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Abstract. For a complex semisimple Lie group G and a real form G0 we
define a Poisson structure on the variety of Borel subgroups of G with the
property that all G0-orbits in X as well as all Bruhat cells (for a suitable
choice of a Borel subgroup of G) are Poisson submanifolds. In particular, we
show that every non-empty intersection of a G0-orbit and a Bruhat cell is
a regular Poisson manifold, and we compute the dimension of its symplectic
leaves.

1. Introduction

Let G be a connected and simply-connected complex semisimple Lie group with
Lie algebra g, and let X be the variety of Borel subalgebras of g. In this paper
we use a real form g0 of g to define a Poisson structure on X. This Poisson
structure depends on a choice of a Borel subalgebra b of g such that g0 ∩ b is a
maximally compact Cartan subalgebra of g0. Instead of dealing with each real form
individually, we fix a Borel subalgebra b of g and a Cartan subalgebra h ⊂ b. Then,
as is shown in [6], a real form gv of g can be constructed from each Vogan diagram
v for g such that gv ∩ b is a maximally compact Cartan subalgebra of gv. The
corresponding Poisson structure on X is denoted by Πv.

Let Gv be the real form of G corresponding to gv, and let B be the Borel
subgroup of G with Lie algebra b. The Poisson structure Πv has the property that
each Gv-orbit as well as each B-orbit in X is a Poisson submanifold. The B-orbits
in X will be referred to as the Bruhat cells. We compute the rank of Πv. In
particular, if a Gv-orbit O meets a Bruhat cell C, they intersect transversally, and
we find that all the symplectic leaves in O ∩ C have the same dimension, so O ∩ C
is a regular Poisson manifold. Moreover, we show that all symplectic leaves in each
connected component of O∩C are translates of each other by elements of a Cartan
subgroup of Gv. We also show that the Gv-invariant Poisson cohomology for each
open Gv-orbit in X is isomorphic to the de Rham cohomology of X.

Results similar to those presented here for the full flag manifold X = G/B are
also valid for a partial flag manifold G/P , where P is a parabolic subgroup of
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G containing B. We will treat these more general cases as well as some further
properties of Πv in a future paper.

Throughout this paper, if V is a set and σ is an involution on V , we will use V σ

to denote the fixed point set of σ in V .

2. Real forms of g and Vogan diagrams

Let g be a complex simple Lie algebra. In this section we recall the classification
of real forms of g by Vogan diagrams. Details can be found in [6, Chapter 6].

Suppose that g0 is a real form of g and that τ0 is the corresponding complex-
conjugate linear involution on g. Let θ0 be a Cartan involution of g0, and let h0 be a
θ0-stable maximally compact Cartan subalgebra of g0. Set t0 = h

θ0
0 and a0 = h

−θ0
0

so that h0 = t0 + a0. Let γ0 be the complexification of θ0. Then the Cartan
subalgebra h = h0 + ih0 of g is γ0-stable. Let ∆ be the root system for (g, h).
Since h0 is a maximally compact Cartan subalgebra of g0, there exists x0 ∈ it0
that is regular for ∆. Define the subset ∆+ of positive roots in ∆ by α ∈ ∆+ if
and only if α(x0) > 0. Then γ0(∆+) = ∆+. Let Σ ⊂ ∆+ be the set of simple
roots in ∆+. Then γ0(Σ) = Σ, so γ0 gives rise to an involutive automorphism of
the Dynkin diagram of g. Let I be the set of non-compact imaginary simple roots.
The Vogan diagram of g0 associated to the triple (θ0, h0, ∆+) is the Dynkin diagram
D(g) of g, together with an involutive automorphism γ0 on D(g) and the vertices
corresponding to the simple roots in I painted black.

In general, a Vogan diagram for g is defined to be a triple (D(g), d, I), where
D(g) is the Dynkin diagram of g, d is an involutive automorphism of D(g), and I
is a subset of vertices of D(g) such that d(α) = α for each α ∈ I. Every Vogan
diagram for g comes from a real form of g (see below), although two different Vogan
diagrams can come from isomorphic real forms. A non-redundant list of Vogan
diagrams with the corresponding isomorphism class of real forms for all simple Lie
algebras is given in [6]. Every Vogan diagram in the list in [6] is normalized in the
sense that at most one vertex is painted black.

For the purpose of defining Poisson structures on the variety of Borel subalgebras
of g, we now recall the explicit construction of a real form of g from a Vogan diagram
[6, Theorem 6.88]. We need to fix the following data for g.

Choose a Cartan subalgebra h of g and let ∆ be the root system for (g, h). Fix
a choice of positive roots ∆+ and let Σ be the basis of simple roots. Let 〈〈, 〉〉
be the Killing form of g and let root vectors {Eα : α ∈ ∆} be chosen such that
[Eα, E−α] = Hα for each α ∈ ∆+, where Hα is the unique element of h defined
by 〈〈H, Hα〉〉 = α(H) for all H ∈ h, and such that the numbers mα,β given by
[Eα, Eβ] = mα,βEα+β when α + β ∈ ∆ are real. Define a compact real form k of g

as
k = spanR{iHα, Xα := Eα − E−α, Yα := i(Eα + E−α)} ,

and let θ be the complex conjugation of g defining k. If d is an involutive automor-
phism of the Dynkin diagram of g, define γd to be the unique automorphism of g

satisfying γd(Hα) = Hd(α) and γd(Eα) = Ed(α) for each simple root α.
Given a Vogan diagram v for g, not necessarily normalized, with the involutive

diagram automorphism d, let tv be the unique element in the adjoint group of g

such that

Adtv
(Eα) =

{
Eα if α is a blank vertex in v,
−Eα if α is a painted vertex in v.
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Define a complex conjugate linear involution

τv := Adtv
◦ γd ◦ θ.

Notation 2.1. We use gv = gτv to denote the real form of g defined by τv. Set
θv = θ|gv

. Then θv is a Cartan involution of gv, and hτv is a θv-stable maximally
compact Cartan subalgebra of gv, with h = hτv + ihτv . The complexification of τv

is

(2.1) γv := τvθ = θτv = Adtv
γd.

Since γv(∆+) = ∆+, the Vogan diagram of gv associated to the triple (θv, hτv , ∆+)
is v.

One of the advantages of introducing the real form gv is as follows. We say
that a real subalgebra l of g is Lagrangian if its real dimension is equal to the
complex dimension of g and if Im〈〈x1, x2〉〉 = 0 for all x1, x2 ∈ l. A decomposition
g = l1 + l2 is called a Lagrangian splitting if both l1 and l2 are Lagrangian. Let n

be the subalgebra of g spanned by the set of all positive root vectors for ∆+. The
following fact is easy to prove.

Lemma 2.2. Let ld := h−τv + n. Then g = gv + ld is a Lagrangian splitting of g.

Let a = spanR{iHα : α ∈ Σ}, and let t = ia. We note that since

h
−τv = h

−γd◦θ = t
−γd + a

γd ,

the Lagrangian complement ld of gv depends only on d, and in the case when d = 1,
we have ld = a + n. Note that hτv = hγd◦θ = tγd + a−γd also depends only on d.

Remark 2.3. Recall [2, Definition 6.10] that two real forms τ1 and τ2 are said to
be in the same inner class if there exists g ∈ Int(g), the adjoint group of g, such
that τ1 = Adgτ2. Inner classes of real forms are in one-to-one correspondence with
involutive automorphisms of the Dynkin diagram of g [2, Proposition 6.12]. Let d
be an involutive automorphism of D(g). Then as v runs over the collection of all
Vogan diagrams with d as the diagram automorphism, the real form gv runs over
all Int(g)-conjugacy classes of real forms of g in the inner class corresponding to d.

3. The Poisson structure Πv on X

Let g be a complex semi-simple Lie algebra, and let X be the variety of all Borel
subalgebras of g. We keep the notation from Section 2. Let v be a Vogan diagram
for g and let gv = gτv be the real form of g constructed in Section 2. Let G be
the connected and simply-connected Lie group with Lie algebra g. Without any
risk of confusion, we shall also denote by τv the lift of τv from g to G, and we set
Gv = Gτv . It follows from [5, Theorem 8.2, p. 320] that the group Gv is connected.

In this section, we will start with a Vogan diagram v for g and define a Poisson
structure Πv on X such that every Gv-orbit in X is a Poisson submanifold. This
Poisson structure comes from an identification of X with the G-orbit through t + n

inside the variety L of Lagrangian subalgebras of g, which was studied in [3]. We
now recall the relevant details.

Set n = dimC g and let GrR(n, g) be the Grassmannian of real n-dimensional
subspaces of g. The set L of all Lagrangian subalgebras of g is naturally a real
subvariety of GrR(n, g). The natural action of G on GrR(n, g) gives rise to a Lie
algebra anti-homomorphism κ from g to the Lie algebra of vector fields on GrR(n, g),
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whose extension from ∧2g to the space of bi-vector fields on GrR(n, g) will also be
denoted by κ. Given a Lagrangian splitting g = l1 + l2, we define the element
Rl1,l2 ∈

∧2
g by

(3.1) 〈Rl1,l2 , (x1 + ξ1) ∧ (x2 + ξ2)〉 = 〈ξ2, x1〉 − 〈ξ1, x2〉, x1, x2 ∈ l1, ξ1, ξ2 ∈ l2,

where 〈 , 〉 = Im〈〈 , 〉〉. Set Πl1,l2 = 1
2κ(Rl1,l2). Clearly, Πl1,l2 is tangent to every

G-orbit in GrR(n, g), so it is tangent to L.

Theorem 3.1 ([3, Theorems 2.14 and 2.18]). The bi-vector field Πl1,l2 restricts to
a Poisson structure on L. If L1 and L2 are the connected subgroups of G with Lie
algebras l1 and l2 respectively, then all the L1- as well as L2-orbits in L are Poisson
submanifolds with respect to Πl1,l2 .

For l ∈ L, let n(l) be the normalizer subalgebra of l in l1. Let m(l) be the
annihilator of n(l) in l, i.e. m(l) = {x ∈ l : 〈x, y〉 = 0 ∀y ∈ n(l)} ⊂ l, and let
V(l) = n(l) + m(l).

Proposition 3.2 ([3, Theorem 2.21], [9, Corollary 7.3]). For each l ∈ L, the space
V(l) is a Lagrangian subalgebra of g. The co-dimension of the symplectic leaf of
Πl1,l2 through l in the orbit L1 · l is equal to dim(V(l) ∩ l2).

Notation 3.3. Let v be a Vogan diagram for g. We denote by Πv, the Poisson
structure on L defined by the Lagrangian splitting g = gv + ld in Lemma 2.2. Let
H, N , and B be respectively the connected subgroups of G with Lie algebras h,
n, and b = h + n, so B = HN . Identify the G-orbit through t + n ∈ L with
G/B ∼= X. The induced Poisson structure on X will also be denoted by Πv. Let
H−γd◦θ = {h ∈ H : γd ◦ θ(h) = h−1} and let Ld = H−γd◦θN . By the Bruhat
lemma, orbits of Ld in X ∼= G/B, which are the same as the N -orbits in X, are
labeled by the elements in the Weyl group W of ∆. We refer to these N -orbits as
the Bruhat cells in X.

By [3, Theorem 2.18], we have

Proposition 3.4. Each Gv-orbit in X as well as each Bruhat cell in X is a Poisson
submanifold with respect to Πv.

When v is the Vogan diagram with d = 1 and no vertex painted, we have τv = θ,
so gv = k. The Poisson structure Πv in this case was first introduced in [11] and
[13], and it has the property that its symplectic leaves are precisely the Bruhat cells
(hence the name “Bruhat Poisson structure” in [11]). In [3] and [10] this Poisson
structure was related to some earlier work of Kostant [7] and of Kostant-Kumar [8]
on the Schubert calculus on X.

The splitting g = gv + ld naturally defines a Lie bialgebra structure on gv and
therefore a Poisson Lie group structure on Gv [11]. All the Gv-orbits in L become
Gv-Poisson homogeneous spaces [3, 9]. We remark that in [1], Andruskiewitsch
and Jancsa classified non-triangular Lie bialgebra structures on gv using Belavin-
Drinfeld triples. The one defined by the splitting g = gv + ld comes from the
standard Belavin-Drinfeld triple. We refer to [1] for details.

Example. Here we take g = sl(2, C) and

gv = su(1, 1) =
{(

ix y + iz
y − iz −ix

)
: x, y, z ∈ R

}
.
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Then d = 1 and ld = a + n consists of upper triangular matrices in sl(2, C) with
real diagonal entries. Identify G/B with P1 via the action(

a b
c d

)
· [w0 : w1] = [aw0 + bw1 : cw0 + dw1]

of G on P
1 and by taking [1 : 0] ∈ P

1 as the basepoint. There are two Bruhat cells:
the zero-dimensional basepoint [1 : 0], and the other being the rest:

U1 = P
1\{[1 : 0]} = {[w0 : w1], w1 
= 0}.

In terms of the holomorphic coordinate z on U1 given by z = w0/w1, the Poisson
structure Πv, up to a scalar multiple, is given by

Πv = i(1 − |z|2) ∂

∂z
∧ ∂

∂z̄
.

Setting u = 1/z, we see that in the u-coordinate on the open set

U0 = {[w0 : w1] ∈ P
1, w0 
= 0} = {[1 : u], u ∈ C},

we have
Πv = i(|u|2 − 1)|u|2 ∂

∂u
∧ ∂

∂ū
.

Thus Πv vanishes precisely at the basepoint [1 : 0] and at every point of the form
[z : 1] with |z| = 1. If we identify P1 with the unit sphere S2 in R3 via

(3.2) P
1 −→ S2 : [w0, w1] �−→

(
2Re(w0w1)
|w0|2 + |w1|2

,
2Im(w0w1)
|w0|2 + |w1|2

,
|w0|2 − |w1|2
|w0|2 + |w1|2

)
,

then we see that Πv vanishes at the “North pole” (0, 0, 1) and at every point on the
Equator x3 = 0. Under this identification, there are exactly three orbits of SU(1, 1)
on S2: the Northern hemisphere, the Equator, and the Southern hemisphere. Each
of these three orbits is clearly a Poisson submanifold.

4. Symplectic leaves of Πv in X

Suppose that O is a Gv-orbit in X and C is a Bruhat cell such that O ∩ C 
= ∅.
Since g = gv + ld, O and C intersect transversally. By Proposition 3.4, O ∩ C is a
Poisson submanifold of Πv. In this section we show that (O ∩ C, Πv) is a regular
Poisson manifold, and we compute the dimension of its symplectic leaves.

It is well known [14] that there are only finitely many Gv-orbits in X. We first
recall from [12, Section 6] some facts about these orbits.

Let NG(h) be the normalizer subgroup of h in G. Set

Z = {g ∈ G : g−1τv(g) ∈ NG(h)}.
Then H acts on Z from the right by right multiplication, and Gv acts on Z from
the left by left multiplication. Let Z be the double coset space

Z = Gv\Z/H.

For each z ∈ Z, choose any gz ∈ Z in the double coset z and define Oz to be the Gv-
orbit in X through gzB ∈ X ∼= G/B. Clearly, Oz is independent of the choice of gz.
According to [12, Theorem 6.1.4], the map z �→ Oz is a one-to-one correspondence
between the set Z and the set of Gv-orbits in X. Let W = NG(h)/H be the Weyl
group. Thus we also have the map

ϕ : Z −→ W : z = GvgzH �−→ g−1
z τv(gz)H ∈ W.



1710 P. FOTH AND J.-H. LU

According to [12, Theorem 6.4.2], the codimension of the Gv-orbit Oz in X equals
l(ϕ(z)), where l is the length function on the Weyl group W . We also introduce
the map

σz = ϕ(z)τv : h −→ h.

For any gz in the double coset z, we also have σz = Ad−1
gz

◦ τv ◦ Adgz
, so σz is an

involution.
Assume now that z ∈ Z and w ∈ W are such that Oz ∩ Cw 
= ∅, where Cw is

the Bruhat cell in X corresponding to w, i.e. the N -orbit through w ∈ G/B. Then
dimR Cw = 2l(w), and since Oz and Cw intersect transversally, we have

dim(Oz ∩ Cw) = 2l(w) − l(ϕ(z)).

Now define
δz,w = dim(hwσzw−1 ∩ h

−τv).

Theorem 4.1. Each symplectic leaf in the intersection Oz ∩ Cw has dimension
equal to

dim(Oz ∩ Cw) − δz,w = 2l(w) − l(ϕ(z)) − δz,w.

Proof. We use Proposition 3.2 to compute dimensions of the symplectic leaves in
Oz ∩ Cw. Let x = gzB ∈ X be a point in Oz ∩ Cw, where gz ∈ Z lies in the double
coset z. Let lx = Adgz

(t + n) ∈ L. Let n(lx) = gv ∩ Adgz
(h + n) be the normalizer

subalgebra of lx in gv, let m(lx) be the annihilator subspace of n(lx) in lx, and let
V(lx) = n(lx) + m(lx). We claim that V(lx) = Adgz

(hσz + n). Indeed, it follows
from the definition of σz that

Adgz
(hσz) ⊂ gv ∩ Adgz

(h + n) = n(lx) .

It is also clear that Adgz
n ⊂ m(lx), so

Adgz
(hσz + n) ⊂ n(lx) + m(lx) = V(lx) .

Since both Adgz
(hσz + n) and V(lx) have the same dimension, they must coincide.

Now let Sx be the symplectic leaf of Πv in X through x. By Proposition 3.2,
the codimension of Sx in Oz is equal to dim(V(lx) ∩ ld). Let ẇ ∈ NG(h) be a
representative of w in K. Since x ∈ Cw, there exist n ∈ N and b ∈ B such that
gz = nẇb. Then we have

V(lx) ∩ ld = (Adnẇb(hσz + n)) ∩ (h−τv + n)
= Adn

(
(Adẇ(hσz + n)) ∩ (h−τv + n)

)
= Adn

(
h

wσzw−1
∩ h

−τv + (Adẇn) ∩ n

)
,

where in the last line we have the direct sum of vector spaces. Since

dim(Adẇn) ∩ n = dimR X − dimR Cw ,

we have
dim(V(lx) ∩ ld) = δz,w + dimR X − dimR Cw ,

and thus

dim Sx = dimOz − dim(V(lx) ∩ ld) = dim(Oz ∩ Cw) − δz,w.

�
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Note that the number δz,w depends only on d and the two Weyl group elements
ϕ(z) and w. Define d : W → W by d(w) = γdwγd. Following [12], we say that
w ∈ W is a d-twisted involution if d(w) = w−1. Denote by Id the set of all d-twisted
involutions in W . Since for every g ∈ G we have τv(g−1τv(g)) = (g−1τv(g))−1, every
ϕ(z) is in Id. The Weyl group W acts on Id by

w1 ∗ w = w1wd(w−1
1 ) for w1 ∈ W, and w ∈ Id ,

and the set ϕ(Z) ⊂ Id is W -invariant. In fact, the W -action on G/H, given by
w · gH = gw−1H, commutes with the left action of Gv by left multiplication, and
thus induces a left action of W on Z, which we denote by w ·z for w ∈ W and z ∈ Z.
It is also easy to see that ϕ : Z → W is W -equivariant, i.e. ϕ(w ·z) = w∗ϕ(z) for all
w ∈ W and z ∈ Z. Similarly, the involution τv : G → G gives rise to an involution
on Z which depends only on d. Denote this involution by z → d(z). Then we also
have ϕ(d(z)) = dϕ(z) = ϕ(z)−1. As maps on h, we see that wσzw

−1 = (w∗ϕ(z))τv.
Thus we also have

δz,w = dim(h(w∗ϕ(z))τv ∩ h
−τv).

Corollary 4.2. 1) When w ∗ ϕ(z) = 1, symplectic leaves of Πv in Oz ∩ Cw are
precisely its connected components.

2) Every open orbit Oz has an open symplectic leaf Oz ∩ Cw0 , where w0 is the
longest element in W .

3) If d = 1, symplectic leaves in an open orbit Oz are precisely the connected
components of intersections of Bruhat cells with Oz.

Proof. 1) When w ∗ϕ(z) = 1, we have δz,w = 0, so every symplectic leaf in Oz ∩Cw

is open in Oz ∩ Cw.
2) Since Cw0 is dense in X, it intersects with every open orbit Oz. Since an orbit

Oz is open if and only if ϕ(z) = 1, statement 2) follows from 1) and the fact that w0

commutes with d. The fact that Cw0 ∩Oz is connected follows from the observation
that Oz is a connected open complex submanifold of X and thus Oz ∩ (X \ Cw0) is
a divisor in Oz.

3) follows directly from 1). �
Now consider the group Hτv = H ∩ Gv. Since the centralizer of hτv in Gv also

centralizes h, we see that Hτv is the Cartan subgroup of Gv corresponding to the
Cartan subalgebra hτv . Then according to [6, Proposition 7.90] the group Hτv is
connected.

The Poisson structure Πv on X is Hτv -invariant. Indeed, let R ∈
∧2

g be
the element given in (3.1) for l1 = gv and l2 = ld. We can also represent R as
R =

∑
i ξi ∧ yi, where {yi} is a basis of gv, and {ξi} is the dual basis of ld with

respect to the pairing between gv and ld given by 〈 , 〉, the imaginary part of the
Killing form on g. If h ∈ Hτv , then {Adhyi} is a basis of gv, and {Adhξi} is its
dual basis. Thus AdhR = R.

Let z ∈ Z and w ∈ W be such that Oz and Cw have a non-empty intersection,
and let x ∈ Oz ∩ Cw. Clearly, Hτv leaves Oz ∩ Cw invariant. Since the Poisson
structure Πv is Hτv -invariant, if Sx is the symplectic leaf of Πv through x, then
hSx := {hx1 : x1 ∈ Sx} is the symplectic leaf of Πv through hx. Define

Fx :=
⋃

h∈Hτv

hSx .

Proposition 4.3. For any x ∈ X, the set Fx is a connected component of Oz ∩Cw.
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Proof. It is easy to see that if Fx1 ∩Fx2 
= ∅, then Fx1 = Fx2 . The statement would
follow once we prove that Fx is an open subset of Oz ∩ Cw for each x.

Let x = gzB ∈ Oz ∩ Cw with gz ∈ Z in the double coset z. For y ∈ hτv , let
Xy be the vector field on X generating the action of exp(ty) ∈ Hτv on X. We
claim that Xy(x) ∈ TxSx if and only if y ∈ p(h(w∗ϕ(z))τv), where p : h → hτv

is the projection with respect to the decomposition h = hτv + h−τv . Assume the
claim. Then since the kernel of the map p : h(w∗ϕ(z))τv → hτv has dimension
dim(h(w∗ϕ(z))τv ∩ h−τv) = δz,w, the image of the map

Jx : h
τv −→ TxOz/TxSx : y �−→ Xy(x) + TxSx

has dimension equal to dim(hτv)− dim(h(w∗ϕ(z))τv) + δz,w = δz,w. Thus Jx is onto,
and the Hτv -orbit in Oz ∩ Cw through x is transversal to the symplectic leaf Sx. It
follows that Fx is open in Oz ∩ Cw.

It remains to prove the claim. Also denote by p : g → gv the projection with
respect to the decomposition g = gv + ld, and let q be the projection q : gv →
gv/gv ∩ Adgz

b ∼= TxOz. Then by [9, Corollary 7.3], we have TxSx = (q ◦ p)(V(lx)),
where, as in the proof of Theorem 4.1, V(lx) = Adgz

(hσz + n). Let y ∈ hτv . If
Xy(x) ∈ TxSx, then there exist y1 ∈ ld and y2 ∈ gv with y1 + y2 ∈ V(lx) such
that y − y2 ∈ gv ∩ Adgz

b ⊂ V(lx). Thus y + y1 = y − y2 + y1 + y2 ∈ V(lx). Write
y1 = ξ1 + u1, where ξ1 ∈ h−τv and u1 ∈ n. Then there exist ξ2 ∈ hσz and u2 ∈ n

such that y + ξ1 + u1 = Adgz
(ξ2 + u2). Write gz = nẇb, where n ∈ N, b ∈ B,

and ẇ is a representative of w in K. Write Adn−1(y + ξ1 + u1) = y + ξ1 + u′
1 and

Adb(ξ2 + u2) = ξ2 + u′
2, where u′

1, u
′
2 ∈ n. Then we have

y + ξ1 + u′
1 = Adẇ(ξ2 + u′

2).

Since y + ξ1, Adẇξ2 ∈ h and u′
1, Adẇu′

2 ∈ n + n−, where n− = θ(n), we have
y + ξ1 = Adẇξ2 ∈ h(w∗ϕ(z))τv . Thus y ∈ p(h(w∗ϕ(z))τv). Conversely, if y ∈ hτv is
such that y + ξ1 ∈ h(w∗ϕ(z))τv = Adẇhσz for some ξ1 ∈ h−τv , write y + ξ1 = Adẇξ2

for ξ2 ∈ hσz . Let Adb−1ξ2 = ξ2 + u2 for some u2 ∈ n. We then have

Adn(y + ξ1) = Adnẇb(ξ2 + u2) ∈ V(lx).

On the other hand, let Adn(y + ξ1) = y + ξ1 + u1 with u1 ∈ n. We see that
y = p(Adn(y + ξ1)) so Xy(x) ∈ TxSx. �

5. Invariant Poisson cohomology of open orbits

Let Oz be a Gv-orbit in X equipped with the Poisson structure Πv. Then
(Oz, Πv) is a Poisson homogeneous space for the Poisson Lie group Gv. The Gv-
invariant Poisson cohomology of (Oz, Πv), denoted by H•

Πv,Gv
(Oz), is defined as

the cohomology of the cochain complex (χ•(Oz)Gv , ∂Πv
), where χ•(Oz)Gv is the

space of all Gv-invariant complex multi-vector fields on Oz, dΠv
(V ) = [Πv, V ], and

[·, ·] is the Schouten bracket of the multi-vector fields.

Proposition 5.1. When Oz is an open Gv-orbit in X, the Gv-invariant Poisson
cohomology H•

Πv,Gv
(Oz) is isomorphic to the de Rham cohomology of X.

Proof. As in the proof of Theorem 4.1, let x = gzB ∈ X be an arbitrary point in
Oz, where gz ∈ Z is in the coset z, and let V(lx) = Adgz

(hσz + n). Since Oz is
open, the stabilizer subalgebra of gv at x is gv∩V(lx) = Adgz

(hσz). By [9, Theorem
7.5], the Gv-invariant Poisson cohomology H•

Πv,Gv
(Oz) is isomorphic to the relative

Lie algebra cohomology of the Lie algebra V(lx) ⊗ C relative to the subalgebra
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(Adgz
(hσz)) ⊗ C. Thus the Gv-invariant Poisson cohomology is isomorphic to the

h-invariant part of the Lie algebra cohomology of the direct sum Lie algebra n ⊕ n

with coefficients in C, which by Kostant’s theorem [7], is isomorphic to the de Rham
cohomology of X. �

6. Remarks

We have constructed a Poisson structure Πv on X for each Vogan diagram v for g

(which is not necessarily normalized). In particular, each Bruhat cell Cw in X carries
the Poisson structure Πv. It would be interesting to study connections between the
Poisson structures for different v. Especially interesting are the properties of Πv

that depend only on the inner class d of the real form gv. We also remark that the
Poisson structure Πv is defined on the whole variety L of Lagrangian subalgebras
of g. We have only been looking at the restriction of Πv to a particular G-orbit,
namely the G-orbit through the Lagrangian subalgebra t+n. There are many other
interesting G-orbits in L, such as the G-orbit through a given real form of g. It
would be interesting to study the properties of the Poisson structure Πv on these
orbits as well as on their closures, with respect to both the classical topology and
the Zariski topology.
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