test,
where a 500 MB file is read into the memory with each block
modified and then written back to the disks. These files are
much larger than those in character-write or block-write
tests are. They correspond to the case of large reads and
writes subsequently. Therefore, the output rate increases
faster than those fine-grain disk accesses reported in Fig. 11a.
The gaps among the four ds-RAID also becomes wider with
more disks.

10.5 Character and Block Reads

Fig. 11d and Fig. 11e show the Character Read and Block
Read results, respectively. In both tests, the RAID-5,
RAID-x, and chained-declustering RAID perform better
than RAID-10. As the array increases to 16 disks, all three
RAIDs converge to an output rate of around 4 MB/s. But
the RAID-10 speed lags far behind because it experienced
more overheads. This overhead comes from a less efficient
mirroring scheme on the RAID-10.

10.6 Random Seek

The benchmark program executes 4,000 seeks to random
locations in the file. About 10 percent of these seeks, the
blocks are rewritten to the disks. The seek rate in Fig. 11f
increases sharply to as high as 77 seeks/s. The speed
gaps among the four ds-RAIDs become closer, as the
disk number increases. For 16 disks, the seek rates are
77 Seeks/s in RAID-x, 67 Seeks/s in RAID-10 and
chained-declustering RAID, and 56 Seeks/s for RAID-5.
Higher seek rate corresponds to a larger number of seeks
performed simultaneously over a large number of stripe
groups.

10.7 Some Observations

1. The total I/O processing time is attributed to I/O
system calls, I/O transfer time, and delays in
applying TCP/IP protocol in the cluster network.
The Bonnie benchmark reveals the performance of
the network storage as a whole. Although the actual
disk access time is not a small portion of the total
time, the overhead is even a greater portion. In fact,
the benchmark results reveal more weight on
protocol and software overhead than the time for
raw I/0 data transfer.
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2. The Bonnie benchmark reveals the effects of access
granularity on the RAID performance. The larger is
the grain size in parallel writes, the more scalable
will be the RAID. In Fig. 11, the access size increases
from characters (Fig. 11a) to blocks (Fig. 11b) and to
files (Fig. 11c and Fig. 11f). When the software
overhead grows faster than the available bandwidth,
the ds-RAID becomes less scalable.

3. The less overhead experienced in RAID-x is attrib-
uted to the time saved from background image
writing as described in Section 3. Another reason
why RAID-x has less overhead is due to its efficient
mirroring scheme. The RAID 10 and chained-
declustering RAID demand much more time to
write the data images for lack of the orthogonality

property.

11 CONCLUSIONS AND SUGGESTIONS

Four distributed RAID architectures including the new
orthogonal RAID-x have been evaluated for scalable cluster
I/0 processing. The RAID-x architecture demonstrates its
strength in cluster I/O performance. Both experimental and
analytical results are presented to back up the claims. To
conclude, we summarize the contributions and shortcom-
ings and make suggestions for further research effort.

11.1 Summary of Contributions

The main contributions of this work lie in the development
of the orthogonal RAID-x architecture. We have developed
cooperative disk drivers to enable the SIOS with lowered
latency in remote disk access and presented extensive
benchmark results on four ds-RAIDs, which can be applied
to design optimization of future cluster I/O subsystems.

1. The new RAID-x shows its strength in building
distributed storage for serverless clusters. The
orthogonal architecture is unique with orthogonal
striping and mirroring. In the reliability area, the
RAID-x can tolerate all single disk failures like the
RAID-5. The background image writing also con-
tributes the performance gain, especially in large
write operations. The RAID-x completely eliminates
the small-write problem by using no parity checks.

2. We have developed new disk drivers at the Linux
kernel level to support the SIOS in any ds-RAID
configuration. These drivers enable faster remote
disk access and parallel I/O without using a central
file server. Much of the software overhead comes
from heavy system calls in cluster I/O operations.
The use of the CDDs with middleware reduces some
overheads significantly. Benchmark performance
results show scalable performance of RAID-x in
cluster I/O operations.

3. The Andrew benchmark shows the scalable ad-
vantage of using any ds-RAID over the use of a
central NFS for cluster I/O operations. For parallel
reads with 16 active clients, the RAID-x achieved a
1.5 times higher performance than other three
RAID architectures. For parallel writes, RAID-x
shows up to 2.2 times higher performance. The
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Bonnie benchmark shows that the RAID-x cuts 13
percent of the overhead in many I/O-centric
operations.

4. We have extended the Linux kernel to support the
SIOS. This helps also implement the shared
virtual memory and global file management.
Many I/O-centric applications can benefit by
achieving scalable performance on a serverless
cluster of computers. In particular, this will benefit
data mining, transaction processing, and pervasive
computing applications.

11.2 Relative Merits of Four ds-RAIDs

Even the RAID-x has clear advantages in write performance,
we have to admit some of its weakness. Both RAID-10 and
chained-declustering RAID have higher reliability and fault
tolerance capability than our RAID-x. For I/O applications
demanding higher bandwidth performance, RAID-x should
be the choice. However, for highly fault-tolerant 1/0
applications, the RAID-10 and chained declustering
approach are still better. In this sense, the RAID-5 is weak
in both performance and fault tolerance, especial in small-
write applications.

We applied the standard storage servers with local disks.
These servers have not been optimized in the distributed
cluster environment. The overhead in maintaining data
consistency is still high. The use of simple locking
mechanism may add extra time delay. A new data
consistency model is thus very much needed to explore
even higher performance in ds-RAID. These weaknesses
triggered us to suggest the following further studies:

11.3 Suggestions for Further Research

To amend the above shortcomings, we suggest to attack the
following issues towards the optimization, industrializa-
tion, and applications of ds-RAIDs.

1. To scale up to a much larger number of disks, the
communication protocol used in the CDD may
become a performance bottleneck. To solve the
problem, the TCP/IP protocol could be replaced by
a low-latency protocol, similar to that suggested by
Martin, et al [27].

2. A new distributed file system is desired to improve
the efficiency of the disk drivers in using even faster
networks. A more efficient data consistency protocol
will provide higher scalability to hundreds or even
thousands of disks in a very large ds-RAID system.

3. An adaptive sector grouping method was suggested in
[23] for faster access of ds-RAID in a cluster
environment. Grouped sector access of disks in a
ds-RAID will reduce the false sharing effects in
shared virtual disks. This topic is worthy of further
experimentation to prove its effectiveness in acces-
sing very large ds-RAID configurations.

4. In this work, we did not apply any data prefetching
[2], [33] or cooperative caching technique [10], [18],
[24]. These techniques will hide some latency for
parallel reads in using the ds-RAID. Even higher
performance would be expected, if these acceleration
techniques were applied.
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