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H. Leung ‡, T. H. Tse §, F. T. Chan ¶, and T. Y. Chen ‖

Abstract

Previous theoretical studies on the effectiveness of partition testing and random testing have assumed

that test cases are selected with replacement. Although this assumption has been well known to be less

realistic, it has still been used in previous theoretical work because it renders the analyses more tractable.

This paper presents a theoretical investigation aimed at comparing the effectiveness when test cases are

selected with and without replacement, and exploring the relationships between these two scenarios. We

propose a new effectiveness metric for software testing, namely the expected number of distinct failures

detected, to re-examine existing partition testing strategies.

1 Introduction

Random testing and subdomain testing are two commonly used strategies in software testing. In random

testing, test cases are selected randomly from the entire input domain. On the other hand, a subdomain

testing strategy consists of two components: the design of a partitioning scheme and the design of a

test case allocation scheme. The partitioning scheme divides the input domain into subdomains, while

the test case allocation scheme specifies the number of test cases chosen from each subdomain and the

manner of selection. In particular, when the subdomains are mutually disjoint, subdomain testing is

known as partition testing.

Traditionally, random testing has been regarded by most people as the worst strategy [1, 2, 3, 4]

since it does not make use of any information from the software or its specification. Partition testing

has been considered much more systematic and hence better than random testing in revealing failures.

When Duran and Ntafos [5], as well as Hamlet and Taylor [6], performed simulated and empirical

comparisons between partition and random testing, however, they came to a surprising conclusion that

the two methods exhibit only a marginal difference in their error detection capabilities. Hence, random

testing can be more cost effective than partition testing when there are significant overheads in the latter
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approach. If we accept that dividing the domain into only one subdomain is a special case of partitioning,

we can visualize random testing as a degenerated form of partition testing. Thus, random testing has

been widely accepted as a benchmark for the effectiveness of partition testing techniques.

There have been a number of papers comparing the effectiveness between random testing and

partition testing [7, 8] and among different test case allocation schemes of partition testing [9]. In

all these studies, the effectiveness metrics used have been either the probability of detecting at least

one failure (P-measure, as used in [8], for example) or the expected number of failures detected

(E-measure, as used in [7], for example). Furthermore, the test cases have been assumed to be selected

with replacement. As a consequence, some test cases might be duplicated. In real life, it is undesirable

to have duplicated test cases, unless the cost of checking duplication is higher than the cost of test case

execution. Thus, the practice of allowing test cases to be repeated is obviously less practical than the

alternative practice of drawing test cases without replacement. However, the former gives rise to much

simpler mathematical models, and hence facilitates the analysis of testing strategies.

This paper presents a theoretical comparison of the effectiveness between random testing and par-

tition testing when test cases are selected with and without replacement, and a review of partition

testing strategies for test case selection without replacement. Furthermore, we introduce a new testing

effectiveness metric, known as the D-measure, which is defined as the expected number of distinct

failures detected. As a note here, D-measure and E-measure are different when test cases are selected

with replacement, but are equivalent when test cases are selected without replacement, Our findings will

enhance the understanding of the relative effectiveness of testing strategies, and hence help software

testers choose the appropriate schemes.

In the next section, we take a look at previous studies on the effectiveness of test case selection

with and without replacement. In Section 3, we analyze the probability of detecting at least one failure

when test cases are selected without replacement, and review the existing testing strategies with this

new assumption. Section 4 defines an effectiveness metric that is more intuitively appealing than the

E-measure. Section 5 provides some guidelines to software testers for choosing appropriate test case

selection strategies. Section 6 is the conclusion.

2 Previous Work

First, we present the basic notation and concepts here before summarizing previous studies by various

authors on the effectiveness of test case selection with and without replacement. Let D denote the input

domain of a program. The elements of D that produce incorrect outputs, and hence reveal program

errors, are called failure-causing inputs. Let the variables d, m, and n denote the size of the input

domain, the size of the failure-causing inputs, and the total number of test cases, respectively. The

failure rate θ and sampling rate σ are defined as θ =
m

d
and σ =

n

d
, respectively. It should be noted

that, while the sizes and locations of failure-causing inputs are not known to software testers before the

testing process, they are nevertheless fixed for given programs.

For any partition testing strategy P, the k disjoint subdomains formed are denoted by Di, i = 1, 2,
. . . , k, where k ≥ 2. For any subdomain Di, let di, mi, and ni denote its size, the size of the failure-

causing inputs, and the number of test cases selected in this subdomain, respectively. Its failure rate θi

and sampling rate σi are defined as θi =
mi

di

and σi =
ni

di

, respectively.

For clarity, previous work for situations where test cases are selected with and without replacement

will be presented separately.
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2.1 Test Case Selection With Replacement

In this section, we review the previous work by various authors on situations where test cases are

randomly selected based on a uniform distribution, independent of one another and with replacement.

For random testing, the probability of detecting at least one failure (P-measure), denoted by PR(n), is

equal to 1 − (1−θ)n
, and the expected number of failures detected (E-measure), denoted by ER(n),

is equal to nθ. For partition testing, the P-measure, denoted by PP(n1, n2, . . . , nk), is equal to

1 − ∏
k
i=1(1−θi)

ni , while the E-measure, denoted by EP(n1, n2, . . . , nk), is equal to ∑
k
i=1 niθi.

Suppose nr test cases are selected randomly with replacement. Let d be the size of the input domain.

The expected number of distinct test cases nd is d

[

1 −

(

1−
1

d

)nr
]

. The following corollary follows

immediately.

Corollary 1

Suppose test cases are selected randomly with replacement from an input domain of size d. In order to

expect nd of these test cases to be distinct, where 0 ≤ nd ≤ d−1, we should select nr =
log
(

1− nd

d

)

log
(

1− 1
d

) test

cases with replacement.

2.1.1 Proportional Sampling Strategy

In their analytical study of partition testing, Weyuker and Jeng [8] proved that if d1 = d2 = · · · = dk and

n1 = n2 = · · · = nk, then PP(n1, n2, . . . , nk) ≥ PR(n). This was the first sufficient condition derived for

PP(n1, n2, . . . , nk) ≥ PR(n).
Chen and Yu [10] generalized Weyuker and Jeng’s result and proposed the proportional sampling

strategy. They proved that if σ1 = σ2 = · · · = σk, then PP(n1, n2, . . . , nk) ≥ PR(n). Since σi = σ j

implies
ni

n j

=
di

d j

, it is not necessary to know the absolute sizes of the subdomains in order to apply the

proportional sampling strategy. Only the relative sizes of the subdomains are required to determine the

values of ni’s. For example, if
d1

d2

=
1

2
, the proportional sampling strategy simply recommends that test

cases should be allocated to these two subdomains in a 1 to 2 ratio. As suggested by Chan et al. [11], a

handy technique to estimate the relative sizes of the subdomains is the Monte Carlo method [12]. The

proportional sampling strategy is more useful in practice than that of Weyuker and Jeng, since the latter

requires all subdomains to be of equal sizes.

Similarly, Chen and Yu [7] proved that the proportional sampling strategy also ensures that the

E-measure of partition testing is just as good as that of random testing. In other words, if σ1 = σ2 =
· · · = σk, then Ep(n1, n2, . . . , nk) = Er(n).

Since a strict application of the proportional sampling strategy may cause practical problems, such

as a non-integral number of test cases, Chan et al. [11] provided some guidelines to handle this kind of

problems.

2.1.2 Optimally Refined Proportional Sampling Strategy

Based on a refinement of the proportional sampling strategy, Chan et al. [11] proposed an optimally

refined proportional sampling (ORPS) strategy, which divides the input domain into as many equal-

sized subdomains as the number of test cases, and selects one test case randomly from each subdomain.
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It should be noted that the ORPS strategy is also a special case of Weyuker and Jeng’s equal-sized and

equal-numbered strategy.

When test cases are selected with replacement, the ORPS strategy has a higher probability of

detecting at least one failure than random testing. However, the partitioning overheads may offset the

improvement in revealing failures. Hence, Chan et al. recommended that, when it is fairly easy to divide

the input domain into subdomains of equal sizes, the ORPS strategy is preferred to random testing. Their

empirical study on a sample of published programs showed that the P-measure of the ORPS strategy was

about 7.5% higher than that of random testing.

2.1.3 Follow-the-Crowd Strategies

Without loss of generality, assume that θ1 ≥ θ2 ≥ ·· · ≥ θk. Chen and Yu [7] proved that if σ1 ≥ σ2 ≥
·· · ≥ σk, then PP(n1, n2, . . . , nk) ≥ PR(n), and that if (θi − θ)(σi −σ) ≥ 0 for all i = 1, 2, . . . , k,

then PP(n1, n2, . . . , nk) ≥ PR(n). Obviously, when σ1 = σ2 = · · · = σk, the above two conditions are

satisfied. Hence, the proportional sampling strategy is a special case of these two strategies.

Assuming that θ1 ≥ θ2 ≥ ·· · ≥ θk, they found similar conditions for the E-measure, namely that

if σ1 ≥ σ2 ≥ ·· · ≥ σk, then EP(n1, n2, . . . , nk) ≥ ER(n), and if (θi − θ)(σi − σ) ≥ 0 for all i =
1, 2, . . . , k, then EP(n1, n2, . . . , nk)≥ ER(n). The reverse is also true. Thus, if σ1 ≤ σ2 ≤ ·· · ≤ σk, then

EP(n1, n2, . . . , nk)≤ER(n), and if (θi−θ)(σi−σ)≤ 0 for all i = 1, 2, . . . , k, then EP(n1, n2, . . . , nk)≤
ER(n).

The merit of these strategies is that they can be applied once the relative ordering of the failure rates

in respective subdomains is known. There are various ways to estimate the relative ordering of the failure

rates. For example, if the input domain is partitioned according to the specified functions, a subdomain

associated with a more complex function may be estimated to have a higher failure rate.

No name was given to these strategies. For the ease of discussion in this paper, we shall refer to

them as the follow-the-crowd strategies because, intuitively speaking, they recommend more test cases

where the failure rate is higher.

2.1.4 Partial Sums Condition

Consider two partition testing strategies with the same partitioning scheme but different test case

allocation schemes. Software testers would be interested in knowing how one partition testing strategy

compares with another. Chan et al. [9] proved a partial sums condition for this purpose. Suppose

the subdomains are labeled in decreasing order of the failure rates, so that θ1 ≥ θ2 ≥ ·· · ≥ θk. The

partial sums of a partitioning strategy A is defined as ∑
r
i=1 nAi for r = 1, 2, . . . , k− 1, where nAi is the

number of test cases to be selected from subdomain Di. For two partitioning strategies A and B with

the same partitioning scheme, they proved that if ∑
r
i=1 nAi ≥ ∑

r
i=1 nBi for all r = 1, 2, . . . , k− 1, then

PP(nA1, nA2, . . . , nAk) ≥ PP(nB1, nB2, . . . , nBk) and EP(nA1, nA2, . . . , nAk) ≥ EP(nB1, nB2, . . . , nBk).
In other words, if every partial sum of Strategy A is greater than or equal to the corresponding one in

Strategy B, then Strategy A is better than Strategy B in terms of both the P-measure and E-measure.

2.2 Test Case Selection Without Replacement

There are a number of drawbacks if test cases are selected with replacement. Since test cases may be

repeated, testing resources may then be wasted. Furthermore, even if the number of selected test cases

exceeds the size of the input domain, there is no guarantee that all the failures will be revealed, because

some failure-causing inputs may be missed while some other inputs may have been repeatedly selected

as test cases.
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Let us consider situations where test cases are selected without replacement. For random testing, the

probability of detecting at least one failure (P-measure) is equal to

1 −

(

d −m

d

) (

d −m−1

d −1

)

· · ·

(

d −m−n+1

d −n+1

)

or

1 −
(d −m)!(d −n)!

d!(d −m−n)!

when d > m+n, and 1 otherwise. The expected number of failures detected (E-measure) is still equal to

nθ. It is because, in the derivation of this formula, we need not consider whether the failures are distinct.

For partition testing when test cases are selected with replacement, the P-measure is equal to

1 −
k

∏
i=1

(di −mi)!(di −ni)!

di!(di −mi −ni)!
, and the E-measure is equal to ∑

k
i=1 niθi.

3 Probability of Detecting at Least One Failure when Test Cases are

Selected Without Replacement

We note from the last section that the result of the P-measure when test cases are selected with replace-

ment is different from that when test cases are selected without replacement In order to differentiate

between them, the latter will be called the Q-measure in this paper.

Definition 1 (Q-Measure)

The Q-measure is defined as the probability of detecting at least one failure when test cases are selected

without replacement.

The Q-measure for random testing will be denoted by QR(n) and that for partition testing by

QP(n1, n2, . . . , nk).
The Q-measure better reflects the real life situation of software testing, since testers would prefer not

to repeat test cases whenever possible. However, an analytical study of the Q-measure would be very

complex. We shall propose in this section how the mathematical complexity can be alleviated by linking

up the Q-measure when test cases are selected without replacement with the P-measure when test cases

are selected with replacement, thus paving the way for the analysis of various testing strategies.

Before we do so, let us reiterate some of our major observations from the previous section:

(a) Given an integer nr, nd may not be an integer.

(b) Given an integer nd , nr may not be an integer.

(c) QR(n) and PR(n) are the probabilities of detecting at least one failure only when n is an integer.

(d) The formula for PR(n) is still well-defined and in fact continuous when n is real. However, this

does not apply to QR(n).

In view of these points, we shall keep all the nd’s as integers in our analysis. The corresponding nr’s are

computed using the formula in Corollary 1. We extend the domain of the function PR(n) = 1− (1−θ)n

from positive integers to positive real numbers.
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3.1 PR(nr) as a Lower Bound of QR(nd)

We have pointed out that the Q-measure is very complex for useful mathematical analysis and hence

difficult to be applied in practice. It is obvious, however, that QR(n) ≥ PR(n) because some of the test

cases may be duplicated when they are selected with replacement. Given nd test cases selected without

replacement from an input domain of size d, and nr as computed from the formula in Corollary 1, we

are interested in the relationship between QR(nd) and PR(nr). We find that PR(nr) is a lower bound of

QR(nd). In order to prove this property, we need the following lemmas:

Lemma 1

Consider an input domain of size d with m failure-causing instances. Let nd be the number of test cases

selected randomly without replacement and nr =
log
(

1− nd

d

)

log
(

1− 1
d

) .

PR(nr) = 1 −
(

1−
m

d

)nr

= 1 −
(

1−
nd

d

)m′

, where m′ =
log
(

1− m
d

)

log
(

1− 1
d

)

Proof

log

[

(

1−
nd

d

)m′
]

= m′ log
(

1−
nd

d

)

=
log
(

1− m
d

)

log
(

1− 1
d

) log
(

1−
nd

d

)

=
log
(

1− nd

d

)

log
(

1− 1
d

) log
(

1−
m

d

)

= nr log
(

1−
m

d

)

= log
[(

1−
m

d

)nr
]

Therefore,
(

1−
m

d

)nr

=
(

1−
nd

d

)m′

and the proof is done.

Corollary 2

If m = 1, then PR(nr) =
nd

d
= QR(nd).

Proof

When m = 1, we have m′ = 1. Hence, it follows from Lemma 1 that PR(nr) = 1 −
(

1−
nd

d

)

=
nd

d
.

On the other hand,
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QR(nd) = 1 −

(

d −m

d

) (

d −m−1

d −1

)

· · ·

(

d −m−nd +1

d −nd +1

)

= 1 −

(

d −1

d

) (

d −2

d −1

)

· · ·

(

d −nd

d −nd +1

)

= 1 −
d −nd

d

=
nd

d

= PR(nr)

Lemma 2

Let f (x) = x (x+1) · · · (x+k) and g(x) = (x+k)α(k+1), where k > 1 is an integer and α > 1. Let C > 0.

Then C f (x) and g(x) do not meet at more than two points for x ≥ 0.

Proof

Let h(x) =
f (x)

g(x)
. Note that both h(x) and h′(x) =

d

dx
h(x) are continuous and differentiable for x > 0.

The lemma is proved if we can show that for x > 0, h′(x) = 0 occurs at exactly one point. Since

h′(x) =
d

dx

f (x)

g(x)
=

f ′(x)g(x)−g′(x) f (x)

g(x)2
, it is equivalent to argue that for x > 0,

f ′(x)

f (x)
=

g′(x)

g(x)
occurs

at exactly one point. Next
f ′(x)

f (x)
=

1

x
+

1

x+1
+ · · ·+

1

x+ k
and

g′(x)

g(x)
= α

k +1

x+ k
. Let

p(x) =

(

1

x
+

1

x+1
+ · · ·+

1

x+ k

) /

k +1

x+ k

=

(

1

k +1

) (

x+ k

x
+

x+ k

x+1
+ · · ·+

x+ k

x+ k−1
+

x+ k

x+ k

)

=

(

1

k +1

) (

k +1+
k

x
+

k−1

x+1
+

k−2

x+2
+ · · ·+

1

x+ k−1

)

= 1+

(

1

k +1

) (

k

x
+

k−1

x+1
+

k−2

x+2
+ · · ·+

1

x+ k−1

)

It is easy to see that, for x > 0, p(x) is monotonically decreasing as x increases. Moreover, limx→0 p(x) =
∞ and limx→∞ p(x) = 1. Hence, p(x) is a bijection from (0, ∞) to (1, ∞). Thus, p(x) = α occurs at

exactly one point where α > 1.

Lemma 3

For any k = 0, 1, . . . , d −1, if k′ =
log
(

1− k
d

)

log
(

1− 1
d

) , then k′ ≥ k.

Proof

From

log

(

1−
1

d

)k′

= k′ log

(

1−
1

d

)

= log

(

1−
k

d

)
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we obtain
(

1−
1

d

)k′

= 1−
k

d

Hence,

k = d − d

(

1−
1

d

)k′

Suppose k′ is an integer. Then k can be considered to be that the expected number of distinct test cases

obtained when k′ random test cases are selected with replacement based on a uniform distribution from

a domain of size d. Thus, k′ ≥ k. Suppose k′ is not an integer. Let k1 = d − d

(

1−
1

d

)⌈k′⌉

. Then

k < k1 ≤ ⌈k′⌉. Since k is an integer but k′ is not an integer, we deduce that k < k′.

We are now ready to prove that PR(nr) is a lower bound of QR(nd).

Theorem 1

Consider an input domain of size d with m failure-causing instances. Suppose nd distinct test cases are

selected randomly, where nd is a non-negative integer smaller than d. Let QR(nd) be the probability of

detecting at least one failure. If nr =
log(1− nd

d
)

log(1− 1
d
)

and PR(nr) = 1 −
(

1−
m

d

)nr

, then QR(nd) ≥ PR(nr).

Proof

When m = 0, QR(nd) = 0 = PR(nr). When m = 1, QR(nd) =
nd

d
= PR(nr). When m = d, QR(nd) = 1 =

PR(nr). Therefore, we need only show that

1 −

(

d −m

d

) (

d −m−1

d −1

)

· · ·

(

d −m−nd +1

d −nd +1

)

≥ 1 −
(

1−
m

d

)nr

for nd = 0, 1, . . . , d −1 and m = 2, 3, . . . , d −1. By Lemma 1, if m′ =
log
(

1− m
d

)

log
(

1− 1
d

) , the problem can

be transformed into

(

d −m

d

) (

d −m−1

d −1

)

· · ·

(

d −m−nd +1

d −nd +1

)

≤
(

1−
m

d

)nr

=
(

1−
nd

d

)m′

for nd = 0, 1, . . . , d −1 and m = 2, 3, . . . , d −1. Since

(

d −m

d

) (

d −m−1

d −1

)

· · ·

(

d −m−nd +1

d −nd +1

)

=
(d −m)!(d −nd)!

d!(d −m−nd)!

=
1

d (d −1) · · · (d −m+1)
(d −nd) (d −nd −1) · · ·(d −m−nd +1)

and by letting x = d −m−nd +1, it will be equivalent to show that

dm′

d (d −1) · · · (d −m+1)
(x) (x+1) · · · (x+m−1) ≤ (x+m−1)m′

8



for x = −m+2, −m+3, . . . , d −m+1. Next, we observe that

dm′

d (d −1) · · · (d −m+1)
(x) (x+1) · · · (x+m−1) = 0

and (x+m−1)m′
> 0 for x = −m+2, −m+3, . . . , 0. Thus, the proof is done if we can show that

dm′

d (d −1) · · · (d −m+1)
(x) (x+1) · · · (x+m−1) ≤ (x+m−1)m′

for all real values of x in the range (0,d −m+1].

Let C =
dm′

d (d −1) · · · (d −m+1)
, f (x) = x (x + 1) · · · (x + m − 1) and g(x) = (x + m − 1)m′

.

Since m′ > m and C > 0, by Lemma 2, C f (x) and g(x) do not meet at more than two points for x ≥ 0.

When x = d −m,

C f (x) =
dm′

d (d −1) · · · (d −m+1)
(x) (x+1) · · · (x+m−1)

= dm′ d −m

d

=
(

1−
m

d

)

dm′

=
(

1−
m

d

)

dlog(1−m/d)/ log(1 − 1/d)

=
(

1−
m

d

) (

1−
m

d

)log(d)/ log(1 − 1/d)

=
(

1−
m

d

)1+log(d)/ log(1 − 1/d)

=
(

1−
m

d

)(log(1 − 1/d)+log(d))/ log(1 − 1/d)

=
(

1−
m

d

)log(d−1)/ log(1 − 1/d)

= (d −1)log(1−m/d)/ log(1 − 1/d)

= (x+m−1)m′

= g(x)

When x = d −m+1,

C f (x) =
dm′

d (d −1) · · · (d −m+1)
(x) (x+1) · · · (x+m−1)

= dm′

= (x+m−1)m′

= g(x)

That is, C f (x) = g(x) for x = d −m and x = d −m+1. By the fact that C f (0) = 0 < g(0) since m ≥ 2,

we deduce that C f (x) < g(x) for 0≤ x < d−m. Together with the fact that C f (x) = g(x) when x = d−m

and x = d −m+1, the proof is done.
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3.2 PR(nr) as an Approximation for QR(nd)

Theorem 1 also establishes the relationships QR(nd) ≥ PR(nr) ≥ PR(nd) as nr ≥ nd . Obviously, PR(nr)
gives a better lower bound for QR(nd) than PR(nd). The theorem reveals that, even after converting nd

to the corresponding nr, the effectiveness of nd test cases selected without replacement is still higher

than that using nr test cases selected with replacement. This means that test case selection without

replacement outperforms that with replacement not just because the test cases are distinct.

A closer examination of test case selection without replacement reveals that it is a more effective

approach to hit the failure-causing inputs than test case selection with replacement. When earlier

selections of test cases do not hit any of the failure-causing inputs, the selected data are discarded from

the selection set, and hence the failure rate will increase in subsequent selections. For example, if d = 10

and m = 5, the converging approach of test case selection without replacement guarantees that at least

one failure-causing input will be selected when nd = 6. There is no such guarantee for any value of nr

when test cases are selected with replacement.

We are interested in knowing how close the values of QR(nd) and PR(nr) are. One way is to look at

the ratio
PR(nr)

QR(nd)
. For any given d, we define

closeness(d) = min
m, nd

PR(nr)

QR(nd)
for all possible values of m and nd

It provides a conservative estimate on how close the two values are to each other. Since QR(nd)≥PR(nr),
closeness(d) should never exceed 1. For a given d, a closeness(d) of 1 implies that the two values are

always equal. From the proof of Theorem 1, we have seen that QR(nd) = PR(nr) for m = 0, m = 1, and

m = d. Therefore, closeness(d) = 1 for d = 1 and d = 2.

Through simulations, we find that closeness(d) is monotonically increasing for d = 3 to 300.

closeness(d) ≥ 0.949 for d ≥ 3

closeness(d) ≥ 0.980 for d ≥ 7

closeness(d) ≥ 0.990 for d ≥ 14

closeness(d) ≥ 0.995 for d ≥ 29

closeness(d) ≥ 0.997 for d ≥ 49

closeness(d) ≥ 0.999 for d ≥ 153

A further checking on d = 1000 shows that closeness(d)≥ 0.99984. From these empirical observations,

we propose the following conjecture.

Conjecture 1

Consider an input domain of size d with m failure-causing instances. Suppose nd distinct test cases are

selected randomly, where nd is a non-negative integer smaller than d. Let QR(nd) be the probability of

detecting at least one failure. If nr =
log(1− nd

d
)

log(1− 1
d
)

, then PR(nr) = 1 −
(

1−
m

d

)nr

is a close approximation

of QR(nd) when d is sufficiently large.

We note that the value of nr expressed in Conjecture 1 may not always be an integer, and hence

1 −
(

1−
m

d

)nr

cannot always be interpreted as the probability of detecting at least one failure when
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nr test cases are selected with replacement. Since QR(nd) is difficult to evaluate, we use the generalized

function PR(x) = 1− (1−θ)x as its approximation and substitute x by nr, which is the expected number

of test cases selected randomly with replacement in order to find nd of them to be distinct.

One may ask whether rounding down or rounding up nr will be a better way to handle the case when

nr does not take an integral value. We repeated similar simulations by rounding down nr to an integral

value and used PR(⌊nr⌋) instead of PR(nr). As expected, PR(⌊nr⌋) is not as good an approximation

as PR(nr). The values of closeness are not approaching 1 as fast. For example, closeness(200) using

PR(⌊nr⌋) is 0.9803619, while closeness(200) using PR(nr) is 0.9992303. On the other hand, we have

also tried rounding up nr, but found that PR(⌈nr⌉) is not a good approximation for QR(nd) either. Its

values may be greater than QR(nd). For example, when d = 10, m = 2, and nd = 2,
PR(⌈nr⌉)

QR(nd)
= 1.2918

whereas
PR(nr)

QR(nd)
= 0.9969. Hence, PR(⌈nr⌉) is not a lower bound of QR(nd). The relative difference

between PR(⌈nr⌉) and the corresponding QR(nd) can sometimes be quite large when compared with the

case when PR(nr) is used.

If we substitute QR(nd) by PR(nr) as a close approximation, we have a much simpler mathematical

model for the analysis of the effectiveness of partition testing when test cases are selected without

replacement. An important implication for software testers is that the above conjecture provides an

effectiveness conversion formula for comparing test case selection with and without replacement.

Roughly speaking, (nr − nd) × cost of executing a test case gives an estimate of the execution cost

of test case selection with replacement over that without replacement. Software testers can compare this

difference in cost with the additional overheads required to screen out duplications in test cases. They

can then decide whether test cases should be selected with or without replacement.

Table 1 may provide some idea on the relation between nr and nd for various domain sizes. Based

on these observations, when nd is approximately one tenth of d, nr exceeds nd by about 5%. When nd

is around 20% of d, nr exceeds nd by about 11%. When nd is half of d, nr is more than 38% of nd . The

closer nd is to d, the greater nr exceeds nd . When nd approaches d, nr approaches ∞. From another point

of view, we find that when nr is approximately one tenth of d, nd is more than 95% of nr. When nr is

around half of d, nd is around 80% of nr. When nr is equal to d, nd is around 63% of nr.

3.3 A Review of Existing Strategies in the Context of Test Case Selection Without

Replacement

Previous studies on the P-measure of partition testing centered on test cases with replacement. Since

the assumptions have been changed when test cases are selected without replacement, and since the

Q-measure is different from the P-measure, we would like to re-examine some of the previous findings

and see whether they are still valid under the new assumptions.

Leung and Chen [13] found that the proportional sampling strategy (σ1 = σ2 = · · · = σk) does not

always guarantee QP(n1d
, n2d

, . . . , nkd
) ≥ QR(nd) when test cases are selected without replacement.

We use the following example to illustrate this.

Example 1

Consider d = 1000, k = 2, d1 = 400, d2 = 600, m1 = 2, m2 = 2, and n = 10. The proportional sampling

strategy imposes that n1d
= 4 and n2d

= 6. We would then have QR(10) = 0.394623 > 0.394445 =
QP(4, 6).
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d = nd 2 3 4 5 8 9

10 nr 2.12 3.39 4.85 6.58 15.28 21.85

d = nd 2 5 10 20 25 30 40 49

50 nr 2.02 5.22 11.05 25.29 34.31 45.35 79.66 193.64

d = nd 2 5 10 20 40 50 60 80 99

100 nr 2.01 5.10 10.48 22.20 50.83 68.97 91.17 160.14 458.21

d = nd 5 10 100 200 300 500 700 900 999

1000 nr 5.01 10.05 105.31 223.03 356.45 692.80 1203.37 2301.43 6904.30

d = nd 50 100 500 1000 2000 2500 3000 4000 4999

5000 nr 50.25 101.00 526.75 1115.61 2553.87 3465.39 4581.00 8046.38 42581.7

Table 1

Since the proportional sampling strategy is a special case of the follow-the-crowd strategies, we can

also conclude that the follow-the-crowd strategies do not guarantee QP(n1d
, n2d

, . . . , nkd
) ≥ QR(nd)

when test cases are selected without replacement.

When test cases are selected with replacement, the ORPS strategy guarantees a higher probability

of finding at least one failure than random testing. When test cases are selected without replacement,

however, this guarantee is no longer valid. Again, let us use an example to illustrate this.

Example 2

Consider d = 10 and n = 2. Applying the optimally refined proportional sampling strategy, we have

k = 2, d1 = d2 = 5, and n1 = n2 = 1. If m1 = 1 and m2 = 1, then QR(2) = 0.377778 and QP(1, 1) =
0.360000.

Consider two partition testing strategies A and B with the same partitioning scheme but different

test case allocation schemes such that the test cases are selected without replacement. The partial

sums condition no longer guarantees that one strategy has a better Q-measure than the other. In other

words, given θ1 ≥ θ2 ≥ ·· · ≥ θk and ∑
k
i=1 nAi = ∑

k
i=1 nBi, the condition ∑

r
i=1 nAi ≥ ∑

r
i=1 nBi for all

r = 1, 2, . . . , k − 1 does not guarantee that QP(nA1, nA2, . . . , nAk) ≥ QP(nB1, nB2, . . . , nBk). The

following example substantiates our claim.

Example 3

Suppose k = 2, d1 = 100, m1 = 10, d2 = 100, and m2 = 9. In Strategy A, take nA1 = 10 and nA2 = 15.

In Strategy B, take nB1 = 5 and nB2 = 20. Then

QP(10, 15) = 0.928469

QP(5, 20) = 0.928835 ≥ QP(10, 15)
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4 Expected Number of Distinct Failures Detected

4.1 The D-Measure

The expected number of failures detected (E-measure) is an effectiveness metric aimed at measuring how

many failures a test suite is capable of detecting. ER(nr) is not a true reflection of this capability when

test cases are selected with replacement. It is because the same failure-causing input may be selected as

test cases more than once, and hence may be counted repeatedly towards the E-measure. The following

example illustrates such a weakness.

Example 4

Consider d1 = 2, m1 = 1, d2 = 10, and m2 = 4.

In Strategy A, take n1r
= 2 and n2r

= 10. We have E-measure = 5.

In Strategy B, take n1r
= 12 and n2r

= 0. We have E-measure = 6.

In this example, the five failure-causing inputs may be related to different program errors. Based on

the E-measure, Strategy B above gives the false impression that it is a better test case allocation scheme

than Strategy A. However, it is obvious that the value of its E-measure, 6, comes from the same single

failure-causing input in D1. On the other hand, for Strategy A, the expected number of failures detected,

5, is related to all five failure-causing inputs. Since Strategy A can detect more distinct failures, it is in

fact the better choice.

A more practical effectiveness measure of software testing is now defined:

Definition 2 (D-Measure)

The D-measure is defined as the expected number of distinct failures detected.

When test cases are selected without replacement, for random testing, DR(nd) = ER(nd) = ndθ, while

for partition testing, DP(n1d
, n2d

, . . . , nkd
) = EP(n1d

, n2d
, . . . , nkd

) = ∑
k
i=1 nid θi. When test cases are

selected with replacement, however, we have

DR(nr) = dθ

[

1 −

(

1 −
1

d

)nr
]

= m

[

1 −

(

1 −
1

d

)nr
]

and

DP(n1d
, n2d

, . . . , nkd
) =

k

∑
i=1

diθi

[

1 −

(

1 −
1

di

)nir
]

=
k

∑
i=1

mi

[

1 −

(

1 −
1

di

)nir
]

The D-measure and E-measure are identical when test cases are selected without replacement. We shall,

therefore, confine our discussion below to the situation when test cases are selected with replacement,

where the D-measure and E-measure are different. Let us return to the previous example. The D-measure

for Strategy A is 3.3553 and that for Strategy B is 0.99975. It can be seen that the D-measure is a better

indicator of testing effectiveness than the E-measure.
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The D-measure and P-measure, however, represent two different effectiveness metrics for software

testing. When one test case allocation scheme has a higher P-measure than another scheme, it does not

necessarily mean that the former scheme has a higher D-measure also. The following example illustrates

such a situation. Hence, the final decision on the test case allocation scheme should depend on which

effectiveness measure is considered more important by the software tester.

Example 5

Consider two test case allocation strategies such that test cases are selected with replacement.

In Strategy A, take d1 = 1000, θ1 = 0.4, n1r
= 5, d2 = 10, θ2 = 0.6, and n2r

= 5. We have P-measure

= 0.999204 and D-measure = 4.453064.

In Strategy B, take d1 = 1000, θ1 = 0.4, n1r
= 0, d2 = 10, θ2 = 0.6, and n2r

= 10. We have P-measure

= 0.999895 and D-measure = 3.907929.

Strategy A is better than Strategy B with respect to the D-measure, but Strategy B is better with

respect to the P-measure.

Since the D-measure is not monotonically increasing with the E-measure or P-measure, we would

like to re-examine the existing partition testing strategies in the light of the D-measure and see how far

they are still applicable to this new effectiveness metric.

4.2 A Review of Existing Strategies in the Light of the D-measure

4.2.1 Proportional Sampling Strategy

The proportional sampling strategy was proved to be a sufficient condition for PP(n1, n2, . . . , nk) ≥
PR(nd) and EP(n1, n2, . . . , nk) = ER(nd) for test case selection with replacement. Coincidentally, we

find that the proportional sampling strategy also favors partition testing over random testing with respect

to the D-measure.

Theorem 2

Let DR(nr) be the D-Measure for random testing with nr test cases selected with replacement, and

DP(n1r
, n2r

, . . . , nkr
) be the corresponding measure for partition testing, where ∑

k
i=1 nir = nr. Under the

proportional sampling strategy, DP(n1r
, n2r

, . . . , nkr
) > DR(nr).

Proof

DR(nr) = m

[

1 −

(

1−
1

d

)nr
]

= m − m

(

1−
1

d

)nr

DP(n1r
, n2r

, . . . , nkr
) =

k

∑
i=1

mi

[

1 −

(

1−
1

di

)nir
]

=
k

∑
i=1

mi −
k

∑
i=1

mi

(

1−
1

di

)nir

= m −
k

∑
i=1

mi

(

1−
1

di

)nir
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where k ≥ 2, mi ≥ 0, and di ≥ 1.

Under the proportional sampling strategy,
nir

di

=
nr

d
= c for i = 1, 2, . . . , k, where c > 0 is a constant.

Hence

DP(n1r
, n2r

, . . . , nkr
) − DR(nr) = m

(

1−
1

d

)nr

−
k

∑
i=1

mi

(

1−
1

di

)nir

=
k

∑
i=1

mi

[(

1−
1

d

)nr

−

(

1−
1

di

)nir
]

=
k

∑
i=1

mi

[

(

1−
1

d

)cd

−

(

1−
1

di

)cdi

]

=
k

∑
i=1

mi

[(

(

1−
1

d

)d
)c

−

(

(

1−
1

di

)di

)c ]

Since (1−
1

x
)x increases as x increases and d > di,

(

1−
1

d

)d

>

(

1−
1

di

)di

≥ 0

[

(

1−
1

d

)d
]c

−

[

(

1−
1

di

)di

]c

> 0

Thus, DP(n1r
, n2r

, . . . , nkr
)−DR(nr) > 0.

4.2.2 Optimally Refined Proportional Sampling Strategy

Following the same arguments as proposed by Chan et al. [11], it can be easily shown that the

optimally refined proportional sampling (ORPS) strategy can be applied to refine the proportional

sampling strategy to give a higher D-measure. Consider a partitioning scheme P1 consisting of two

subdomains D1 and D2 of sizes d1 and d2, respectively. Let n1 and n2 test cases be selected from D1 and

D2, respectively. Suppose we apply the proportional sampling strategy in the test case selection, so that
n1

n2

=
d1

d2

. Let DP1
be the resulting D-measure.

If n1 > 1, we can refine P1 by partitioning D1 into two disjoint subsets, D11 and D12, of sizes d11 and

d12, respectively, such that d11 + d12 = d1. Following the proportional sampling strategy, we select n11

and n12 test cases such that n11 +n12 = n1 and
n11

n12

=
d11

d12

. The refined partitioning scheme, denoted by

P2, consists of three partitions, namely, D11, D12, and D2. Since
n11

d11

=
n12

d12

=
n2

d2

, the condition for the

proportional sampling strategy has been satisfied. By Theorem 2, the D-measure with n1 test cases from

D1 is less than that with n11 and n12 test cases selected from D11 and D12, Hence, we have DP2
> DP1

.

Such a refinement process can be repeated until the input domain is divided into n equal-sized

subdomains with one and only one test case being selected from each subdomain. In each refinement,

the D-measure increases. Thus, if there is no preferred partitioning scheme, the ORPS strategy should

be used instead of random testing when the division of the input domain into equal-sized subdomains is

straightforward.
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4.2.3 Follow-the-Crowd Strategies

Chen and Yu [7] stated that, when test cases are selected with replacement, and when ∑
k
i=1 nir = nr,

if (θi − θ j)(σi − σ j) ≥ 0 for all i, j = 1, 2, . . . , k, then EP(n1r
, n2r

, . . . , nkr
) ≥ ER(nr), and if

(θi − θ)(σi −σ) ≥ 0 for all i, j = 1, 2, . . . , k, then EP(n1r
, n2r

, . . . , nkr
) ≥ ER(nr). These sufficient

conditions no longer hold with respect to the expected number of distinct failures detected. In fact, as

illustrated in the following example, DP(n1r
, . . . , nkr

) can be greater than or less than DR(nr).

Example 6

Consider d = 99, θ = 10
99

, and n = 20; d1 = 20, d2 = 79, θ1 = 2
20

, θ2 = 8
79

, n1r
= 4, and n2r

= 16. We

have θ1 < θ < θ2 and σ1 < σ < σ2.

DR(20) = 1.837605

DP(4, 16) = 1.846143 > DR(20)

Consider d = 101, θ = 10
101

, and n = 20; d1 = 20, d2 = 81, θ1 = 2
20

, θ2 = 8
81

, n1r
= 8, and n2r

= 12. We

have θ1 > θ > θ2 and σ1 > σ > σ2.

DR(20) = 1.804555

DP(8, 12) = 1.781090 < DR(20)

In the same article, Chen and Yu further stated that, for partition testing such that test cases are

selected with replacement, if θ1 = θ2 = · · · = θk, then EP(n1r
, n2r

, . . . , nkr
) = ER(nr). This is not

necessarily true when the expected number of distinct failures is used as the effectiveness metric. The

following example can be used to illustrate this.

Example 7

Consider d = 100, d1 = 20, d2 = 80, m1 = 2, m2 = 8, and n = 10. We have DR(10) = 0.956179.

Case (A)

n1r
= 1 and n2r

= 9. DP(1, 9) = 0.956288.

Case (B)

n1r
= 4 and n2r

= 6. DP(4, 6) = 0.952547.

Hence, DP(n1r
, . . . , nkr

) can be greater than or less than DR(nr) when θ1 = θ2 = · · ·= θk, depending

on the values of nir .

4.2.4 Partial Sums Condition

Consider two partition testing strategies A and B with the same partitioning scheme but different test case

allocation schemes such that test cases are selected with replacement. As illustrated by the following

example, we observe that the partial sums condition no longer guarantees that one strategy exposes more

distinct failures than the other. In other words, given θ1 ≥ θ2 ≥ ·· · ≥ θk and ∑
k
i=1 nAi = ∑

k
i=1 nBi, the

condition ∑
r
i=1 nAi ≥∑

r
i=1 nBi for all r = 1, 2, . . . , k−1 does not guarantee that DP(nA1, nA2, . . . , nAk)≥

DP(nB1, nB2, . . . , nBk).
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Example 8

Suppose d1 = 10, θ1 = 0.1, d2 = 100, and θ2 = 0.08.

For Strategy A, take n1 = 4 and n2 = 1. We have DP(4, 1) = 0.4239.

For Strategy B, take n1 = 3 and n2 = 2. We have DP(3, 2) = 0.4302 > DP(4, 1).

5 Application Guidelines

As a result of this study, we can provide software testers with a number of useful guidelines to help them

compare the potential effectiveness of test case selection and allocation strategies, and hence choose the

appropriate ones.

(a) When test cases are selected without replacement, the D-measure and E-measure are equivalent.

When test cases are selected with replacement, however the “expected number of distinct failures

detected” gives more precise information than the “expected number of failures detected”. Hence,

the D-measure should replace the E-measure as the effectiveness indicator for the capability of

detecting failures.

(b) Consider the situation when test cases are selected with replacement. Among the existing

sufficient conditions that favor partition testing over random testing, the proportional

sampling strategy, and the optimally refined proportional sampling strategy remain the most useful

and practical strategies. They guarantee that partition testing is better than random testing with

respect to both the P-measure and D-measure. The other strategies fail to do so when we use the

D-measure as the yardstick. We therefore propose that, given a preferred partitioning scheme but

no special preferences for test case allocation, the proportional sampling strategy should be used as

the test case allocation scheme. When there is no preferred partitioning scheme and the division of

the input domain into equal-sized subdomains is easy, the optimally refined proportional sampling

strategy should be used instead of random testing.

(c) Consider the situation when test cases are selected without replacement. When the probability

of detecting at least one failure (the Q-measure) is considered, none of the existing sufficient

conditions that favor partition testing over random testing remain applicable. In other words, the

proportional sampling strategy, optimally refined proportional sampling strategy and follow-the-

crowd strategies do not guarantee that partition testing is better than random testing.

Nevertheless, given nd distinct test cases and nr =
log(1− nd

d
)

log(1− 1
d
)

, we find PR(nr)= 1 −
(

1−
m

d

)nr

to be a close approximation of QR(nd). This approximation provides an indication on how many

additional test cases are required for test case selection with replacement in order to give more or

less the equivalent testing effectiveness as test case selection without replacement. The additional

overheads in test execution can be estimated by (nr − nd) × cost of running a test case. On the

other hand, there are payoffs for selecting test cases with replacement. It is easier to apply because

there is no need to check the duplication of test cases. Software testers can use the above reasoning

to decide whether it is better to select test cases with or without replacement, depending on the

testing situation they are facing.
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6 Conclusion

So far, studies on the effectiveness of software testing have overwhelmingly assumed that test cases

are selected with replacement. Our present study aims at enhancing the understanding of test case

selection without replacement. This scenario is mathematically much more complex, and hence few

research results have been reported. We have found a lower bound for the probability of detecting at

least one failure when nd test cases are selected without replacement (which we call the Q-measure or

QR(nd)). We have proved that if nr =
log(1− nd

d
)

log(1− 1
d
)

and PR(nr) = 1 −
(

1−
m

d

)nr

, then QR(nd)≥ PR(nr).

Furthermore, we conjecture that PR(nr) is a close approximation of QR(nd) after extensive simulations.

The use of PR(nr) as an approximation to QR(nd) can help simplify the analysis of testing effec-

tiveness with respect to the probability of detecting at least one failure when test cases are selected

without replacement. This approximation also provides a way for software testers to compare the cost

effectiveness between test case selection with and without replacement.

We have introduced a new effectiveness metric, namely the expected number of distinct failures

detected (which we call the D-measure). It is a better effectiveness indicator than the expected number

of failures detected (E-measure) used in other literature, since in the latter metric, the failures caused by

the same input may be counted more than once when test cases are selected with replacement.

Recently, a number of partition testing strategies that outperform random testing were suggested. We

have reviewed these strategies in the contexts of the D-measure and Q-measure, and proposed application

guidelines on the use of these strategies.

When test cases are selected with replacement, we have concluded that the proportional sampling

strategy, including the optimally refined proportional sampling strategy as a special case, is the only

strategy that guarantees to outperform random testing in both the contexts of P-measure and D-measure.

Using this strategy, the P-measure, or the probability of detecting at least one failure, is no less than the

P-measure of random testing. Furthermore, the D-measure, or the expected number of distinct failures

detected, is strictly greater than the D-measure of random testing. The other strategies that favor the

P-measure of partition testing over random testing fail to guarantee similar results for the D-measure.
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