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EFFECTIVE ESTIMATES ON THE VERY AMPLENESS
OF THE CANONICAL LINE BUNDLE OF LOCALLY

HERMITIAN SYMMETRIC SPACES

SAI-KEE YEUNG

Abstract. We study the problem about the very ampleness of the canonical
line bundle of compact locally Hermitian symmetric manifolds of non-compact
type. In particular, we show that any sufficiently large unramified covering of
such manifolds has very ample canonical line bundle, and give estimates on
the size of the covering manifold, which is itself a locally Hermitian symmetric
manifold, in terms of geometric data such as injectivity radius or degree of
coverings.

Let L be an ample line bundle on an algebraic manifold M . From Kodaira’s
Embedding Theorem, we know that mL is very ample if m is sufficiently large
so that the sections of mL give rise to an embedding of M into some projective
space. A natural question is on the estimates of such m so that mL is very ample.
In particular, one may ask the same question for the canonical line bundle of a
manifold with negative first Chern class, or of general type. Of particular interest
among such manifolds is the class of locally Hermitian symmetric spaces. The main
purpose of this article is to show that for compact locally Hermitian symmetric
manifolds of non-compact type, K is very ample if the injectivity radius of the
manifold is greater than some effective constant which can be estimated in terms
of some geometric data.

Effective estimates for mK = K + (m− 1)K with m ≥ 2 in terms of injectivity
radius have been obtained in [HT] and [Y2]. The difficulty in the case of m = 1 can
be seen from the fact that in constructing holomorphic sections from the Bochner-
Kodaira technique, one always need K+L for some extra positivity from L. In [Y2],
it is shown that for a tower of coverings of compact Hermitian locally symmetric
manifolds Mi, KMi becomes very ample when i approaches to ∞. To compensate
for the extra positivity required for the Bochner-Kodaira technique, we prove our
result by showing that the limit of the Bergman kernel on Mi approaches the
corresponding one on the universal covering. However, the limiting process makes
the whole approach highly non-effective and requires an infinite sequence of normal
coverings of the original manifold. The main purpose of this article is to show the
very ampleness of KM for any unramified covering M of Mo with injectivity radius
or degree of the coverings greater than some effectively estimable constant. For this
purpose, an alternate approach using heat kernel estimates combined with Atiyah’s
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Covering Index Theorem is taken to bypass the limiting process. The main difficulty
lies in the uniform control of the trace of all the global holomorphic sections and its
derivatives at each point of the manifold. This delicate point explains the length of
the arguments in Section 3. The main results are stated as Theorem 2 in Section
3, and Theorems 3 and 4 in Section 4.

The arguments of this paper work for other algebraic manifolds whose universal
covering admits a lot of holomorphic functions so that the Bergman kernel is well
behaved. Apart from locally Hermitian symmetric manifolds, the arguments in
particular can be applied to those Kähler manifolds whose Riemannian sectional
curvature is bounded between two negative constants.

The author would like to thank Ngaiming Mok, Yum-Tong Siu and Wing-Keung
To for helpful discussions in the preparation of this article.

1. Preliminaries

Let V i = ∧iT ∗M be the space of exterior differential forms on M . Let ∆i be the
Laplacian acting on V i. We have ∆i = dd∗ + dd∗, where d : ∧iT ∗ → ∧i+1 is given
by

d(
∑

j1,...,ji

fj1...jidx
ji ∧ · · · ∧ dxji ) =

∑
j,j1,...,ji

∂fj1...ji
∂xj

dxj ∧ dxji ∧ · · · ∧ dxji

and d∗ is the formal adjoint of d.
As the principal symbol of ∆i is a scalar multiple in the sense that σ∆i(v, v)s =

−g(v, v)s for any local exterior i-form s and v ∈ T ∗M , the usual construction of
heat kernel can be applied to the heat equation ( ∂∂t + ∆i)ki(t, x, y) = 0. The heat
kernel ki(t, x, y) is defined to be Hom(V ix , V

i
y )-valued functions on (0,∞)× M̃ × M̃

satisfying the above heat equation and other properties similar to those in ([P],
page 241) and ([Do1], page 489). As the metric h on V induces an isomorphism of
the dual V i∗ of V to V , we may identify Hom(V ix , V iy ) with V ix ⊗ V iy . For x = y,
we can then define the trace of a homomorphism in Hom(V ix , V

i
x) by taking the

inner product with respect to the metric h, which is the same as the trace of the
homomorphism with respect to an orthonormal basis at x. The trace of the heat
kernel Trki(t, x, x) is then defined and is the same as its magnitude with respect
to the metric involved.

Lemma 1. Let M̃ be a complete manifold which is the universal covering of a
compact manifold M . Consider the heat kernel k̃i of the laplacian ∆i obtained with
the lift of the metric from M . Let T > 0 be an arbitrary fixed number. Then the
heat kernel on M̃ satisfies the following estimates for T ≥ t ≥ 1:

‖k̃i(t, x, y)‖ ≤ c1exp[−
d2(x, y)

4t
],

where c1 is a constant depending only on T .

Proof. This follows from the standard construction of [P], [BGM] and especially
[Do1].

Lemma 2. Let k̃i(t, x, y) be the heat kernel of the Laplacian ∆i on i-forms of a
Riemannian manifold M̃ which covers a compact manifold. Let H̃i be the space of
harmonic i-forms with L2-norm 1 on M . Let φj be an orthonormal basis for H̃i.
Let H̃i(x, y) =

∑
φj∈H̃i φj(x)⊗φj(y). Then, given any δ > 0, there is a computable
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constant r2 depending only on M̃ such that for all t > r2 and all points x ∈ M̃,
|Trk̃i(t, x, x) − TrH̃i(x, x)| < δ.

Proof. First we note that as M̃ covers a compact manifold M , and the heat ker-
nel is invariant under isometry, ki(t, x, x) is bounded for all t ≥ 1. From spectral
decomposition we get

ki(t, x, y) =
∫
σ(∆i)

e−λtdEix,y(λ),

where σ(∆i) is the spectrum of ∆i on M̃ , and the spectral measure dEix,y(λ) is the
spectral projection valued measure from y to x. Hence

Trki(t, x, x) =
∫
σ(∆i)

e−λtdEix,x(λ) = TrH̃i(x, x) +
∫
σ(∆i)∩(0,∞)

e−λtdEx,x(λ).

For ε > 0, define F (ε, t) =
∫
σ(∆i)∩(0,ε) e

−λtdEx,x(λ). Note that F (ε, 1) is a mono-
tonic increasing function in ε and limε→0 F (ε, 1) = 0 as the domain of integration
approaches to an empty set. In fact it is estimated by [Lü] that F (1, ε) ≤ c 1

− log(ε)

for some controllable constant c > 0.
Now given any δ > 0, we can find an ε > 0 such that

F (ε, 1) =
∫
σ(∆i)∩(0,ε)

e−λdEx,x(λ) <
δ

2
.

λ ≥ ε implies that e−λt ≤ e− ε2 te−λ2 t, and hence∫
σ(∆i)∩[ε,∞)

e−λtdEx,x(λ) ≤ e− ε2 tTrki(
t

2
, x, x) ≤ e− ε2 tC.

If t is chosen to be so large that e−
ε
2 t < δ

2 , we conclude that

|Trk̃i(t, x, x) − TrH̃i(x, x)|

=
∫
σ(∆i)∩(0,ε)

e−λdEx,x(λ) +
∫
σ(∆i)∩[ε,∞)

e−λtdEx,x(λ) < δ.

Lemma 3. Let M̃ be the universal cover of a compact manifold M whose sectional
curvature is bounded from below by −b and the eigenvalues of the curvature operator
are bounded from above by b1. Let T > 1 be a fixed number. There exists a constant
c = c(T ) such that if the injectivity radius τ = τ(M) of M satisfies τ > c, then for
all 0 ≤ t ≤ T and x ∈ M̃

|Trki(t, x, x)− Trk̃i(t, x, x)| ≤ exp(− τ2

12t
)

for all points x ∈M . Here c(T ) depends only on the curvature bounds.

Proof. The idea is similar to the arguments in [Do1]. It essentially follows from the
fact that

ki(t, x, x) =
∑
γ∈Γ

k̃(t, x, γx) = k̃(t, x, x) +
∑

γ∈Γ−{1}
k̃(t, x, γx)

in the sense of uniform convergence, and estimates of the second term above from
Lemma 1.
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2. Effective estimates on the Bergman kernel

Proposition 1. Assume that the L2 cohomology group of the universal covering
M̃ of M satisfies h̃i(M̃) = 0 for 0 ≤ i ≤ n− 1, where n is the complex dimension
of M . Then, given any ε > 0, there exists r = r(ε), depending on M̃ , such that the
estimates

|TrHi(x, x)| ≤ ε
hold for all x ∈M if the injectivity radius satisfies τ > r.

Proof. Let T = r1 be the constant given by Lemma 2, so that for t ≥ T

|Trk̃i(t, x, x) − TrH̃i(x, x)| ≤ δ.

Let c(T ) be the constant in Lemma 3. Choose r2(T ) = max(c(T ),
√
−12T (log δ)+1)

so that exp(− (iτ)2

12T ) < δ and hence |ki(T, x, x) − k̃i(T, x, x)| < δ for τ > r2(T ). Let
r3(T ) = max(T, c(T ), r2(T )). Then for τ > r3(T ), we conclude that

0 ≤ TrHi(x, x) ≤ Trki(r3, x, x)

≤ |Trki(r3, x, x)− Trk̃i(r3, x, x)| + |Trk̃i(r3, x, x) − TrH̃i(x, x)| + TrH̃i(x, x)
≤ 2δ

This concludes the proof of the proposition (we choose ε = 2δ).

Theorem 1. Assume that the L2 cohomology group of the universal covering M̃
of M satisfies h̃i(M̃) = 0 for 0 ≤ i ≤ n− 1. Suppose M is a holomorphic covering
of Mo. Assume that vol(Mo) = Vo is given. Given any α > 0, there is a constant
r, depending only on M̃ and Vo, such that

|TrHn(x, x)| ≥ (1− α)|TrH̃n(x, x)|
for all x ∈M if the injectivity radius satisfies τ > r.

Proof. Consider the Euler characteristics χ(M) =
∑n

i=0 h
i(M) on M and the L2-

analogue on the universal covering M̃ , χ(2)(M̃) =
∑n

i=0 h̃
i(M̃). Atiyah’s Covering

Index Theorem [A] implies that χ(M) = χ(2)(M̃), and hence

h̃n(M̃)− hn(M) =
n−1∑
i=0

hi(M).

Recall that hi(M) =
∫
M TrHi(x, x) and h̃i(M̃) =

∫
M TrH̃i(x, x), where the sec-

ond integral is taken over a fundamental domain of M on M̃. Since the Galois
transformation group on M corresponding to the covering map of M to Mo is a
biholomorphism and the Schwarz kernels are invariant under biholomorphism, this
can also be rewritten as∫

Mo

(TrH̃n(M̃)− TrHn(M)) =
n−1∑
i=0

∫
Mo

TrHi(M).

On the other hand, it follows from the previous proposition that

|
n−1∑
i=0

∫
Mo

TrHi(M)| ≤ [
n

2
]εVo
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if τ(M) ≥ r(ε). We also note that H̃n(M̃)(x, x) is invariant under biholomorphism
on M̃ , and hence is a contant function.

Let x ∈ M be any point. Without loss of generality, we may assume that the
injectivity radius of M , τ(M) ≥ 1. Let σ < 1. Let Bσ(x) be a ball of radius σ
around x. Consider a complex geodesic coordinate in a normal neighbourhood of
x. In terms of the Euclidean coordinates, consider the Euclidean metric gE, which
agrees with our metric g up to second order at x, so that gE(x) = g(x) +O(|x|2).
There exist two Euclidean balls of optimal radius rE1 (σ) and rE2 (σ) respectively so
that BEr1(σ)(x) ⊂ Bσ(x) ⊂ BEr2(σ)(x), and as σ < 1, we can find absolute constants
a1, a2 so that

a1vol
E(BEr1(σ)(x)) ≤ volg(Bσ(x)) ≤ a2vol

E(BEr1(σ)(x)),

the constants depending only on the curvature bound.
Recall that

Hn(M)(x, x) =
N∑
i=1

‖si‖2 =
N∑
i=1

|fi(x)|2h,

where si = fidz
1 ∧ · · · ∧ dzn is an orthonormal bases of holomorphic n-forms, and

h is the metric of the canonical line bundle. We have 0 < e1 < h < e2 for some
constants e1, e2 on Bσ(x) depending only on the curvature bounds of M . From our
earlier lemma, we conclude easily that

Hn(M)(x, x) ≤ H̃n(M̃)(x, x) = c

for all x. Hence we conclude that
∑N
i=1 |fi(x)|2 ≤ c

e1
. From Cauchy’s integral

formula we get

f ′(x) =
∫
∂σ(x)

f(s)
s− xds,

and hence

|
N∑
i=1

|f ′i(x)fi(x)|2 = |
∫
∂σ(x)

∑
i

fi(s)fi(x)
s− x ds|

≤
∫
∂σ(x)

∑
i

|fi(s)|2 + |fi(x)|2
2σ

ds

≤ 2πc
e1

.

It follows that the Euclidean derivative of
∑N

i=1 |fi(y)|2 is bounded by 4πc
e1

for
all y ∈ Bσ(x), and hence, by direction integration from x to y along a real straight
line segment,

N∑
i=1

|fi(y)|2 ≤
N∑
i=1

|fi(x)|2 +
4πc
e1
|y − x|.
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Suppose now that ‖Hn(M)(x, x)‖ ≤ η. Then∫
Bσ(x)

|Hn(M)(y, y)|gdvg

=
∫
Bσ(x)

|Hn(M)(y, y)|gEdvgE

=
∫
Bσ(x)

N∑
i=1

|fi(y)|2dvgE

≤
∫
Bσ(x)

N∑
i=1

[|fi(x)|2 +
4πce2

(n+ 1)e1
r2]dvgE

= [η +
4πce2

(n+ 1)a1e1
r2]vol(Bσ)

We conclude that∫
Mo

|Hn(M)(y, y)|gdvg =
∫
Mo−Bσ(x)

Hn(M)(y, y) +
∫
Bσ(x)

Hn(M)(y, y)

≤ (Vo − vol(Bσ(x)))c+ [η +
4πce2

(n+ 1)a1e1
r2]vol(Bσ).

On the other hand, by our previous constructions, we have∫
Mo

|Hn(M)(y, y)|g ≥ Voc− ε.

Hence

η ≥ c− [
4πce2

(n+ 1)a1e1
r2]− ε

vol(Bσ)
.

Recall that r2 = r2(σ) is the the radius of the smallest Euclidean ball at x containing
Bσ(x). Choose σ and hence r2 so small that c − [ 4πce2

(n+1)a1e1
r2] ≥ (1 − α

2 )c. Then
choose ε so small that ε

vol(Bσ) <
α
2 c. Now from the previous lemma, we can find ε

satisfying the latter condition if the injectivity radius τ of M is sufficiently large.
This concludes the proof of the theorem.

3. Effective very ampleness

First we prove the following lemma.

Lemma 4. In the same notation as in Theorem 1, assume that the Bergman ker-
nels Hn(x, y) of M and H̃n(x, y) of M̃ satisfy ‖H̃n(x, x) −Hn(x, x)‖ < ε. Then

‖H̃n(x, y)−Hn(x, y)‖ < 4ε

for all (x, y) ∈M with the distance d(x, y) < τ
2 if the injectivity radius τ is greater

than an effective constant.

Proof. First we note that, pulling back to the universal covering M̃ , which is a
bounded domain, the addition or subtraction of the heat and Bergman kernels
involved in the following discussions makes sense, since only line bundle is involved
and it can be trivialized by the standard canonical section on Cn.
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Similarly to our arguments of Proposition 1, we consider

|Hn(x, y)− H̃n(x, y)|
≤ |Hn(x, y)− kn(t, x, y)|+ |kn(t, x, y)− k̃n(t, x, y)|+ |k̃n(t, x, y)− H̃n(x, y)|

Let us begin with the second term |kn(t, x, y)− k̃n(t, x, y)|, where

kn(t, x, y) = k̃n(t, x, y) +
∑

γ∈Γ−{1}
k̃n(t, x, γy).

From the assumption that d(x, y) < τ
2 , we know that d(x, γy) > τ

2 for all γ ∈ Γ−{1}.
Hence, as in Lemma 3,

|Trki(t, x, y)− Trk̃i(t, x, x)| ≤ exp(− τ2

48t
).

For the third term, given δ > 0, the argument of Lemma 2 gives

|k̃n(t, x, y)− H̃n(x, y)| < δ

for t > r2, the notation being the same as in Lemma 2.
Hence, as in the proof of Proposition 1, for

τ > r3(T ) = max(T, c(T ),
√
−48T log δ + 1)

and T determined by r1 in Lemma 2, we conclude that

|kn(t, x, y)− k̃n(t, x, y)|+ |k̃n(t, x, y)− H̃n(x, y)| ≤ 2δ.

We choose δ = ε.
For the first term, in terms of an orthonormal set of eigenvectors,

|kn(t, x, y)−Hn(x, y)|
= |

∑
λi>0

e−λitφi(x)φi(y)|

≤ |
∑
λi>0

e−λitφi(x)φi(x)| 12 |
∑
λi>0

e−λitφi(y)φi(y)| 12

= |kn(t, x, x)−Hn(x, x)| 12 |kn(t, y, y)−Hn(y, y)| 12 .
But again

|kn(t, x, x)−Hn(x, x)|
≤ |kn(t, x, x)− k̃n(t, x, x)|+ |k̃n(t, x, x) − H̃n(x, x)| + |H̃n(x, x) −Hn(x, x)|
≤ 3ε,

where the last term is estimated by Theorem 1. Hence |kn(t, x, x)−Hn(x, x)| 12 < 3ε
and so |kn(t, x, y)−Hn(x, y)| ≤ 3ε.

Together with the estimates for the other two terms, we conclude that

|Hn(x, y)− H̃n(x, y)| ≤ 4ε.

Proposition 2. In the same notation as before, let M cover Mo, whose diameter
is bounded from above by do. Then there is an effective constant r such that if the
radius r(M) of M is larger than r and x ∈M is arbitrary, there exists a canonical
section s(x) of KM such that ∇s 6= 0.
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Proof. By homogeneity of M̃, we may assume that x is the origin and identify Mo

with a fundamental domain on M̃ containing 0. Pulling back to M̃, a section s on
M is a holomorphic section of M̃, locally but not globally L2. Let W be a vector of
unit length on M̃ , which is realized as a bounded domain on Cn. We use ∂

∂w or ∂W
to denote differentiation on M̃ ⊂ Cn, and CW,x to denote the complex line through
x in the direction of W .

Let h(x, y) =
∑

i fi(x)fj(y) and similarly define h̃(x, y) for the coefficients of the
Bergman kernels on M and M̃. We define

DWh(x, y) =
N∑
i=1

∂f

∂w
(x)

∂f

∂w
(y), DW h̃(x, x) =

∞∑
i=1

∂f̃

∂w
(x)

∂f̃

∂w
(y).

As in the proof of the previous lemma, it suffices for us to do the estimates on a
fundamental domain of Mo on M̃ and consider the lower bound for Dh(x, x). We
are going to show that Dh differs at most by the order of ε from Dh̃(x, x).

From the holomorphicity and antiholomorphicity of h(x, y) and h̃(x, y) in x and
y respectively, we have the integral representation

|DWh(x, y)|

= |
∑
i

∫
s∈∂Br∩CW,x

∫
t∈∂Br∩CW,y

[
fi(s)− fi(x)

s− x ][
fi(t)− fi(y)

t− y ]|

= |
∑
i

∫
s∈∂Br∩CW,x

∫
t∈∂Br∩CW,y

[
fi(s)fi(t)− fi(x)fi(t)− fi(s)fi(y) + fi(x)fi(y)

(r − x)(s− y)
]

=
1
r2

∫
s∈∂Br∩CW,x

∫
t∈∂Br∩CW,y

|h(s, t)− h(x, t)− h(t, y) + h(x, y)|

≥ 1
r2

∫
s∈∂Br∩CW,x

∫
t∈∂Br∩CW,y

[|h̃(s, t)− h̃(x, t)− h̃(t, y) + h̃(x, y)| − 4cε]

= |DW h̃(x, y)| − 4cε.

Here Lemma 4 was used. In particular,

DWh(x, x) ≥ DW h̃(x, x)− 4cε.

Suppose W =
∑

αw
α ∂
∂wα in terms of local coordinates wα, 1 ≤ α ≤ n. We define

a section

s(x) =
1∫

M̃
|w̄αzαdV |2 [

∑
α

w̄αzαdV ]

on M̃. Then ∂
∂wf = 1

V olE(M̃)
is bounded from below, as M̃ is a bounded domain in

Cn. This concludes the proof of the lemma.

Remark. For a complete manifold M̃ with injectivity radius bounded from below,
we can always get a lower bound on DW h̃ by considering appropriate L2 sections
using L2-estimates as in [Y2].

Now we state the main theorem.

Theorem 2. Let M̃ be an Hermitian symmetric space and M a cocompact quo-
tient. Assume that there exists a holomorphic action of a finite group on M whose



THE VERY AMPLENESS OF THE CANONICAL LINE BUNDLE 1395

quotient is Mo. Then the canonical line bundle KM of M is very ample if the injec-
tivity radius of M is bounded from below by an effective constant r. The effective
constant r depends on the following data.

(i) The rate of the convergence of the heat kernel ki(t, x, y) to the Bergman kernel
H(x, x) as t→∞. It would be sufficient to estimate ε such that∫

σ(∆i)∩(0,ε)

e−λdEx,x(λ) < 1

as estimated in Lemma 2.
(ii) The upper bound of the diameter of Mo.

Proof. a. Base point freeness. This follows from Theorem 1, since the existence of
a positive lower bound of the Bergman kernel on M implies the non-vanishing of a
certain canonical section at every point on M .

b. Immersion. Let ∇ be the Hermitian connection on the canonical line bundle.
We need to show that for each point x ∈ M, and vector W , there exist sections si
and sj so that

∇W (
si
sj

)(x) =
sj∇W si − sj∇W si

s2
j

(x) 6= 0.

Since the Bergman metric is defined independently of choice of a basis, we may
assume that s1 is chosen among all canonical sections of M to take the supremum
norm at x, i.e.

|s1|g = sup
‖f‖g=1,f∈Γ(K)

|f |g.

We then complete the section to an orthonormal basis by adding in sections s2, . . . ,
sN . Let AW (x) =

∑
j≥2 |∇W sj(x)|2g . We are going to prove that AW (x) is bounded

away from 0.
Assume on the contrary that |∇W sj |g = 0 for all i ≥ 2. It follows from the

definition that sj(x) = 0 for j ≥ 2. In this way

|Hn(x, x)|g = |s1(x)|2g ,
∂W |Hn(x, x)|g = (∇W s1(x), s1(x))g ,

where g denotes the Hermitian metric on K induced by the original metric g and
the second entry is conjugate holomorphic. Applying the same argument to L2

canonical sections on M̃, we get

|H̃n(x, x)|g = |s̃1(x)|2g ,
∂W |H̃n(x, x)|g = (∇W f̃1(x), s̃1(x))g .

We note that

0 ≤ |s̃1(x)|2g − |s1(x)|2g = |H̃n(x, x)|g − |Hn(x, x)|g ≤ cε

with some effective absolute constant c. Hence |s1|g ≥ |s̃1|g − cε.
As |H̃(x, x)|g is invariant under a biholomorphism, we get

(∇W s̃1(x), s̃1(x))g = ∂W |H̃(x, x)|g = 0
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and hence ∇W s̃1(x) = 0. The arguments of the previous proposition and Cauchy’s
integral formula imply that

cε ≥ |∂W |H̃n(x, x)|g − ∂W |Hn(x, x)|g |

= |
∑
i

(∇W s̃i(x), s̃i(x))g −
∑
j

(∇W sj(x), sj(x))g |.

for some absolute constant c. Hence we conclude that |(∇W s1(x), s1(x))g | ≤ cε,
which can be rewritten as |∇W s1(x)|g |s1(x)|g ≤ cε. As a result,

|∇W s1|2g ≤ (
cε

|H(x, x)|g − cε
)2.

However, from the previous proposition,

|DWH(x, x)|g ≥ |DW H̃(x, x)|g − cε.
Defining AW (x) = |DWH(x, x)|g − |∇W s1|2g,we conclude that

AW (x) ≥ |DW H̃(x, x)|g − cε− (
cε

|HW (x, x)|g − cε
)2.

As |DW H̃(x, x)|g is bounded uniformly from below on Mo, it follows that AW (x) =∑
j≥2 |∇W sj(x)|2g is non-zero for ε sufficiently small. This implies that |∇W sj(x)|g

6= 0 for some j ≥ 2, which implies that the sections of K gives an immersion of M .
As before, ε depends only on the radius of M and the diameter of Mo.

c. Separation of points. For this we need some lemmas

Lemma 5. There exists a constant r1 > 0 such that for all x ∈ M, Γ(M,K)
separates points on Br1(x).

Proof. Consider the function AW (x) =
∑
j≥2 |∇W sj(x)|2g in the study of immersion

of the canonical map, where s1 takes the supremum value at x among all canonical
sections of M whose L2-norm is 1. Let s⊥1 be the space of norm 1 canonical
sections in the orthogonal complement of s1 with respect to g. We have AW (x) =∑
f∈s⊥1 |∇W f |

2
g. The estimate on the lower bound of AW in the previous section

implies that there is a function s ∈ s⊥1 so that

|∇W s|g ≥ C1 = |DW H̃(x, x)|g − cε− (
cε

|H(x, x)|g − cε
)2.

Hence

|∇W (
s

s1
)(x)| = |∇W s

s1
(x)| = |∇W s|g(x)√

H(x, x)
≥ C1√

H(x, x)
.

From here on when doing estimates we used the same notation x to denote a
point on M and a point of its lift to the universal covering. Consider a small
Euclidean ball BEr1(x) around x with r1 sufficiently small, to be determined later,
assuming for the time being only that r1 < 2τ = 1−|x|

2 . Pulling back to M̃, we can
write s = fdV, s1 = f1dV so that f, f1 are holomorphic functions on Br1(x); the
metric g is related to gE by c1gE ≤ g ≤ c2gE . Since ‖s2

1(x)‖ = trB(x, x) = a2 at
the point x, from our choice of s1 we conclude that c1a ≤ |f1(x)| ≤ c2a. For any
holomorphic function f with L2-norm 1, the mean value inequality implies that
|f(w)| < C for all w ∈ BE2τ (x) for some absolute constant C, since the injectivity
radius of M is bounded from below by an absolute constant. From this we conclude
that |f ′(w)| ≤ C

τ for w ∈ BEτ (x), from Cauchy type estimates. It follows from direct
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integration that |f(y)− f(x)| ≤ |y − x|Cτ ≤ r1
C
τ . Using Cauchy’s estimates again,

we conclude that

| ∂f
∂w

(y)− ∂f

∂w
(x)| ≤ r1

C

τ2
,

for all y ∈ BE1 (x). Similarly, |∂f1
∂w (y)− ∂f1

∂w (x)| ≤ r1
C
τ2 . Hence for y ∈ BEr1(x)

|∇W (
s

s1
)(y)−∇W (

s

s1
)(x)|

= |∂W (
f

f1
)(y)− ∂W (

f

f1
)(x)|

= |[∂W f
f2

1

(y)− ∂W f

f2
1

(x)]− [
f∂W f1

f2
1

(y)− f∂W f1

f2
1

(x)]|

As c1a ≤ |f1(x)| ≤ c2a and thus |f1(y)| ≥ c1a− r1
C
τ , we conclude that

|∇W (
s

s1
)(y)−∇W (

s

s1
)(x)| ≤ r1C2

with C2 an absolute constant depending only on τ and a, assuming that c1a−r1
C
τ >

0. Integrating the expression along any geodesic rays from the origin on Br1(x), we
conclude that

| s
s1

(y)| = |
∫ 1

0

∇W (
s

s1
)(x + t(y − x))dt|y − x|+ s

s1
(x)|

= |
∫ 1

0

∇W (
s

s1
)(x)dt|y − x|

+
∫ 1

0

[∇W (
s

s1
)(x + t(y − x)) −∇W (

s

s1
)(x)]dt|y − x|+ 0|

≥ |
∫ 1

0

∇W (
s

s1
)(x)dt|y − x||

−
∫ 1

0

|∇W (
s

s1
)(x + t(y − x))−∇W (

s

s1
)(x)|dt|y − x|

≥ C1√
H(x, x)

|y − x| − r1C2|y − x|.

Choosing

r1 = min(
C1

2C2

√
H(x, x)

,
c1aτ

2C
),

we conclude that, s
s1

(y) 6= 0 = s
s1

(x) on Br1(x). As x is arbitrary on M , this implies
the separation of point in each small neighbourhood of uniform size determined by
r1.

Now we consider the separation of points whose distance apart is at least r1.

Lemma 6. Assume that for any c > 0, there exists a number κ > 0 such that for
every pair of points x, y ∈ M̃ of distance d(x, y) ≥ r1, there is always a holomorphic
section s ∈ Γ(2)(M̃,K) satisfying ‖s‖L2 = 1, s(x) = 0, ‖s(y)‖ ≥ κ. Then the
canonical map of M takes different values at x and y if d(x, y) > r1, provided that
the injectivity radius of M is at least r for some effective r.
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Proof. From the lemma on the estimate of the difference between Hn and H̃n, we
know that for each x ∈M, there exists a canonical section sx such that |sx|g(x) ≥ c1
for some absolute constant c1 = 1

2 |H̃n(x, x)|g which is independent of x. From the
mean-value inequality, as argued in the earlier proposition, we also have |sx|g(x) ≤
c2 for some absolute contant c2. For any pair of points x, y ∈ M, we can find a
linear combination sxy = rsx + (1− r)sy so that c3 ≤ |sxy|g(x) ≤ c4. For simplicity
of notation, we denote s = sxy.

Let h(z, w) = Hn(x,y)

s(x)s(y)
and h̃(z, w) = H̃n(z,w)

s(z)s(w)
. Let si, i = 1, . . . , n, be an orthonor-

mal basis for M and s̃i, i ≥ 1, an orthonormal basis for M̃ . Let fi = si
s and f̃i = s̃i

s .

From the assumption on the universal covering, we know that
∑
i |f̃i(x)−f̃i(y)|2 ≥ c

for some fixed contant c determined by c3 and c4. By the earlier lemma on the es-
timate of the difference betweeen the Bergman kernel of M and M̃, we know that∑

i

|fi(x) − fi(y)|2

= h(x, x) − h(y, x)− h(x, y) + h(y, y)

≥ h̃(x, x) − h̃(y, x)− h̃(x, y) + h̃(y, y)− 4Cε

=
∑
i

|f̃i(x) − f̃i(y)|2 − 4Cε

≥ c− 4Cε

Hence if the radius of M is sufficiently large so that ε is small, as before, we conclude
that

∑
i |fi(x)− fi(y)|2 6= 0 and hence the canonical section of M separates x and

y. This concludes the proof of Lemma 6.
The condition of Lemma 6 on the existence of a holomorphic section s ∈

Γ(2)(M̃,K) satisfying ‖s‖L2 = 1, s(x) = 0, ‖s(y)‖ ≥ κ is satisfied for Hermitian
symmetric manifolds. In fact, it suffices to consider bounded linear holomorphic
functions.

This concludes the proof of Lemma 5 and hence the proof of Theorem 2.

4. Examples

Let M be a locally Hermitian symmetric space. It is well-known that the fun-
damental group Γ of M is residually finite in the sense that there is a tower of
normal subgroups Γ1 = Γ, Γi > Γi+1 and

⋂∞
i=1 Γi = ∞. Then Ml = M̃/Γl is a

[Γ,Γl]-sheeted covering of M . In this section, we would like to discuss the effective
estimate of [Γ,Γl] to guarantee the very ampleness of KMl

. To apply results in
earlier sections, we are going to consider M to be Ml with l to be estimated, and
Mo to be the lowest manifold in the tower.

First we consider the arithmetic lattices Γ of SU(n, 1) defined by Hermitian
quadratic forms. This gives rise to arithmetic complex ball quotients

Γ\BnC = SU(n, 1)/S(U(1)× U(n)).

Let k be a totally real algebraic number field with places σ0 = 1, σ1, ..., σm. Let
Q be an Hermitian quadratic form defined on Cn over k of signature (1, n) such
that the conjugates of Q by the σi, i > 1, are all negative definite. Let Z be
the ring of integers of k and G(Q) the group of elements in GL(n + 1) preserving
Q. An arithmetic lattice Γ of G = SU(n, 1) arising from Q is defined to be a
lattice commensurable with G(Q,Z) = GL(n + 1,Z) ∩ G(Q), the group of units
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of Q. We can diagonalize Q by an element g ∈ GL(n+ 1, k) such that G(Q,Z) is
commensurable with G(Qg,Z). Hence for our purpose, it suffices to consider Γ to
be G(Q,Z) for some diagonal Q of the form

lo|x0|2 − l1|x1|2 − · · · − ln|xn|2,

where li ∈ k and li > 0. The sublattices are given by Γj = Γ(qj) = {γ ∈ Γ : γ ≡ I
(mod qj)} for a sequence of nested ideals qj with norm approaching infinity. We
would call such a sequence a tower of congruence subgroups. We also recall that
if q = ta1

1 · · · tass is the decomposition of an ideal q into prime ideals and ti lies
above a rational prime pi with residue class degree ri, the norm of q is given by
|q| =

∏
pairii .

Let τ(Ml) to be the injectivity radius of Mj . Lemma 2.2.1 of [Y1] allows us to
estimate τ(Ml) in terms of [Γ,Γl].

Lemma 7 ([Y1], Lemma 2.2.1).

τ(Ml)) ≥ c+
2

(n+ 1)2 − 1
log([Γ,Γl]),

for an effective constant c independent of l. c depends only on the size of the li, i =
0, . . . , n, in the defining equation of Γ and the diameter of Mo.

We note that [Γ,Γl] is actually the ratio vol(Ml)
vol(Mo) and is also the ratio of the

degree of Ml to the degree of Mo. Recall that the degree of an algebraic manifold
is the number Kn

M =
∫
M c1(K)n. The ratio [Γ,Γl] gives a lower bound of the norm

of ql, which in turn controls the lower bound of the injectivity radius of Ml from
the explicit formula of the distance between two points and elementary arithmetic
considerations.

This lemma and the theorem of the last section allow us to conclude the following
statements.

Theorem 3. For a tower of lattices from Hermitian quadratic forms of complex
balls obtained as above, Γ(Mj ,Kj) is very ample on Mj as long as the degree of Mj

is greater than a certain contant d which is an effective constant depending only on
the injectivity radius and diameter of Mo.

Here the degree of Mj is the integral of the top power of the Chern class of
the canonical line bundle of Mj , and is related to the degree of Mo by a multiple
corresponding to the order of the covering. Note that in applying the theorems
of the previous sections, the volume Vo, of Mo can be estimated in terms of the
injectivity radius and diameter of Mo.

Remark. For complex ball quotients, there are examples of non-arithmetic lattices
in dimension 2 and 3. However, for higher rank Hermitian symmetric spaces M̃ ,
according to the Margulis Arithmeticity Theorem, every cocompact lattice Γ of
M̃ is arithmetic, as constructed in [B]. Hence we can consider a tower of congru-
ence subgroups defined similarly to the above case of complex hyperbolic balls by
considering a nested sequence of ideals qi in the defining number field of Γ, and
regarding Γj = Γ(qj) = {γ ∈ Γ : γ ≡ I (mod qj)}. In this way, M̃/Γj gives rise
to a tower of normal coverings of Mo. As we also have an explicit formula for the
distance function between two points for each (global) Hermitian symmetric space,
the argument of the above lemma, or Lemma 2.2.1 of [Y1], allows us to conclude



1400 SAI-KEE YEUNG

that

τ(Ml)) ≥ c+ f(n) log([Γ,Γl])

for some constant f(n) depending on the type of the symmetric space M̃, and c
depending on Mo as before. Now we conclude that Γ(Mj ,Kj) is very ample on Mj

as long as the degree of Mj is greater than a certain contant d which is an effective
constant depending only on the injectivity radius and diameter of Mo, and the type
of the Hermitian symmetric space M̃.

Theorem 4. Suppose M is a compact Hermitian locally symmetric space of non-
compact type of rank at least 2. There exists an unramified covering M ′ of M
of controllable order of covering such that the canonical line bundle of M ′ is very
ample. The order of the covering can be estimated in terms of the defining number
field of the lattice of M on its universal covering M̃ .

This follows from the previous discussions. Note that the injectivity radius and
diameter of M are determined by the lattice.

Finally, we add a few more remarks.

Remarks. 1. The arguments of this article can easily be generalized to statements
about estimating the injectivity radius so that the canonical section would generate
a certain fixed k-jet of the manifold.

2. All the arguments can be applied to Kähler manifolds whose Riemannian
sectional curvature is bounded by two negative constants. This follows from the
fact that there are a lot of L2-holomorphic functions on the universal covering,
as explained in [Y2]. However, apart from locally Hermitian symmetric spaces,
the only such example that we know of in higher dimension cases are the ones
constructed by Mostow and Siu in [MS].

3. One consequence of the argument is that, given a hyperelliptic curve M , there
is an unramified covering M ′ of M which is not hyperelliptic. Moreover, the order
of the covering can be estimated in terms of some geometric data as stated in the
theorems above.
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