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Abstract. Adaptive hierarchical algorithms of vector quantization (VQ)
for image coding are proposed. First the basic codebook is generated
adaptively using adaptive VQ, then the quadruplets of codes/indices in
the so-called zigzag order are coded into higher level (second and third
levels) codes by creating the second- and third-level index codebooks
to reduce the redundancy presented in the codes. Partially matched
quadruplets are also encoded in the second and third layers using the
index codebooks along with corresponding correction schemes. The
third-layer encoding achieves a better compression ratio than a two-layer
encoding scheme, which was shown to be optimal when partial encoding
was not adopted. This three-layer coding scheme achieves better
compression with no extra distortion and little extra computation. Exper-
iments show encouraging results.
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1 Introduction

Vector quantization (VQ) techniques have been widely used
in the area of image coding because of their ability to achieve
a low bit rate.”* VQ techniques achieve a low bit rate by
exploiting the correlation and redundancy between blocks.
Nonadaptive VQ techniques match a vector with the fixed
codebook, which has been generated by training over a large
set of training vectors from different images. This type of
technique, however, suffers from two major problems. One
is its expensive computational time. The other is its poor
ability for generalization, i.e., its poor performance when
used to process images outside the training set. The latter
problem becomes worse especially where intensity edges oc-
cur. Thus a number of methods have been designed to solve
this problem.5-8 Adaptive VQ (AVQ) techniques®!? have
also been proposed. Adaptive VQ does not suffer much of
the two previous problems because a much smaller codebook
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with smaller code vectors can be designed for each input
image. Nevertheless, the compression ratio thus achieved by
an adaptive VQ is usually lower than that achieved by non-
adaptive VQ because of the smaller vector dimension and
the side information that needs to be transmitted or stored.

Nasrabadi'' and Vaisey and Gersho'? adopted a variable
block size scheme to achieve lower bit rate. They divided
the image into blocks of different sizes according to the quad-
tree representation. The small blocks are coded by a typical
VQ or adaptive VQ, whereas the large blocks are coded by
a transform VQ to discard the high-frequency coefficients.
Zhong et al.'? proposed an adaptive hierarchical vector quan-
tization (AHVQ) method in which high-layer codebooks
were designed adaptively, making use of the redundancy in
larger areas in images. For example, in the second layer,
quadruplets of codes/indices from the basic adaptive VQ were
encoded by the second-layer index codebook when they ap-
peared in the index codebook. The second-layer encoding
lowers the bit rate significantly without causing any more
distortion, and requires little additional computation. This
AHVQ scheme is found to be able to achieve good results
when a two-layer structure is adopted.'?
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In this paper, we present two new hierarchical AVQ
schemes based on AHVQ. The improved AHVQ (IAHVQ)
algorithm further utilizes the second-layer codebook by in-
cluding a partial encoding scheme. The partial encoding
scheme of IAHVQ changes the optimal structure of adaptive
hierarchical VQ given in Ref. 13 because the third-layer en-
coding process can be included. The optical structure of this
new three-layer AHVQ (NAHVQ) is found to be more ef-
ficient than AHVQ and IAHVQ.

The rest of the paper is arranged as follows. The AHVQ
algorithm is briefly described in Sec. 2. In Sec. 3, the IAHVQ
method is described. The three-layer scheme, NAHVQ, is
given in Sec. 4. Experimental results and comparisons with
other methods are shown in Sec. 5. The discussion and con-
clusions are given in Sec. 6.

2 Adaptive Hierarchical Vector Quantization

In AVQ techniques, an N XN image is first divided into a
set of small blocks/vectors (e.g., of size 2 X 2). Then the set
is used to design a small codebook by using the traditional
VQ techniques such as the algorithm Linde-Buzo-Gray. Each
block from the set is matched to the best code vector in the
codebook and is represented by the index of that code vector.
Then, both the codebook and the indices are transmitted. At
the receiver, the reconstruction of the image is rather straight-
forward. It is just a searching process in the codebook. Here
the adaptivity is on a picture-by-picture basis, i.e., each pic-
ture has its own codebook. Thus improved reconstruction
quality can be obtained compared with nonadaptive VQ.
Other variations of this scheme first divide the image into
several regions and then use the preceding scheme in each
region, or in the transformed domain.

After the codebook and codes/indices are generated, the
statistics of the indices are examined. Usually the neighboring
pixels in an image are highly similar and correlated. So are
the neighboring blocks. They are therefore spatially redun-
dant. The combinations of the neighboring blocks can be
expected to present some regularity, which can be used to
further eliminate the redundancy between the neighboring
blocks.

AHVQ (Ref. 13) makes use of the indices of the small
blocks (called basic blocks) encoded by the AVQ. These
indices form a digital map that we call the index map of the
original image, as in Fig. 1(a).

Let A, B, C, and D be the indices of the four basic blocks
in the upper left corner. Consider the vector (A,B,C,D). It
actually represents the appearance of the upper left large
block. If such a block of (A,B,C,D) occurs frequently in other
positions in the image, it is worth coding it as a single code
and treating the quadruple vector (A,B,C,D) as a code vector
in the new codebook, which we call the index codebook. We
explain its generation below.

Let us first regulate a scanning order in the index map.
As illustrated in Fig. 1(b), we scan the indices in a zigzag
order, which is called Z order. The Z order is quite similar
to that of the quadtree representations,'* especially the depth-
first representation. The Z order forms the data structure of
the coded data. It provides an efficient representation for
hierarchical coding. It is adopted also because it makes it
easy to employ similarities between large blocks in the image
in a hierarchical way.
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Fig. 1 (a) Index map and (b) Z order.

Now we count the occurrences of each index quadruple
vector (A,B,C,D) in the index map according to the Z order.
Each of the vectors (A,B,C,D) forms a larger block of the
quadtree representation that corresponds to a larger block in
the original image. We choose the L (a positive integer, usu-
ally a power of 2 for the sake of being coded by bits) vectors
of (A,B,C,D) that occur most frequently to be the represen-
tative vectors and form the index codebook. The index map
derived from the adaptive VQ now undergoes the encoding
process. It is examined in the Z order to see whether or not
four neighboring indices, which form a larger block in the
original image, can match a code vector in the index code-
book. That encoding process can be concurrently done in the
process of selecting the second-layer code vectors by keeping
track of the addresses of the quadruplets that contribute to
the code vectors. Thus, the computational time for the second-
layer coding is minor compared to that for the basic layer’s
VQ coding. In addition, the second-layer coding is lossless.

Note that not all the indices in the index map can be
grouped to form a vector in the index codebook. The more
the code vectors in the index codebook, the more the indices/
codes in the index map that can be grouped into a higher
level code. On the other hand, both the code length of the
index code vectors and the side information, i.e., the index
codebook that should be transmitted will increase. Thus, there
is a trade-off between the overall bit rate and the size of the
index codebook.

The same process can be done again. The indices derived
from the index codebook can further be examined to form a
higher level—the third-layer index codebook. This process
can be carried out until the desired level is reached. The index
codebooks thus added and the hierarchical structure are the
side information to be transmitted. There is again a trade-off
between the overall bit rate and the hierarchical level.

The experiments in Ref. 13 show that the best hierarchical
scheme should include only one layer of index coding, which
means that the codes/indices from the basic VQ coding will
only be further coded by the second-layer codebook. This is
because only a few of the indices from the second-layer cod-
ing can be further coded as a third-layer code, and thus, the
savings of bits cannot counteract the increase of side infor-
mation if a third layer is included; or even if it can, the gain
is quite small.

It is also shown in Ref. 13 that for most of the images we
tested, the bit rates are minimum when the size of the index
codebook of the second layer is four times as large as that
of the basic AVQ codebook. Usually the bit rate can be
lowered significantly if the AHVQ is used in the preceding
manner. For example, for the basic image blocks of size 2 X2
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and basic codebook size to be of length 32, the index code-
book is of length 128. Using the fast adaptive and partial
distortion (FAPSPD) algorithm'® as the basic adaptive
VQ(AVQ), AHVQ lowers the bit rate from 1.270 bits/pixel
of the adaptive VQ to 0.910 bits/pixel for the 256 X 256 256-
gray-level ‘‘Lenna’’ image; the compression ratio is im-
proved by nearly 40%. And the subjective quality of the
reconstructed image is quite good.

3 Improved AHVQ

In the AHVQ method just introduced, in addition to the side
information of the second-layer codebook that needs to be
transmitted or stored, 1 bit must be added to each quadruplet
to tell whether the quadruplet is encoded by a second-layer
codeword or not. The further compression achieved by the
hierarchical scheme is determined by the percentage of the
quadruplets that are encoded by the second-layer codebook.
Let’s look at a simple analysis using the example given at
the end of the last section.

Suppose that the total number of the quadruplets is ‘num-
ber of quad’ and

b * number of quad

quadruplets are encoded by the second-layer codebook,
where 0=b=1; then

d * number of quad

quadruplets are left uncoded by the second-layer codebook,
where d=1-0.

Because each basic code/index in the index map takes 5
bits and each index-code takes 7 bits, the savings of bits when
a quadruplet is encoded by the second-layer codebook are
4X5—(7+1)=12 bits. Thus, the total savings are

(12 *b—d) * number of quad

bits. When b <d/12, AHVQ expands instead of compressing
data. Fortunately, in practice, we have never met such an
image. This is because there exist many similarities in most
images.

Now, let us look for ways to further utilize the second-
layer codebook. In the second-layer encoding process, we
find many such quadruplets that have only three of their
components matched (called 3-matched) with those of a
second-layer codeword but can not be further encoded by
AHVQ. For example, Fig. 2(a) is a large block in the Z order,
corresponding to a 8 X 8 block in the original image. Suppose
the upper right subblock ‘(A,B,C,D)’, where A, B, C, and D
are basic codebook indices, can only be 3-matched. This kind
of quadruplet can be encoded by a second-layer codeword
(say ‘b’) with the mismatched component corrected by coding
its position in the quadruplet (which needs 2 bits) and fol-
lowed by its first-layer code (which needs 5 bits) in the basic
codebook [Fig. 2(b)]. For the sake of simplicity, we call these
quadruplets 3-matched coded (partially encoded), where the
fully matched quadruplets are 4-matched coded (fully en-
coded). We calculate the bit saving as follows.

Suppose ‘c * number of quad’ quadruplets among the
quadruplets that are not fully encoded by the second-layer
codebook (there are ‘d * number of quad’ such quadruplets)
are 3-match coded. Then only ‘a * number of quad’ quad-
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Fig. 2 (a) and (b) Partial matching.

ruplets are left neither 4-matched coded nor 3-matched coded
by the second-layer codebook, where a=d—c and now
a+b+c=1. Three identifiers of 1 bit or 2 bits, {0,10,11},
are used to distinguish these three types of quadruplets. Be-
cause c is usually much smaller than a and b, ¢ is coded by
a 2-bit identifier, whereas the shorter 1-bit identifier O is used
to distinguish the larger type of a and b. The saving of each
3-matched coding is 4X5+1—2+7+5+2)=5 (bits).
Then the savings of bits achieved by partial encoding over
AHVQ are

[S¢ —min(a,b)] * number of quad bits.

The —min(a,b) means that an extra bit has been used to
identify the smaller type of @ and b and should be subtracted
from the savings.

Further compression over AHVQ is achieved when

< min(a,b) ’
5

which is true in all of our experiments on natural images.
Thus we call the preceding coding scheme the IAHVQ.

Because the search for the 3-matched pattern in the index
codebook is largely done in the search process for the 4-
matched pattern, the additional computation for 3-match cod-
ing is quite small. In addition, the coding is lossless.

In a similar way, the 3-match-encoding technique can be
extended to the 2-match-encoding technique in the second-
layer codebook with a correction scheme of the two mis-
matched components. In the case where the basic codebook
size =32 and the second-layer codebook size = 128, it is not
worth coding the 2-matched quadruplets because no positive
gain will be obtained.

In the case where the basic codebook size =64 and the
second-layer codebook size=64*%4=256, JAHVQ can
achieve further compression over AHVQ by

[7¢ —min(a,b)] * number of quad bits ,

which has greater potential of compression than the case
where the basic codebook size=32 and the second-layer
codebook size = 128.

Dixit and Feng'® proposed a hierarchical VQ method in
which both the basic VQ coding and second-layer index cod-
ing process are nonadaptive and the basic layer codebook
and the second-layer index codebook were obtained by train-
ing over a large sequence of images, and in which only the
fully match coding scheme was used. The reported results
with regard to the design of the second-layer codebook and
determination of the parameters are quite similar to those in
the AHVQ (Ref. 13). In such nonadpative schemes where
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both the basic VQ codebook and second-layer codebook are
much larger than in AHVQ, 512 and 2048, respectively, for
example, greater compression can be achieved if a scheme
like IAHVQ is adopted. The savings of bits by IAHVQ over
AHVQ are expressed as

[13¢ —min(a,b)] * number of quad bits .

4 Three-Layer Scheme: NAHVQ

After the 3-matched quaduplets are coded, the structure of
the hierarchical coding scheme may be somewhat different
from that of the AHVQ in Ref. 13 because the 3-match-coded
quadruplets in the second layer increase the possibility of
grouping four neighbor second-layer codes into a third-layer
code. For example, Fig. 2(a) is a large block in the Z order,
corresponding to an 8 X 8 block in the original image. Sup-
pose three subblocks in it can be encoded by the second-
layer codebook as a, ¢, and d. The upright subblock
‘(A,B,C,D)’ can only be 3-match coded as the form
‘b+ correction’. See Fig. 2(b) for an illustration. In the
AHVQ method in Ref. 13, the large block remains as
‘a+(A,B,C,D)+ c +d’, unable to be encoded by a third-layer
codeword. However, by the IAHVQ introduced above, the
large block appears as ‘a+ (b + correction) + ¢ + d’; thus, it
might be encoded into a third-layer code ‘B’ if ‘(a,b,c,d)’
forms a codeword ‘B’ in the third-layer codebook, just by
coding the position of the (A,B,C,D) subblock followed by
the ‘correction’ term. In fact, the idea of 3-match coding in
the JAHVQ method can be generalized to the third-layer
encoding even if the upright subblock ‘(A,B,C,D)’ cannot be
3-match coded in the second layer through encoding the
whole block as ‘B + positioncode +A+ B+ C+D’.

In the original work'? on AHVQ, the structure of AHVQ
is determined to be two layered as the optimal because with
the 4-match coding scheme, many second-layer indices in
the Z order are not consecutive and thus only a few quad-
ruplets of the second-layer indices can be grouped into third-
layer indices according to the Z order. The 3-match-coding
scheme proposed in the previous section, however, increases
this possibility as just stated. Moreover, the idea of 3-match
coding can be extended to the third-layer encoding, i.e., a
quadruplet of the second-layer indices can be encoded even
if it only matches a codeword in the third-layer codebook
partially as long as an appropriate correcting scheme exists.
All these factors may make a three-layer encoding structure
work better than the two-layer structure in AHVQ and
IAHVQ.

We specify the three-layer (NAHVQ) coding algorithm
in the following manner:

1. The basic AVQ encoding is done as in AHVQ
(Ref. 13).

2. The second-layer codebook is generated as in AHVQ
and partial encoding is done as stated in Sec. 3.

3. The third-layer codebook of certain size is generated
by selecting the quadruplets with most frequent oc-
currences in the second-layer index map according to
the Z order; and the third-layer encoding is done as
follows: for the quadruplets of the second-layer indices
in the Z order,

a. whose four components are perfect second-layer in-
dices and match a third-layer codeword, encode
them as the third-layer codeword (pattern 1: 4-
matched encoding)

b. whose three components are perfect second-layer
indices and one component is a 3-matched index in
the second layer, i.e., an index like ‘b + correction’
as previously described, and match a third-layer
codeword, encode them as the third-layer codeword .
followed by encoding the position of the
‘b + correction’ term and the ‘correction’ termitself
(pattern 2: 4-matched encoding + correction)

c. whose four components are perfect second-layer in-
dices and only three components match the corre-
spondences in a third-layer codeword, encode them
as the third-layer codeword followed by encoding
the position of the mismatched component and the
index of it (pattern 3: 3-matched encod-
ing + correction1)

d. whose three components are perfect second-layer
indices and one component is a 3-matched index in
the second-layer, i.e., an index like ‘b + correction’
as previously described, and only three second-layer
indices match the correspondences in a third-layer
codeword, encode them as the third-layer codeword
followed by encoding the position of the mis-
matched component and the second-layer index of
it, then followed by encoding the position of the
‘b + correction’ term and the ‘correction’ term itself
(pattern 4: 3-matched encoding + correction2)

e. whose three components are perfect second-layer
indices and one component is a quadruplet of the
first-layer indices, i.e., of the form ‘(4,B,C,D)’, and
the three second-layer indices match the correspon-
dences in a third-layer codeword, encode them as
the third-layer codeword followed by encoding the
position of the ‘(A,B,C,D)’ term and the first-layer
indices of A,B,C, and D, respectively (pattern 5: 3-
matched encoding + correction3).

In the preceding NAHVQ algorithm, only the five third-
layer encoding patterns are included because a careful study
of the statistical property shows that those five patterns are
the frequently occurring patterns and each encoding of them
will save many bits. For example, with the three-layer struc-
ture of sizes (32, 128, 32), each encoding of those five patterns
will save 23, 20, 13, 10, and 12 bits, respectively. Because
of the different frequencies of the five matching patterns, the
identifiers for them can be designed using static Huffman
coding.

The larger the third-layer codebook, the more the quad-
ruplets of the second-layer indices that will be encoded into
third-layer indices. However, the side information, e.g., the
third-layer codebook, will increase too. So there is a trade-
off between the size of the third-layer codebook and the
compression ratio achieved. A fourth-layer encoding process
can be similarly established; however, usually no positive
gain can be obtained because few quadruplets of the third-
layer indices can be coded further.

OPTICAL ENGINEERING / October 1995 / Vol. 34 No. 10 / 2915



ZHONG, CHIN, and SHI

5 Experiments

We tested the IAHVQ and NAHVQ algorithms as well as
the AVQ and AHVQ algorithms for comparisons. For the
basic codebook generation, we adopt the FAPSPD method.'?
We set the basic block size to be 2 X 2 and the basic codebook
size to be 32; the index codebook size is set to be of size
128.

First, we determine the optimal size of the third-layer
codebook in NAHVQ. We only consider the sizes of 0, 2, 4,
8, 16, 32, 64, . . . . We find the optimal size for the third-
layer codebook to be around 16; for most cases 16 is exactly
the optimal third-layer codebook size. Figure 3 is the exper-
imental results for one of the tested images: the ‘‘Lenna’’
image of size 256 X 256 and 256 gray levels.

Next, we show the superiority of IAHVQ and the three-
layer encoding scheme NAHVQ to other two-layer methods
such as AHVQ by comparing NAHVQ with them with the
third-layer codebook size fixed at 16.

Figure 4(a) is the original image of size 256 X 256 256-
gray-level monochrome image of ‘‘Zelda.’’ Figure 4(b)
shows the reconstructed image [note that the reconstructed
images using AVQ, AHVQ, IAHVQ, or NAHVQ are all the
same as Fig. 4(b) because index coding is lossless]. Table 1
presents some experimental results.

We find that NAHVQ achieves the best results among the
listed methods; IAHVQ also achieves very good results.
Compared with AVQ, the compression ratio is improved by
about 65.19% using NAHVQ and by about 53.01% using
IAHVQ, whereas by only about 47.47% using AHVQ. The
improvements are obtained by the third-layer encoding and
the partial encoding.

The computational cost of IAHVQ and NAHVQ is almost
the same as that of AHVQ. The additional computation used
for the second-layer partial encoding and the third-layer en-
coding is negligible compared with that for the basic AVQ
encoding in the first layer.

The results of the tests on the ‘‘Cronkite’’ and ‘‘Lena’’
images of size 256 X256, 256 gray levels are presented in
Figs. 5 and 6 and Tables 2 and 3. Again, we find that NAHVQ
gets better results than AVQ, AHVQ, and IAHVQ. Actually,
with dozens of images that we have tested, NAHVQ always
performs better than AVQ, AHVQ, and IAHVQ. IAHVQ
also shows improved performance.

6 Discussion and Conclusions

We have designed two new adaptive hierarchical vector quan-
tization techniques, IAHVQ and NAHVQ. They are superior

bit rate(bpp)
8

0.8
0.8 \ /
0.8
3rd-layer codebook size
B 1 1 1 1
4 8 16 32 64 128

Fig. 3 Optimal third-layer codebook size.
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(a) (b)

Fig. 4 “Zelda”: (a) original and (b) reconstructed.

Table 1 Experiments on “Zelda.”

algorithms | AVQ | AHVQ | IAHVQ | NAHVQ

a 100% | 37.84% | 22.04%

b - 62.16% | 62.16%

c - - 15.80% -
bit rate 1.270 .863 827 .766

comp. ratio | 6.32: 1 | 9.32: 1 | 9.67: 1 | 10.44: 1
PSNR 30.6 dB | 30.6 dB | 30.6 dB | 30.6 dB

to the two-layered encoding scheme, AHVQ, which is op-
timal when full encoding is used. The partial encoding of the
quadruplets in the Z order has changed the optimal structure
of the hierarchical coding scheme.

Compared with the single-layer AVQ and the two-layered
AHVQ algorithms, the index-coding process of NAHVQ or
IAHVQ has been shown to be effective and worthwhile for
the following reasons:

1. It lowers the bit rate significantly.
2. It requires little additional computational time.
3. It causes no more distortion.

(@) (0)

Fig. 5 “Cronkite”: (a) original and (b) reconstructed.

(@) (b)

Fig. 6 “Lena”: (a) original and (b) reconstructed.
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Table 2 Experiments on “Cronkite.”

algorithms AVQ | AHVQ [TAHVQ [ NAHVQ

a 100% | 17.14% | 10.77% -
b - 82.86% | 82.86% -
c - - 6.37% -
bit rate(bpp) | 1.270 711 .681 .525
comp. ratio | 6.32: 1 | 11.24: 1| 11.74 | 15.25: 1
PSNR 32.0dB [ 32.0dB | 32.0 32.0 dB

Compared with the AHVQ algorithm,'? the second-layer
codebooks of NAHVQ and IAHVQ are further utilized to
encode those partially matched quadruplets and thus redun-
dancy is further reduced. Furthermore, NAHVQ includes a
third-layer encoding process that is very effective, whereas
IAHVQ adopts only a two-layer structure.

The idea of partial encoding has much greater potential
when applied to nonadaptive VQ where the basic codebook
is of much larger size. A fixed nonadaptive index codebook
can also be designed for an adaptive VQ, or an adaptive index
codebook can be designed for a nonadaptive VQ. The fixed
index codebook should be generated by training over a large
set of index maps and stored in both the transmitter and the
receiver so that the side information no longer needs to be
transmitted.

In addition, in the encoding of NAHVQ or IAHVQ, we
find that the more the index quadruplets (A, B, C, D) (in-
cluding the 3-matched ones) occur in the index codebook,
the lower the bit rate will be. Also the effects of compression
achieved by the 4-matched encoding and 3-matched encoding
are different. Using (32, 128, 16) structure as an example, in
the second-layer codebook design, three 3-matched encod-
ings can save 15 bits, which is larger than that saved by one
4-matched encoding. Therefore, a more efficient or even op-
timal way to select the second-layer and the third-layer code-
books can be further studied.
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