
This is a pre-published versionThis is a pre-published version

TACCLE:

a methodology for object-oriented software

Testing At the Class and Cluster LEvels

HUO YAN CHEN

Jinan University, China

T. H. TSE

The University of Hong Kong

and

T. Y. CHEN

Swinburne University of Technology, Australia

Huo Yan Chen is supported in part by the National Natural Science Foundation of China under Grant

No. 69873020 and the Guangdong Province Science Foundation under Grants #980690 and #950618. T. H. Tse

is supported in part by the Hong Kong Research Grants Council and the University Research Committee of the

University of Hong Kong. T. Y. Chen is supported in part by the Hong Kong Research Grants Council.

Authors’ addresses: Huo Yan Chen, Department of Computer Science, Jinan University, Guangzhou 510632,

China. Email: “tchy@jnu.edu.cn”. (Part of the research was performed when Chen was on leave at the University

of Hong Kong.) T. H. Tse (Contact Author), Department of Computer Science, the University of Hong Kong,

Pokfulam, Hong Kong. Email: “thtse@cs.hku.hk”. (Part of the research was performed when Tse was on leave

at the Vocational Training Council, Hong Kong.) T. Y. Chen, School of Information Technology, Swinburne

University of Technology, Hawthorn 3122, Australia. Email: “tychen@cs.hku.hk”. (Part of the research was

performed when Chen was with the Vocational Training Council, Hong Kong.)

c©ACM, 2001. This is the authors’ version of the work. It is posted here by permission of ACM for your personal

use. Not for redistribution. The definitive version was published in ACM Transactions on Software Engineering

and Methodology 10 (1): 56–109, 2001. http://doi.acm.org/10.1145/366378.366380.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use

provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server

notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the

ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific

permission and/or a fee.

c© 2001 ACM 1049-331X/2001/0100-0056$5.00

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001, Pages 56–109.

2 · H. Y. Chen, T. H. Tse, and T. Y. Chen

Object-oriented programming consists of several different levels of abstraction; namely the algorithmic level,

class level, cluster level, and system level. The testing of object-oriented software at the algorithmic and system

levels is similar to conventional programming testing. Testing at the class and cluster levels poses new challenges.

Since methods and objects may interact with one another with unforeseen combinations and invocations, they are

much more complex to simulate and test than the hierarchy of functional calls in conventional programs. In this

paper, we propose a methodology for object-oriented software testing at the class and cluster levels.

In class-level testing, it is essential to determine whether objects produced from the execution of implemented

systems would preserve the properties defined by the specification, such as behavioral equivalence and non-

equivalence. Our class-level testing methodology addresses both of these aspects. For the testing of behavioral

equivalence, we propose to select fundamental pairs of equivalent ground terms as test cases using a black-box

technique based on algebraic specifications, and then determine by means of a white-box technique whether

the objects resulting from executing such test cases are observationally equivalent. To address the testing of

behavioral non-equivalence, we have identified and analyzed several non-trivial problems in the current literature.

We propose to classify term equivalence into four types, thereby setting up new concepts and deriving important

properties. Based on these results, we propose an approach to deal with the problems in the generation of non-

equivalent ground terms as test cases.

Relatively little research has contributed to cluster-level testing. In this paper, we also discuss black-box

testing at the cluster level. We illustrate the feasibility of using Contract, a formal specification language for the

behavioral dependencies and interactions among cooperating objects of different classes in a given cluster. We

propose an approach to test the interactions among different classes using every individual message-passing rule

in the given Contract specification. We also present an approach to examine the interactions among composite

message-passing sequences. We have developed four testing tools to support our methodology.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications—languages;

D.2.5 [Software Engineering]: Testing and Debugging—test data generators; D.3.2 [Programming Lan-

guages]: Language Classifications—object-oriented languages

General Terms: Languages, Reliability

Additional Key Words and Phrases: Algebraic specifications, Contract specifications, object-oriented program-

ming, software testing, message passing

1. INTRODUCTION

Object-oriented systems contain four different levels of abstraction. They are the algo-

rithmic level, class level, cluster level, and system level. The algorithmic level considers

the code for each operation in a class. The class level is composed of the interactions of

methods and data that are encapsulated within a given class. The cluster level consists of

the interactions among cooperating classes, which are grouped to accomplish some tasks.

The system level is composed of all the clusters [Smith and Robson 1992].

Testing at the algorithmic and system levels is similar to conventional program testing.

Most research workers concentrate themselves on class-level testing [Doong and Frankl

1991; 1994; Fiedler 1989; Frankl and Doong 1990; Kung et al. 1994; Smith and Robson

1992; Turner and Robson 1993b; 1993a; 1995]. Relatively little study has been made on

cluster-level testing or its relationship with class-level testing. In this paper, we present

a unified methodology TACCLE for testing object-oriented software at both the class and

cluster levels. This methodology is based on type signature specifications, including al-

gebraic specifications for classes and Contract specifications for clusters. The complete

methodology consists of three components: using fundamental pairs of equivalent ground

terms as class-level test cases and a relevant observable context technique to determine the

observational equivalence of objects; using non-equivalent ground terms as further class-

level test cases; and using sequences of message-passing expressions and post-conditions

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 3

as cluster-level test suites. These three components are closely related and supplement one

another. For example, the relevant observable context technique for determining the obser-

vational equivalence of objects in the first component will be invoked by the second and

third components.

We have improved on the ASTOOT approach of [Doong and Frankl 1994] by using equiv-

alent ground terms in algebraic specifications as class-level test cases. We deploy funda-

mental pairs of equivalent ground terms as class-level test cases. This has been reported in

detail in our companion paper [Chen et al. 1998] and is summarized as the first part of our

comprehensive methodology in this paper.

Besides the proposal to consider equivalent ground terms as test cases, another im-

portant contribution of [Doong and Frankl 1994] is the identification of a need to use

“non-equivalent” ground terms as test cases. They assert that if two ground terms are

non-equivalent, but their corresponding implemented method sequences produce observa-

tionally equivalent objects, then there is an error in the implementation. Furthermore, they

present an approach to generate non-equivalent test cases from equivalent test cases by

“exchang[ing] the path conditions”. In this paper, we illustrate that there are non-trivial

problems in Doong and Frankl’s assertion and approach on non-equivalent ground terms

as test cases. In order to solve these problems, we classify the relations among terms into

four different types; namely rewriting relations, normal equivalence, observational equiva-

lence, and attributive equivalence. We investigate the relationships among them. Based on

these results, we propose a new approach to generate non-equivalent ground terms as test

cases using state-transition diagrams.

At the cluster level, some recent research has been devoted to the test orders among

different classes [Jorgensen and Erickson 1994; Kung et al. 1995]. Our concern in this

paper is to trace the relationships and interactions among different classes in a cluster.

Relationships among different classes in a cluster can be divided into two types: vertical

inheritance and horizontal interactions. Testing problems on inheritance has been inves-

tigated by [Harrold et al. 1992]. We will concentrate on the testing problems related

to horizontal interactions among classes in a cluster. Consider, for example, a banking

system containing two different classes SavingAccount and CheckAccount. An operation

trans f erTo transfers money from a SavingAccount to a CheckAccount. This is a horizontal

interaction between the two classes.

We illustrate that neither algebraic specifications nor interface specifications are suffi-

cient for specifying message passing and other interactions among cooperating classes for

the purpose of cluster-level testing. It is therefore necessary to use another formal speci-

fication technique. We find that Contract specifications proposed by [Helm et al. 1990] is

suitable for this purpose. Our scheme for cluster-level testing consists of two parts. The

first part tests the interactions among different classes in the cluster according to every in-

dividual message-passing rule in the given Contract specification. The other part reviews

the interactions according to composite message-passing sequences.

Four testing tools have been developed to support our methodology TACCLE. An in-

teractive tool DOE supports the determination of object observational equivalence. An

automatic tool GCS generates composite message-passing sequences from Contract speci-

fications. The extraction and composition of message-passing sequences from a program

implementing the cluster are supported by automatic tools ESI and GCS, respectively. An

interactive tool GAN supports the generation of attributively non-equivalent terms as test

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

4 · H. Y. Chen, T. H. Tse, and T. Y. Chen

cases.

The organization of this paper is as follows: Section 2 gives the basic concepts on al-

gebraic specifications used in class-level testing. In Section 3, we outline our integrated

approach to use fundamental pairs of equivalent ground terms as class-level test cases and

to use the relevant observable context technique to determine the observational equivalence

of the resulting objects. Section 4 addresses the topic of generating non-equivalent ground

terms as class-level test cases. Section 5 gives the basic concepts on Contract specifica-

tions used in cluster-level testing. Sections 6 and 7 show how to solve the problems on

cluster-level testing using Contract specifications. In Section 8, we discuss briefly the open

issues and future work. Section 9 concludes the paper.

2. ALGEBRAIC SPECIFICATIONS

As indicated by [Clarke 1996], “One current trend is to integrate different specification

languages, each able to handle a different aspect of a system.” In order to facilitate the

generation of test cases in a black-box approach, we propose to use formal specifications,

including algebraic specifications [Breu 1991; Goguen and Meseguer 1987] for classes,

and Contract specifications [Helm et al. 1990] for clusters. Both algebraic specifications

and Contract specifications are based on type signatures. Hence, they have a common the-

oretical basis. In our methodology, we select fundamental pairs of equivalent ground terms

and pairs of non-equivalent ground terms as class-level test cases according to algebraic

specifications, and select cluster-level test suites according to Contract specifications. In

this section, we present some basic concepts on algebraic specification. The concepts of

Contract specifications will be given in Section 5.

An algebraic speci f ication for a class is composed of a syntax declaration and a se-

mantic specification. The syntax declaration lists the operations involved, as well as their

domains and co-domains, corresponding to the input parameters and output of the opera-

tions. The semantic specification consists of axioms in the form of conditional equations

that describe the behavioral properties of the operations.

Example 1. Algebraic Specification of the Class of Integer Stacks

module INT EGER-STACK

include INT EGER

class Stack

imported classes Integer Boolean

operations

new : → Stack

.isEmpty : Stack → Boolean

.push() : Stack Integer → Stack

.pop : Stack → Stack

.top : Stack → Integer ∪ {nil}
variables

S : Stack

N : Integer

axioms

a1: new.isEmpty = true

a2: S.push(N).isEmpty = f alse

a3: new.pop = new

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 5

a4: S.push(N).pop = S

a5: S.top = nil i f S.isEmpty

a6: S.push(N).top = N

Intuitively, a term is a sequence of operations in an algebraic specification. For example,

new.push(10).push(20).pop

is a term in the class of integer stacks above. A term without variables is called a ground

term. In this paper, we only consider ground terms because, during dynamic testing, test

cases involve actual data rather than structural or symbolic manipulation.

If a subterm within a ground term is unified against the left-hand side of an equational

axiom and substituted by the right-hand side of the axiom, we say that the ground term

is trans f ormed into another using the axiom as progressive left-to-right rewriting rules.

A ground term is in normal f orm if and only if it cannot be further transformed by any

axiom in the specification. For example, new.push(10).push(20) is in normal form but

new.push(10).push(20).pop is not, since the latter can be transformed by axiom a4 into

new.push(10).

An algebraic specification is said to be canonical if and only if every sequence of

rewrites on the same ground term reaches a unique normal form in a finite number of

steps. We will limit ourselves only to canonical specifications in this paper. Please refer to

Section 4.6 for a discussion on our basic assumptions.

In a given class C, operations or methods that return the values of the attributes of the

objects in C are called the observers of C. Operations or methods that return initial objects

of C are called creators of C. Operations or methods that transform the states of objects in

C are called constructors or trans f ormers of C. The current state of an object is the com-

bination of current values of all attributes of this object. When a constructor or transformer

acts on an object, it changes the value of at least one attribute of the object. The difference

between a constructor and a transformer is that a transformer may be eliminated from a

term by applying rewriting rules, but a constructor may not. In Example 1, for instance,

the operation new is a creator, .push(N) is a constructor, .pop is a transformer, and

.isEmpty and .top are observers.

An observable context on a class C is a sequence of constructors or transformers of

C (possibly an empty sequence) followed by an observer of C. For example, push(100)
.push(200).pop.top is an observable context on the class Stack. The observer top is also

regarded as an observable context on Stack.

A primitive type in the specification of a class C is a type imported into C at the lowest

level of the hierarchy of imports. Examples are Integer or Boolean. Typically, they do not

need to be defined specifically, do not import further classes or types, have no observers,

and can be mapped directly to the built-in types of most implementation languages.

An implementation of a given canonical specification is said to be complete if and only

if every operation in the specification is implemented by one and only one method in the

program; every imported class in the specification is implemented by one and only one

imported class in the program; and every primitive type in the specification is implemented

either by a type built in the implementation language, or by a type that has been fully tested

and deemed to be correct. Without loss of generality, we will assume in this paper that both

an operation in the specification and the corresponding method in the implementation bear

the same name.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

6 · H. Y. Chen, T. H. Tse, and T. Y. Chen

DEFINITION 1 OBSERVATIONAL EQUIVALENCE OF OBJECTS. Given a canonical

specification and an implementation of a class C, two objects O1 and O2 are said to be

observationally equivalent (denoted by “O1 ≈obs O2”) if and only if the following condi-

tion is satisfied:

If no observable context oc on C is applicable to O1 and O2, then O1 and O2

are identical objects. Otherwise, for any such oc on C, O1.oc and O2.oc are

observationally equivalent objects.

3. CLASS-LEVEL TESTING USING FUNDAMENTAL EQUIVALENT PAIRS

The first phase of our TACCLE methodology covers the use of fundamental pairs of equiv-

alent ground terms as class-level test cases and the use of a “relevant observable context”

technique to determine the observational equivalence of the resulting objects. We will

present only a summary of this phase in the current section because the full details have

been published in our companion paper [Chen et al. 1998].

In this section, for a given canonical specification of a class, two ground terms are said

to be equivalent if and only if they can be transformed into the same normal form by some

axioms as left-to-right rewriting rules. An implementation is said to be consistent with

respect to two equivalent ground terms if and only if the method sequences corresponding

to these two ground terms produce observationally equivalent objects. Obviously, if an

implementation is not consistent with respect to two equivalent ground terms, then there

is some error in this implementation. This assertion is the basis of selecting equivalent

ground terms as class-level test cases. [Doong and Frankl 1994] proposed the ASTOOT

approach to test object-oriented programs. They recommended heuristic guidelines on the

use of equivalent ground terms as class-level test cases.

We define the concept of a f undamental pair as a pair of equivalent ground terms

formed by replacing all the variables on both sides of an axiom by normal forms. Obvi-

ously, the set of fundamental pairs is a proper subset of the set of equivalent ground terms.

We prove that a complete implementation of a canonical specification is consistent with

respect to all equivalent terms if and only if it is consistent with respect to all fundamental

pairs. In other words, the use of fundamental pairs as test cases covers the use of equivalent

ground terms for the same purpose, and hence we need only concentrate on the testing of

fundamental pairs. Our strategy is based on mathematical theorems. Based on the strategy,

we propose a GFT algorithm for Generating a Finite set of fundamental pairs as Test cases.

Given a pair of equivalent ground terms as a test case, we should then determine whether

the objects that result from executing the implemented program are observationally equiv-

alent. We have proved, however, that the observational equivalence of objects cannot be

determined using a finite set of observable contexts derived from any black-box technique

[Chen et al. 1998]. Hence, we supplement our approach with a “relevant observable con-

text” technique, which is a white-box technique, to determine observational equivalence.

This task is performed by a DOE algorithm for Determining the Observational Equivalence

of objects.

Like any other testing method, the DOE algorithm cannot guarantee that all implemen-

tation errors will be revealed by a finite set of test cases. The effectiveness and limitations

of the algorithm are discussed in Section 3.3 of [Chen et al. 1998] and will not be repeated

in this paper.

We have implemented a prototype of the interactive tool DOE to support the construc-

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 7

tion of a Data member Relevance Graph (DRG), traversing executable paths in the DRG,

generating and executing relevant observable contexts, determining object observational

equivalence, and reporting detected errors, if any. Some experimental results on the proto-

type are given in [Chen et al. 1998].

4. CLASS-LEVEL TESTING USING NON-EQUIVALENT TERMS

The second phase of our TACCLE methodology consists of class-level testing using non-

equivalent ground terms as test cases. As indicated by [Doong and Frankl 1994], testing on

non-equivalent ground terms is significant. Even if an implementation is consistent with

respect to all equivalent ground terms, it may contain an error that results in a pair of non-

equivalent ground terms being erroneously implemented as equivalence. In Section 4.1, we

outline the related work of Doong and Frankl, and analyze some non-trivial problems in

it. In Section 4.2, we classify the term equivalence into different types and highlight their

subsumption relationships. Section 4.3 discusses some fundamental properties on the use

of non-equivalent terms as test cases. Based on these properties, we present in Section 4.4

an approach to generate non-equivalent ground terms as test cases using state-transition

diagrams. Section 4.5 discusses how to determine whether a test case of non-equivalent

ground terms reveals an error.

4.1 Related Work and Analysis of Problems

The concept of equivalent terms has been applied to testing [Bernot et al. 1991; Bouge et

al. 1986; Chen et al. 1998; Doong and Frankl 1991; 1994; Frankl and Doong 1990]. In

particular, [Doong and Frankl 1991; 1994; Frankl and Doong 1990] defined the concept of

equivalent terms as follows:

DEFINITION 2. Two terms u1 and u2 in a given specification are said to be equivalent

if we can use the axioms in the specification as rewrite rules to transform u1 into u2.

Based on Definition 2, they proposed a framework for testing as follows:

Consider the set U consisting of all 3-tuples (S1, S2, tag), where S1 and S2

are sequences of messages and tag is “equivalent” if S1 is equivalent to S2

according to the specification, and is “not-equivalent” otherwise.

[Suppose O1 and O2 are identical or equivalent objects of a class C.] For

each element of U , send message-passing sequences S1 and S2 to the objects

O1 and O2, respectively. Then check whether the returned object of O1 is

observationally equivalent to the returned object of O2.

If all the observational equivalence checks agree with the tags, then the imple-

mentation is correct. Otherwise, it is incorrect.

The following assertions are implicit in the above framework:

ASSERTION 1. Let u1 and u2 be two ground terms in a given specification and s1 and

s2 be their corresponding method sequences in an implementation of the specification. If

u1 is equivalent to u2, but s1 and s2 produce observationally non-equivalent objects, then

the implementation is incorrect.

ASSERTION 2. If u1 is not equivalent to u2, but s1 and s2 produce observationally

equivalent objects, then the implementation is incorrect.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

8 · H. Y. Chen, T. H. Tse, and T. Y. Chen

These two assertions formed the theoretical basis for generating equivalent and

non-equivalent ground terms as class-level test cases. [Doong and Frankl 1994] further in-

dicated that the testing of non-equivalent ground terms has significant ramifications. Even

the exhaustive testing of equivalent ground terms may fail to detect an error that results

in two different states being confused as a single state. As an extreme example, consider

a problematic implementation in which none of the operations changes the states of ob-

jects. In this case, any two equivalent ground terms will return the same observational

result. Thus, the error will not be detected by only testing equivalent terms. The testing of

non-equivalent ground terms is therefore necessary and cannot be ignored.

In general, the contributions of [Doong and Frankl 1994] are valuable. There are, how-

ever, a couple of non-trivial problems.

4.1.1 Problem 1. Assertion 2 does not hold in the context of Definition 2. Consider

the following example:

Example 2. Let u1 = new.push(10).push(20).pop and u2 = new.push(30).pop

.push(10) for the specification of the class of integer stacks in Example 1. According

to Definition 2, the terms u1 and u2 are non-equivalent since they cannot be transformed

from one into the other by the axioms in Example 1 as left-to-right rewriting rules. How-

ever, they produce observationally equivalent objects if the implementation is correct. This

contradicts Assertion 2.

We shall discuss how to deal with this problem in Sections 4.2 and 4.3.

4.1.2 Problem 2. [Doong and Frankl 1994] also presented an approach to generate

non-equivalent test cases from equivalent test cases by “exchang[ing] the path conditions”.

They illustrated their approach by the following example:

Example 3. Algebraic Specification for the Class of Priority Queues of Integers

module PRIORITY -QUEUE

include INT EGER

class IntegerQueue

imported classes Integer Boolean

operations

new : → IntegerQueue

.isEmpty : IntegerQueue → Boolean

.largest : IntegerQueue → Integer ∪ {−∞}

.add() : IntegerQueue Integer → IntegerQueue

.delete : IntegerQueue → IntegerQueue

// Delete the largest element in the queue

variables

Q : IntegerQueue

N : Integer

axioms

a1: new.isEmpty = true

a2: Q.add(N).isEmpty = f alse

a3: new.largest = −∞

a4: Q.add(N).largest = N i f N > Q.largest,
Q.largest otherwise

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 9

a5: new.delete = new

a6: Q.add(N).delete = Q i f N > Q.largest,
Q.delete.add(N) otherwise

The test case (new.add(M).add(N).delete, new.add(M), equivalent) with the path con-

dition “N > M” can be derived from the axioms above. By exchanging the path conditions,

[Doong and Frankl 1994] obtained the following test case:

(new.add(M).add(N).delete, new.add(M), non-equivalent)
under the condition “N ≤ M”.

In fact, this test case is erroneous because, according to axiom a6, the two terms should

be equivalent when N = M. This is exactly one of the problems that a tester should set out

to test.

Furthermore, we have constructed the following example to show that this kind of error

may even occur throughout the entire input domain, rather than only at some isolated

boundary values.1

Example 4. Algebraic Specification for the Class of Priority Queues of Real Numbers

module REAL-QUEUE

include REAL

class RealQueue

imported classes Real Boolean

operations

new : → RealQueue

.isEmpty : RealQueue → Boolean

.largest : RealQueue → Real ∪ {−∞}

.smallest : RealQueue → Real ∪ {+∞}

.add() : RealQueue Real → RealQueue

.deleteLargest : RealQueue → RealQueue

.deleteSmallest : RealQueue → RealQueue

variables

Q : RealQueue

X : Real

axioms

a1: new.isEmpty = true

a2: Q.add(X).isEmpty = f alse

a3: new.largest = −∞

a4: new.smallest = +∞

a5: Q.add(X).largest = X i f X > Q.largest,
Q.largest otherwise

a6: Q.add(X).smallest = X i f X < Q.smallest,
Q.smallest otherwise

a7: new.deleteLargest = new

a8: new.deleteSmallest = new

1In order to appreciate the main idea behind this example, readers are suggested to note that min{X , Y} ≤
(X +Y)/2 ≤ max{X , Y} regardless of whether “Y > X” or “Y ≤ X”. Hence, any exchange of the path conditions

will not turn a pair of equivalent terms into non-equivalent terms.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

10 · H. Y. Chen, T. H. Tse, and T. Y. Chen

a9: Q.add(X).deleteLargest

= Q i f X > Q.largest,
Q.deleteLargest.add(X) otherwise

a10: Q.add(X).deleteSmallest

= Q i f X < Q.smallest,
Q.deleteSmallest.add(X) otherwise

Using the axioms above, we can select a test case

(new.add(X).add(Y).add((X +Y)/2).deleteLargest.deleteSmallest,
new.add((X +Y)/2), equivalent) under the path condition “Y > X”.

By exchanging the path conditions, we obtain a second test case

(new.add(X).add(Y).add((X +Y)/2).deleteLargest.deleteSmallest,
new.add((X +Y)/2), non-equivalent) under the condition “Y ≤ X”.

The second test case is erroneous because, using the axioms above as left-to-right rewriting

rules, we can actually prove that these two terms are equivalent whenever Y ≤ X!

Hence, it is erroneous to generate non-equivalence from equivalence by “exchang[ing]

the path conditions” [Doong and Frankl 1994]. We shall present a better approach to

generate non-equivalent terms as test cases in Section 4.4.

4.2 A Classification of Equivalence

To solve Problem 1 in Section 4.1.1, we must review and revise the definition of equivalent

terms.

We note that the relation among terms defined in Definition 2 is not symmetric, and

hence it is not really an equivalence relation. We shall call it a rewriting relation instead.

Thus, Definition 2 will be replaced by the following:

DEFINITION 3 REWRITING RELATION OF TERMS. Two terms u1 and u2 in a given

specification are said to satisfy a rewriting relation (denoted by “u1 →
∗ u2”) if and only

if u1 can be transformed into u2 using the axioms in the specification as rewrite rules.

Let us consider the following attempt to improve the definition of equivalence:

DEFINITION 4 NORMAL EQUIVALENCE OF TERMS. Given a canonical specification

of a class, two ground terms u1 and u2 are said to be normally equivalent (denoted by

“u1 ∼nor u2”) if and only if both of them can be transformed into the same normal form by

some axioms as left-to-right rewriting rules.

Definition 4 is obviously weaker than Definition 3. We indicated in Section 4.1.1 that

Example 2 contravenes Assertion 2 in the context of Definition 2 (and hence Definition 3).

Does this example contravene Assertion 2 in the context of the relaxed Definition 4?

According to Definition 4, the terms

u1 = new.push(10).push(20).pop, and

u2 = new.push(30).pop.push(10)

in Example 2 are equivalent since they can be transformed into the same normal form

new.push(10) by the axioms in Example 1 as left-to-right rewriting rules. Hence, this

example does not contravene Assertion 2 in the context of Definition 4.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 11

Unfortunately, Assertion 2 still does not hold in the context of Definition 4. This can be

illustrated by the following example:

Example 5. Algebraic Specification of the Class of Bank Accounts

module ACCOUNT

include MONEY

class Account

imported classes Money String

operations

overdrawn : → Money

new() : String → Account

.name : Account → String

.addr : Account → String // addr means address

.bal : Account → Money // bal means balance

.setAddr() : Account String → Account

// setAddr means setting the value o f the address

.credit() : Account Money → Account

.debit() : Account Money → Account

variables

S : String

A : Account

M : Money

axioms

a1: new(S).name = S

a2: new(S).addr = nil

a3: new(S).bal = 0

a4: A.credit(M).bal = A.bal +M

a5: A.debit(M).bal = A.bal −M i f A.bal ≥ M

a6: A.debit(M).bal = overdrawn i f A.bal < M

a7: A.setAddr(S).bal = A.bal

a8: A.credit(M).addr = A.addr

a9: A.debit(M).addr = A.addr

a10: A.setAddr(S).addr = S

a11: A.credit(M).name = A.name

a12: A.debit(M).name = A.name

a13: A.setAddr(S).name = A.name

Consider the terms

u1 = new(′John′).setAddr(′2 University Drive′).credit(1000)
.debit(200), and

u2 = new(′John′).setAddr(′2 University Drive′).credit(800)

According to Definition 4, u1 and u2 are non-equivalent since they cannot be transformed

into the same normal form by the above axioms as left-to-right rewriting rules. However,

they produce observationally equivalent objects if the implementation is correct. This also

contradicts Assertion 2.

Examples 2 and 5 illustrate that a more fundamental understanding of term equivalence

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

12 · H. Y. Chen, T. H. Tse, and T. Y. Chen

is vital before Problem 1 in Section 4.1.1 can be solved. We would like to investigate

carefully different degrees of term equivalence and the relationships among them.

We shall define other degrees of equivalence using the recursive definitions 9 and 10

below. In order to do so, we must explain some related concepts first.

DEFINITION 5 INPUT AND OUTPUT CLASSES. Given an operation

. f (· · ·) : C C1 C2 · · · Cn → D,

C is called the input class of f , and D the output class of f .

DEFINITION 6 APPLICABILITY. Given an algebraic specification of a class C, let u =
f0. f1. · · · . fi and v = g0.g1. · · · .g j be sequences of operation(s). We say that v is applicable

to u if and only if the output class of fi is the same as the input class of g0.2

We would like to add that a ground term in a given class C might contain operations in

its imported classes. Consider, for instance, the class Account in Example 5. If we take

A = JohnAccount and M = 8000, Axiom a4 produces a ground term JohnAccount.bal +
8000, which contains an operation “+” in the imported class Money of the class Account.

Furthermore, let C′ be an imported class of C. For consistency and the ease of description,

any observer of C′ will also be regarded as an observer of C, and any observable context

on C′ will also be regarded as an observable context on C.

The concepts of operations, observers, and observable contexts due to imported classes

can be further illustrated in the example below.

Example 6. Algebraic Specification for the Class of Stacks of Integer-Bags

module INT EGER-BAG

include INT EGER

class IntegerBag

imported classes Integer Boolean

operations

newBag : → IntegerBag

.null : IntegerBag → Boolean

.largest : IntegerBag → Integer ∪ {−∞}

.add() : IntegerBag Integer → IntegerBag

.delete : IntegerBag → IntegerBag

// Delete the largest element in the Bag

variables

B : IntegerBag

N : Integer

axioms

a1: newBag.null = true

a2: B.add(N).null = f alse

a3: newBag.largest = −∞

a4: B.add(N).largest =N i f N > B.largest,
B.largest otherwise

a5: newBag.delete = newBag

2The concept of applicability is a special case of the concept of appropriateness defined by [Goguen and Mal-

colm].

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 13

a6: B.add(N).delete =B i f N > B.largest,
B.delete.add(N) otherwise

module STACK-OF-INT EGER-BAGS

include INT EGER-BAG

class Stack

imported classes Boolean IntegerBag

operations

newStack : → Stack

.isEmpty : Stack → Boolean

.top : Stack → IntegerBag ∪ {nil}

.push() : Stack IntegerBag → Stack

.pop : Stack → Stack

variables

S : Stack

NB : IntegerBag

axioms

a1: newStack.isEmpty = true

a2: S.push(NB).isEmpty = f alse

a3: newStack.pop = newStack

a4: S.push(NB).pop = S

a5: S.top = nil i f S.isEmpty

a6: S.push(NB).top = NB

(a) The following are some ground terms in the class Stack:

newStack.pop.push(newBag.add(5).add(4).delete)
newStack.pop.push(newBag.add(5).add(4).delete).top

newStack.pop.push(newBag.add(5).add(4).delete).top

.add(3).add(2).delete

newStack.pop.push(newBag.add(5).add(4).delete).top

.add(3).add(2).delete.largest

newStack.pop.push(newBag.add(5).add(4).delete).top

.add(3).add(2).delete.largest +6

(b) Not only are isEmpty and top observers of the class Stack. We observe from (a) that

imported operators such as largest are also observers of Stack.

(c) Similarly, not only are operation sequences like

oc1 = push(newBag.add(5).add(4).delete).top

observable contexts on the class Stack. Imported operation sequences such as

oc2 = add(3).add(2).delete.largest

are also observable contexts on Stack.

(d) Consider a ground term

u1 = newStack.pop.push(newBag.add(8)).

The input class of the observable context oc1 is Stack, while that of oc2 is IntegerBag.

Thus, the observable context oc1 is applicable to u1, but oc2 is not.

(e) Consider another ground term

u2 = newStack.pop.push(newBag.add(5).add(4).delete).top.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

14 · H. Y. Chen, T. H. Tse, and T. Y. Chen

The input class of the observer top is Stack while its output class is IntegerBag. The

input class of the observer largest is IntegerBag while its output class is Integer. Thus,

the observer largest is applicable to u2, but top is not.

In general, an algebraic specification of a class C may import other classes C1, C2, . . . , Cn

as the output classes of its observers. An imported class Ci may be a primitive type, or may

recursively import other classes Ci1 , Ci2 , . . . , Cim as output classes of its observers, and so

on, until all the final imported classes are primitive types.

DEFINITION 7 OBSERVABLE CONTEXT SEQUENCE. Given a specification of a class

C, an operation sequence of the form oc1.oc2. · · · .ocn is called an observable context se-

quence or an oc sequence on C if and only if every oci (i = 1, 2, . . . , n) is an observable

context on C and every oc j (j = 2, 3, . . . , n) is applicable to oc j−1. The length of this oc

sequence is said to be n. If the output class of ocn is a primitive type, then oc1.oc2. · · · .ocn

is called a primitive oc sequence on C.

In observation (c) of Example 6, for instance, oc1.oc2 is an oc sequence, but oc2.oc1 is

not. Furthermore, oc1.oc2 is a primitive oc sequence.

DEFINITION 8 PROPER IMPORTS. An algebraic specification of a class C is said to

have proper imports if every oc sequence on C is of finite length, and can be extended to a

primitive oc sequence in a finite number of steps.3 Otherwise, it is said to have improper

imports.

Consider, for instance, the specification in Example 6. The class Stack imports Boolean

and IntegerBag as output classes of its observers isEmpty and top, respectively. Boolean

is a primitive type. IntegerBag imports the primitive types Boolean and Integer as output

classes of its observers null and largest, respectively. This specification does not contain

any infinite oc sequence and hence has proper imports. In this paper, we shall only consider

specifications with proper imports.

We are now ready to define other degrees of term equivalence.

DEFINITION 9 OBSERVATIONAL EQUIVALENCE OF TERMS. Given a canonical

specification of a class C with proper imports, two ground terms u1 and u2 are said to

be observationally equivalent (denoted by “u1 ∼obs u2”) if and only if the following con-

dition is satisfied:

If no observable context oc on C is applicable to u1 and u2, then the normal

forms of u1 and u2 are identical. Otherwise, for any such oc on C, u1.oc and

u2.oc are observationally equivalent.

DEFINITION 10 ATTRIBUTIVE EQUIVALENCE OF TERMS. Given a canonical

specification of a class C with proper imports, two ground terms u1 and u2 in C are said to

be attributively equivalent (denoted by “u1 ∼att u2”) if and only if the following condition

is satisfied:

3More formally, given a specification SP, let SC be the finite set of classes in SP. We define a class-import

relation of SP as the binary relation

R = {(C, C′) ∈ SC×SC | C′ is an imported class of C}.

Let R* be the transitive closure of R. A specification SP has proper imports if (a) R* is non-reflexive and (b)

for any non-primitive class C ∈ SC, there exists some primitive type C′ ∈ SC such that (C, C′) ∈ R*.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 15

If no observer ob of C is applicable to u1 and u2, then the normal forms of u1

and u2 are identical. Otherwise, for any such ob in C, u1.ob and u2.ob are

observationally equivalent.

Corresponding to Definition 9 for the observational equivalence of terms, we have Defi-

nition 1 for objects as shown in Section 2. Corresponding to Definition 10 for the attributive

equivalence of terms, we have the following definition for objects.

DEFINITION 11 ATTRIBUTIVE EQUIVALENCE OF OBJECTS. Given an implementation

of a canonical specification of a class C with proper imports, two objects O1 and O2 in C

are said to be attributively equivalent (denoted by “O1 ≈att O2”) if and only if the follow-

ing condition is satisfied:

If no observer ob of C is applicable to O1 and O2, then O1 and O2 are identical

objects. Otherwise, for any such ob in C, O1.ob and O2.ob are observationally

equivalent objects.

The base cases of the recursions in Definitions 1, 9, 10, and 11 are the identity of prim-

itive types, because there is no observer or observational context in such types. Since the

given specification has proper imports and the implementation is complete, the recursions

always terminate with finite numbers of steps. For example, the following lemmas can be

derived directly from Definitions 9, 10, and 11, respectively. They will be useful in later

theorems.

LEMMA 1. Given a canonical specification of a class C with proper imports, two

ground terms u1 and u2 are observationally equivalent if and only if the following con-

dition is satisfied:

If no observable context oc on C is applicable to u1 and u2, then the nor-

mal forms of u1 and u2 are identical. Otherwise, for any primitive oc se-

quence oc1.oc2. · · · .ock on C applicable to u1 and u2, the normal forms of

u1.oc1.oc2. · · · .ock and u2.oc1.oc2. · · · .ock are identical.

LEMMA 2. Given a canonical specification of a class C with proper imports, two

ground terms u1 and u2 are attributively equivalent if and only if the following condition is

satisfied:

If no observer ob of C is applicable to u1 and u2, then the normal

forms of u1 and u2 are identical. Otherwise, for any primitive oc

sequence ob.oc1.oc2. · · · .ock in C applicable to u1 and u2, where ob is

some observer of C, the normal forms of u1.ob.oc1.oc2. · · · .ock and

u2.ob.oc1.oc2. · · · .ock are identical.

LEMMA 3. Given an implementation of a canonical specification of a class C with

proper imports, two objects O1 and O2 are attributively equivalent if and only if the fol-

lowing condition is satisfied:

If no observer ob of C is applicable to O1 and O2, then O1 and

O2 are identical objects. Otherwise, for any primitive oc sequence

ob.oc1.oc2. · · · .ock in C applicable to O1 and O2, where ob is

some observer of C, the executions of O1.ob.oc1.oc2. · · · .ock and

O2.ob.oc1.oc2. · · · .ock result in identical objects.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

16 · H. Y. Chen, T. H. Tse, and T. Y. Chen

LEMMA 4. Given a canonical specification of a class C with proper imports, let u be

any ground term. No observable context oc on C is applicable to u if and only if no observer

ob of C is applicable to u.

PROOF. An observer of C applicable to u is a special case of an observable context on

C applicable to u. Conversely, suppose an observable context oc is applicable to C. It

must be of the form op0.op1. · · · .opn.ob, where each opi (i = 0, 1, n) is a constructor or

transformer, and ob is an observer. Now, the input and output classes of a constructor or

transformer must be the same, and the input class of opi must be the same as the output

class of opi−1. Hence, the input class of ob must be the same as the input class of op0.

Thus, the observer ob must be applicable to u.

The relations among terms or objects defined in Definitions 1, 4, 9, 10, and 11 are

reflexive, symmetric, and transitive. Hence, they are equivalence relations. The following

theorems show the subsumption relationships among them:

THEOREM 1 SUBSUMPTION RELATIONSHIPS FOR TERM EQUIVALENCE. Given a canon-

ical specification of a class with proper imports,

(a) If two ground terms u1 and u2 satisfy the rewriting relation, then u1 and u2 must be

normally equivalent, but the converse is not true.

(b) If two ground terms u1 and u2 are normally equivalent, then u1 and u2 must be obser-

vationally equivalent, but the converse is not true.

(c) If two ground terms u1 and u2 are observationally equivalent, then u1 and u2 must be

attributively equivalent, but the converse is not true.

PROOF. (a) Since u1 and u2 satisfy the rewriting relation, u1 can be transformed into u2

using the axioms in the specification as rewrite rules. Since the specification is canonical,

u2 should have a unique normal form u*. By the property of canonical specifications,

u* should also be the unique normal form of u1. Thus, u1 and u2 have the same normal

form u*, and hence are normally equivalent.

Conversely, consider

u1 = new.push(10).push(20).pop, and

u2 = new.push(30).pop.push(10)

in Example 1. They are normally equivalent, but do not satisfy the rewriting relation.

(b) If u1 and u2 are normally equivalent and if no observable context on the class is appli-

cable to them, then by Definition 9, u1 and u2 must be observationally equivalent.

Suppose some observable context on the class is applicable to u1 and u2. If u1 and u2 are

normally equivalent, they can be rewritten into the same normal form u*. Hence, for any

primitive oc sequence oc1.oc2. · · · .ock on C applicable to u1 and u2, both

u1.oc1.oc2. · · · .ock and u2.oc1.oc2. · · · .ock can be rewritten into u*.oc1.oc2. · · · .ock. Fur-

thermore, u*.oc1.oc2. · · · .ock can be rewritten into a unique normal form u**. Since the

specification is canonical, u** is also the common unique normal form of

u1.oc1.oc2. · · · .ock and u2.oc1.oc2. · · · .ock. In other words, the normal forms of

u1.oc1.oc2. · · · .ock and u2.oc1.oc2. · · · .ock are identical. Thus, according to Lemma 1,

u1 and u2 are observationally equivalent.

Conversely, take

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 17

u1 = new(′John′).setAddr(′2 University Drive′).credit(1000).debit(200),
and

u2 = new(′John′).setAddr(′2 University Drive′).credit(800)
in Example 5. They are observationally equivalent but not normally equivalent.

(c) Let u1 and u2 be two observationally equivalent ground terms. If no observer of the

class is applicable to them, by Lemma 4, no observational context on the class is ap-

plicable to them either. By Definition 9, therefore, the normal forms of u1 and u2 are

identical. Thus, according to Definition 10, u1 and u2 are attributively equivalent.

Suppose some observer of the class is applicable to u1 and u2. Any such observer is

a special case of observable contexts on the class. Hence, according to Definition 9,

u1.ob and u2.ob are observationally equivalent. By Definition 10, therefore, u1 and u2

are attributively equivalent.

Conversely, take

u1 = new.push(10).push(20), and

u2 = new.push(30).push(20)
in Example 1. They are attributively equivalent but not observationally equivalent.

THEOREM 2 SUBSUMPTION RELATIONSHIPS FOR OBJECT EQUIVALENCE. Given a

canonical specification of a class with proper imports, suppose the implementation is com-

plete. If two objects O1 and O2 are observationally equivalent, then O1 and O2 must be

attributively equivalent, but the converse is not true.

PROOF. The proof is similar to that of Theorem 1(c).

4.3 A Theoretical Framework for the Testing of Equivalence and Non-Equivalence

In this and the next two sections, we apply the above classification of equivalence to inves-

tigate the problems on non-equivalent terms as test cases.

By Theorem 1(b), two ground terms that are not normally equivalent may be observa-

tionally equivalent. Hence, their corresponding results in a correct implementation may be

observationally equivalent. This is the reason why Assertion 2 does not hold in the context

of normal equivalence. Similarly, we can explain why Assertion 2 does not hold in the

context of rewriting relations.

We note from Theorem 1(b), however, that normal equivalence implies observational

equivalence. Hence, Assertion 1 holds for normal equivalence. By similar reasoning,

Assertion 1 also holds for rewriting relations. Thus, Assertion 1 under the concepts of

rewriting relations and normal equivalence can be used as the theoretical basis of generat-

ing equivalent ground terms as test cases, as done in [Doong and Frankl 1994] and [Chen

et al. 1998], respectively.

Examples 2 and 5 indicate that rewriting relations and normal equivalence are too strong

for Assertion 2. They should be replaced by weaker degrees of equivalence. Intuitively,

the counterpart of the observational equivalence of objects in implementations should be

the observational equivalence of ground terms in specifications, rather than the normal

equivalence of ground terms. The following Definition 12 reflects this intuition.

NOTATION 1. Given any ground term u, we will use Θ(u) to denote the object produced

by the method sequence corresponding to u.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

18 · H. Y. Chen, T. H. Tse, and T. Y. Chen

DEFINITION 12 CONSISTENT IMPLEMENTATION. Given a canonical specification of

a class with proper imports, suppose its implementation is complete. An implementation is

consistent with the specification if and only if both of the following criteria are satisfied:

Equivalence Criterion

For any observationally equivalent ground terms u1 and u2,

Θ(u1) and Θ(u2) must be observationally equivalent.

Non-Equivalence Criterion

For any observationally non-equivalent ground terms u1 and u2,

Θ(u1) and Θ(u2) must be observationally non-equivalent.

If an implementation is not consistent with the specification, then we say there is an error

in the implementation.

Although this formal definition is consistent with the intuitive concept of most software

testers, it may not be immediately useful for practical situations. The observational equiv-

alence of terms in a specification, for example, is fairly difficult to establish. Hence, in

the first phase of the TACCLE project [Chen et al. 1998], we resorted to using an alter-

native equivalence criterion; namely that “given any normally equivalent ground terms u1

and u2, Θ(u1) and Θ(u2) must be observationally equivalent”. How is this related to the

formal definition above? Would the alternative criterion be too weak, so that some errors

might not be revealed? We would like to establish a formal framework on the relationships

among similar testing criteria. Our result turns out to be surprisingly neat and useful.

In order to establish the main theorems in the framework, we need a simple lemma first.

LEMMA 5. Given an implementation of a canonical specification of a class C with

proper imports,

(a) Suppose u1 and u2 are two ground terms and v is a sequence of operations applicable

to u1 and u2. If u1 and u2 are observationally equivalent, then u1.v and u2.v are also

observationally equivalent.

(b) Suppose O1 and O2 are two objects, and s is a sequence of methods applicable to

O1 and O2. If O1 and O2 are observationally equivalent, then O1.s and O2.s are also

observationally equivalent.

PROOF. (a) If no observable context oc on C is applicable to u1.v and u2.v, then v must

end with an observer. Hence, v itself is an observable context applicable to u1 and u2.

Thus, according to Definition 9, if u1 and u2 are observationally equivalent, then u1.v
and u2.v are also observationally equivalent.

Suppose some observable contexts on the class are applicable to u1.v and u2.v. Let oc

be any of such observable contexts. Then v.oc is also an observable context applicable

to u1 and u2. If u1 and u2 are observationally equivalent, by Definition 9, u1.v.oc and

u2.v.oc are also observationally equivalent. Hence, by the same definition, u1.v and u2.v
are observationally equivalent.

(b) The proof for the implementation counterpart is similar.

THEOREM 3 EQUIVALENCE CRITERIA. Given a canonical specification of a class with

proper imports, suppose its implementation is complete. The following statements are

equivalent:

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 19

(a) For any observationally equivalent ground terms u1 and u2,

Θ(u1) and Θ(u2) are observationally equivalent.

(b) For any normally equivalent ground terms u1 and u2,

Θ(u1) and Θ(u2) are observationally equivalent.

(c) For any normally equivalent ground terms u1 and u2,

Θ(u1) and Θ(u2) are attributively equivalent.

(d) For any attributively equivalent ground terms u1 and u2,

Θ(u1) and Θ(u2) are attributively equivalent.

(e) For any observationally equivalent ground terms u1 and u2,

Θ(u1) and Θ(u2) are attributively equivalent.

PROOF. 1. (a) implies (b):

For any normally equivalent ground terms u1 and u2, by Theorem 1(b), u1 and u2 must

be observationally equivalent. Hence, if statement (a) is true, Θ(u1) and Θ(u2) must be

observationally equivalent.

2. (b) implies (c):

For any normally equivalent ground terms u1 and u2, if statement (b) is true, Θ(u1) and

Θ(u2) must be observationally equivalent. By Theorem 2, therefore, Θ(u1) and Θ(u2)
must be attributively equivalent.

3. (c) implies (d):

For any attributively equivalent ground terms u1 and u2,

(i) If no observer of the class is applicable to u1 and u2, then by Definition 10, the

normal forms of u1 and u2 are identical. In other words, u1 and u2 are normally

equivalent. Hence, if statement (c) is true, Θ(u1) and Θ(u2) must be attributively

equivalent.

(ii) Suppose some observer of the class is applicable to u1 and u2. Since the

specification has proper imports, consider any primitive oc sequence

ob.oc1.oc2. · · · .ock applicable to u1 and u2, where ob is any observer applicable to u1

and u2. Since u1 and u2 are attributively equivalent, by Lemma 2, the normal forms of

u1.ob.oc1. · · · .ock and u2.ob.oc1. · · · .ock are identical. In other words, u1.ob.oc1. · · · .ock

and u2.ob.oc1. · · · .ock are normally equivalent. Thus, if statement (c) is true, we have

Θ(u1.ob.oc1. · · · .ock) ≈att Θ(u2.ob.oc1. · · · .ock).

Since the implementation is complete,

Θ(u1).ob.oc1. · · · .ock ≈att Θ(u2).ob.oc1. · · · .ock.

Now, the objects resulting from the executions of Θ(u1).ob.oc1. · · · .ock and

Θ(u2).ob.oc1. · · · .ock must be identical because ob.oc1.oc2. · · · .ock is a primitive oc

sequence. Hence, by Lemma 3, Θ(u1) and Θ(u2) are attributively equivalent.

4. (d) implies (e):

For any observationally equivalent ground terms u1 and u2, by Theorem 1(c), u1 and u2

must be attributively equivalent. Hence, if statement (d) is true, Θ(u1) and Θ(u2) must

be attributively equivalent.

5. (e) implies (a):

For any observationally equivalent ground terms u1 and u2,

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

20 · H. Y. Chen, T. H. Tse, and T. Y. Chen

(i) If no observable context on the class is applicable to u1 and u2, by Lemma 4, no

observer of the class is applicable to them either. Since u1 and u2 are observationally

equivalent, if statement (e) is true, Θ(u1) and Θ(u2) must be attributively equivalent.

Since no observer of the class is applicable, by Definition 11, Θ(u1) and Θ(u2) must

be identical. Hence, according to Definition 1, Θ(u1) and Θ(u2) must be observation-

ally Equivalent.

(ii) Suppose some observable contexts on the class are applicable to u1 and u2. Let

oc be any of such observable contexts. We can write oc = v.ob for some sequence

of operations v (possibly an empty sequence) and some observer ob of C. In order

to prove that Θ(u1) ≈obs Θ(u2), we need only prove that Θ(u1).v.ob ≈obs Θ(u2).v.ob.

Since u1 ∼obs u2, by Lemma 5(a), u1.v ∼obs u2.v. Hence, if statement (e) is true, we

have Θ(u1.v) ≈att Θ(u2.v). By Definition 11, therefore, Θ(u1.v).ob ≈obs Θ(u2.v).ob.

Since the implementation is complete, Θ(u1).v.ob ≈obs Θ(u2).v.ob.

The following corollary is a direct result of Definition 12 and Theorem 3.

COROLLARY 1. Error in Equivalence

Given a canonical specification of a class with proper imports, suppose its implementa-

tion is complete. Any of the following statements indicates an error in the implementation.

Furthermore, the statements are equivalent to one another.

(a) Θ(u1) and Θ(u2) are observationally non-equivalent

for some observationally equivalent ground terms u1 and u2

(b) Θ(u1) and Θ(u2) are observationally non-equivalent

for some normally equivalent ground terms u1 and u2

(c) Θ(u1) and Θ(u2) are attributively non-equivalent

for some normally equivalent ground terms u1 and u2

(d) Θ(u1) and Θ(u2) are attributively non-equivalent

for some attributively equivalent ground terms u1 and u2

(e) Θ(u1) and Θ(u2) are attributively non-equivalent

for some observationally equivalent ground terms u1 and u2

In the events of (a) and (e), we say that the test case (u1 ∼obs u2) reveals an error. In the

events of (b) and (c), we say that the test case (u1 ∼nor u2) reveals an error. In the event

of (d), we say that the test case (u1 ∼att u2) reveals an error.

Note that the following do not necessarily entail an error in the implementation:

(f) Θ(u1) and Θ(u2) are observationally non-equivalent

for some attributively equivalent ground terms u1 and u2

(g) Θ(u1) and Θ(u2) are not identical objects

for some observationally equivalent ground terms u1 and u2

(h) Θ(u1) and Θ(u2) are not identical objects

for some normally equivalent ground terms u1 and u2

PROOF OF COROLLARY 1. Statements (a) to (e) in this corollary are, respectively, the

negations of statements (a) to (e) of Theorem 3, which are mutually equivalent. Hence,

statements (a) to (e) in this corollary are mutually equivalent.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 21

Statement (a) in this corollary is the negation of the equivalence criterion in Defini-

tion 12. Hence, there will be an error in the implementation if statement (a) in this corollary

is true. Furthermore, since statements (a) to (e) in this corollary are mutually equivalent,

there will also be an error in the implementation if one of the statements (b) to (e) in this

corollary is true.

The observational equivalence of terms in a specification is intuitively the most straight-

forward yardstick for the observational equivalence of objects in an implementation. As

we have indicated earlier, however, this is not useful in testing practice because the obser-

vational equivalence of terms cannot be easily verified. In view of practical considerations,

during the first phase of our TACCLE project [Chen et al. 1998], we chose to use the normal

equivalence of terms as a test case selection criterion instead. Theorem 3 and Corollary 1

confirm that there is no compromise on the equivalence criterion.

THEOREM 4 NON-EQUIVALENCE CRITERIA. Given a canonical specification of a class

with proper imports, suppose its implementation is complete. The following statements are

equivalent:

(a) For any observationally non-equivalent ground terms u1 and u2,

Θ(u1) and Θ(u2) are observationally non-equivalent.

(b) For any attributively non-equivalent ground terms u1 and u2,

Θ(u1) and Θ(u2) are attributively non-equivalent.

(c) For any attributively non-equivalent ground terms u1 and u2,

Θ(u1) and Θ(u2) are observationally non-equivalent.

PROOF. 1. (a) implies (b):

For any attributively non-equivalent ground terms u1 and u2,

(i) If no observer of the class is applicable to u1 and u2, then by Lemma 4, no observable

context on the class is applicable to them either. Since u1 and u2 are attributively

non-equivalent, by Theorem 1(c), they are observationally non-equivalent. Hence, if

statement (a) is true, Θ(u1) and Θ(u2) must be observationally non-equivalent. Since

no observable context on the class is applicable to u1 and u2, by Definition 1, the

objects Θ(u1) and Θ(u2) cannot be identical. By Definition 11, Θ(u1) and Θ(u2)
must be attributively non-equivalent.

(ii) Suppose some observer of the class is applicable to u1 and u2. By Definition 10,

there exists some ob such that ¬(u1.ob ∼obs u2.ob). Hence, if statement (a) is

true, we have ¬[Θ(u1.ob) ≈obs Θ(u2.ob)]. Since the implementation is complete,

¬[Θ(u1).ob ≈obs Θ(u2).ob]. Thus, by Definition 11, Θ(u1) and Θ(u2) must be at-

tributively non-equivalent.

2. (b) implies (c):

For any attributively non-equivalent ground terms u1 and u2, if statement (b) is true,

Θ(u1) and Θ(u2) must be attributively non-equivalent. By Theorem 2, therefore, Θ(u1)
and Θ(u2) must be observationally non-equivalent.

3. (c) implies (a):

For any observationally non-equivalent ground terms u1 and u2,

(i) If no observable context on the class is applicable to u1 and u2, the output class

of u1 and u2 is a primitive type. By Definition 9, the normal forms of u1 and u2

cannot be identical. By Lemma 4, no observer of the class is applicable to u1 and u2.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

22 · H. Y. Chen, T. H. Tse, and T. Y. Chen

Hence, according to Definition 10, u1 and u2 are attributively non-equivalent. Thus,

if statement (c) is true, Θ(u1) and Θ(u2) are observationally non-equivalent.

(ii) Suppose some observable contexts oc on the class are applicable to u1 and u2.

By Definition 9, for at least one such oc, we have ¬(u1.oc ∼obs u2.oc). Now,

we can write oc = v.ob for some sequence of operations v (possibly an empty se-

quence) and some observer ob of C. In other words, ¬(u1.v.ob ∼obs u2.v.ob).
Hence, by Definition 10, ¬(u1.v ∼att u2.v). If statement (c) is true, therefore,

¬[Θ(u1.v) ≈obs Θ(u2.v)]. Thus, by Lemma 5(b) Θ(u1) and Θ(u2) are observa-

tionally non-equivalent.

The next corollary follows immediately from Definition 12 and Theorem 4.

COROLLARY 2. Error in Non-Equivalence

Given a canonical specification of a class with proper imports, suppose its implementa-

tion is complete. Any of the following statements indicates an error in the implementation.

Furthermore, the statements are equivalent to one another.

(a) Θ(u1) and Θ(u2) are observationally equivalent

for some observationally non-equivalent ground terms u1 and u2

(b) Θ(u1) and Θ(u2) are attributively equivalent

for some attributively non-equivalent ground terms u1 and u2

(c) Θ(u1) and Θ(u2) are observationally equivalent

for some attributively non-equivalent ground terms u1 and u2

In the event of (a), we say that the test case ¬(u1 ∼obs u2) reveals an error. In the events

of (b) and (c), we say that the test case ¬(u1 ∼att u2) reveals an error.

Note that the following do not necessarily entail an error in the implementation:

(d) Θ(u1) and Θ(u2) are observationally equivalent

for some normally non-equivalent ground terms u1 and u2

(e) Θ(u1) and Θ(u2) are attributively equivalent

for some observationally non-equivalent ground terms u1 and u2

(f) Θ(u1) and Θ(u2) are attributively equivalent

for some normally non-equivalent ground terms u1 and u2

PROOF OF COROLLARY 2. The proof is similar to that of Corollary 1.

Theorem 4 provides us with alternatives to the non-equivalence criterion in Defini-

tion 12. As a result, Corollary 2 provides us with alternatives for detecting errors in non-

equivalence. Furthermore, statement (d) after Corollary 2 reinforces our earlier finding that

Assertion 2 does not hold in the context of normal non-equivalence. On the other hand,

statements (a) and (b) in Corollary 2 indicate that Assertion 2 does hold in the context of

observational and attributive non-equivalence, respectively.

The theoretical result is simple and elegant. However, which of these alternatives is

better from the practical view of a software tester? The most obvious choices are between

statements (a) and (b) of Corollary 2. Intuitively, there appears to be a trade-off between

the complexity of operation sequences and that of verifying the equivalence of the resulting

objects. One may argue that, for the same error, error-exposing attributively non-equivalent

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 23

terms are generally longer than error-exposing observationally non-equivalent terms. Un-

fortunately, the lengths of error exposing observationally non-equivalent terms cannot be

known before test case selection. Hence, we must select test cases from the set of all pairs

of observationally non-equivalent terms, which is infinite in general. Thus, the task of

selecting error exposing observationally non-equivalent terms is more complex than this

simple argument.

We can compare the task of testing based on observationally non-equivalent terms with

that based on attributively non-equivalent terms by breaking up each of them into two

subtasks:

(a) Testing based on observationally non-equivalent terms includes:

(a1) Selecting test cases from the set Sobs of pairs of observationally non-equivalent

terms, which is infinite in general.

(a2) Selecting observable contexts from the set Soc of possible observable contexts.

(b) Testing based on attributively non-equivalent terms includes:

(b1) Selecting test cases from the set Satt of pairs of attributively non-equivalent terms,

which is infinite in general.

(b2) Selecting observers from the set Sob of all observers.

Our GAN approach in Section 4.4 deals with the infinite set Satt using techniques in state-

transition diagrams (STD), and turns subtask (b1) into a terminating process. However, the

same approach cannot be used to handle the infinite set Sobs in (a1), since the concept of

states in STD relates directly to attributive equivalence rather than observational equiva-

lence. Furthermore, the set Sob in (b2) is small and finite whereas Soc in (a2) is infinite in

most cases. Hence, subtask (b2) is generally much more effective than subtask (a2).
As a result of these analyses, we recommend testing based on attributively non-equivalent

terms. Thus, we shall present in Sections 4.4 to 4.7 a methodology to perform class-level

testing using attributively non-equivalent terms as test cases.

4.4 Generating Non-Equivalent Terms from State-Transition Diagrams

In this section, we consider how to generate representative attributively

non-equivalent ground terms as test cases. Given a canonical specification of a class with

proper imports, suppose T is the set of all ground terms. Suppose T is further partitioned

into k equivalence classes4 T1, T2, . . ., Tk with respect to the attributive equivalence of

terms. If we randomly select a ground term ui from each Ti, we will obtain k(k − 1)/2

pairs of attributively non-equivalent terms ¬(ui ∼att u j) as test cases, where i 6= j, and

i, j = 1, 2, . . . , k.

The remaining question is how T can be partitioned with respect to the attributive equiv-

alence of terms. Intuitively speaking, if two ground terms in a class C are attributively

equivalent, the corresponding two objects in C have the same set of attributive values. In

other words, the two objects have the same state. More formally, a state represents an

equivalence class of objects in C. The set of all the states in C is called the state space of

C.

If the state space of C is finite and not large, we can perform the partitioning as follows:

Construct the state-transition diagram for the given class C, where each node denotes a

4Here, “equivalence class” is a discrete mathematics concept rather than an object-oriented concept.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

24 · H. Y. Chen, T. H. Tse, and T. Y. Chen

state, and each arc represents an operation transforming one state into another. A path

is a sequence of contiguous arcs, corresponding to a sequence of operations, or in other

words, a term. The state established by the creator is called the initial state. Let the node

corresponding to the initial state be called the initial node and labeled by n0. All the terms

corresponding to the paths from the initial node n0 to a given node ni form an equivalence

class Ti.

If the state space of the class C is infinite or large, we can use the approach proposed by

[Turner and Robson 1993b; 1993a; 1995] to partition the state space into a finite number

of subspaces. Each node in the state-transition diagram denotes a subspace, rather than

a concrete state. For example, consider a scenario where each object in a given class C

has two attributes a and b. Suppose that, according to the functional specification, the

domain of a can be partitioned into three subdomains A1 = {a | a < 0}, A2 = {a | a = 0},

and A3 = {a | a > 0}, and the domain of b can be partitioned into two subdomains B1 =
{b | − 1 ≤ b < 0} and B2 = {b | 0 ≤ b ≤ 1}. Then we partition the state space of C into

six subspaces Ai ×B j, i = 1, 2, 3 and j = 1, 2.

We observe the following:

(i) In the case of state-space partitioning, two terms corresponding to two paths from the

initial node n0 to the same node ni are not necessarily attributively equivalent. On the

other hand, two terms corresponding to two paths from the initial node n0 to different

nodes ni and n j must be attributively non-equivalent.

(ii) One potential problem from the above observation is that state transitions are not al-

ways deterministic. Consider, for example, a stack of Boolean values with operations

push, pop, top, and isEmpty. Since top and isEmpty are the only observers, there will

be three states: (n0) the empty stack; (n1) stacks with “true” at the top; and (n2) stacks

with “false” at the top. A pop transition from state (n1) or (n2) can lead to any of the

states, and is therefore “non-deterministic” at the state-transition level. This issue is an

inherent limitation of most object-oriented testing methods based on state transitions. In

the context of our approach, the problem can be solved as follows:

Let us define current sequence as the operation sequence on a current path from the

initial node to the current node ni, and denote it by CS. A “non-deterministic” transition

from the current node will involve more than one transition arc from ni. We label each

arc with a guard condition after the operation name. In the above example, the pop

transition arc from the node n1 to the node n0 is labeled with pop | CS.pop.top = nil;

the pop arc from n1 to itself is labeled with pop | CS.pop.top = true; the pop arc from

n1 to n2 is labeled with pop | CS.pop.top = f alse; and so on.

When traversing a given path up to the current node, the current sequence CS is ob-

viously unique and can be obtained. Once CS is known, the appropriate transition arc

can be determined from the guard condition according the specification. Hence, every

transition arc is well defined. In this way, we can refine a “non-deterministic” transition

into deterministic ones.

For a given node, different paths leading to it have different values of CS, and hence we

cannot write the actual value of CS on the guard condition in the state-transition diagram.

The notation CS on the guard condition in the diagram serves only as an identifier. When

we use rewriting technique to determine whether a guard condition is satisfied, we must

replace CS by its actual value, which is the sequence of concrete operations from the

initial node to the current node.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 25

It should be noted that, for more complex classes, the guards may become quite com-

plicated. Suppose, for instance, that there are k attributes a1, a2, . . . , ak in a given

class, and there are ni values (or ni subdomains) ai,1, ai,2, . . . , ai,ni
for each attribute ai.

Suppose, further, that the observer to return the value of attribute ai is obi. Then for a

given current sequence CS and a given operation op, the general form of a guard will be

∧i=1,2,...,k (CS.op.obi = ai, j) for some j ∈ {1, 2, . . . , ni}.5

Based on state-transition diagrams, we have

The GAN Approach (for Generating Attributively Non-equivalent terms as test cases).

Given a canonical specification of a class with proper imports, the following steps gen-

erate attributively non-equivalent terms as test cases:

(1) Based on the specification, construct a state-transition diagram (STD) for the class,

including guard conditions, if any.

(2) Let {n0, n1, . . . , nk} denote the set of nodes in the STD, where n0 is the initial node.

For each node ni other than the initial node n0, find a path pi from n0 to ni. Every guard

condition along the path, if any, must be satisfied according to the specification.

(3) Let ui denote the ground term representing the operation sequence in the path pi. Take

the k(k − 1)/2 pairs of attributively non-equivalent terms ¬(ui ∼att u j) as test cases,

where i 6= j, and i, j = 1, 2, . . . , k.

(4) If one of the pairs generated in step (3) reveals an error, then exit from the procedure.

Otherwise, generate more paths pi from the initial node n0 to every node ni. If a cycle

cyc is encountered in a path, ask the user to determine a ceiling tcyc for the number of

iterations of cyc, or specify a global ceiling T for the system.6 The ceilings tcyc or T

correspond to some boundary values in the code.

We use the following strategy to curtail the number of generated paths: Paths with

lengths corresponding to the boundary values are generated first. Since boundary values

are usually more sensitive to errors [Jeng and Weyuker 1994; White and Cohen 1980],

the chances of exposing errors by such paths are higher. Once an error is revealed by a

pair of paths, the execution of GAN will terminate, so that no other paths will need to be

generated. If an error is not detected, then randomly generate some paths with lengths

between the boundary values, to test the non-boundary cases. If no error is detected

from the random paths, then report that no error has been revealed, and exit from the

procedure.

Readers may find the following points useful for understanding the GAN approach:

(a) Our techniques for partitioning the state space and constructing the state-transition

diagram are similar to those described in [Turner and Robson 1993b; 1993a; 1995].

(b) The following theorem provides the theoretical justification for the selection strategy

in steps (2) and (3). According to this theorem, if we can ensure that the equivalence

5When ai, j denotes a subdomain, the corresponding item “CS.op.obi = ai, j” should be replaced by “CS.op.obi ∈

ai, j”.
6The determination of tcyc and T remains a difficult problem. This is an inherent limitation of program testing.

It has been addressed in Sections 2.5.2 and 3.3.3 of our companion paper [Chen et al. 1998] and will not be

repeated here. Fortunately, this issue is alleviated for the case of the GAN approach in the light of discussion point

(e) below.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

26 · H. Y. Chen, T. H. Tse, and T. Y. Chen

criterion in Definition 12 has been satisfied, then for every node ni other than the initial

node n0, we need only select one path from n0 to ni.

THEOREM 5. Consider a canonical specification of a class with proper imports and

a complete implementation satisfying the equivalence criterion in Definition 12. If no

error is revealed for some non-equivalent test case ¬(u1 ∼att u2), then no error will be

revealed for every non-equivalence test case ¬(u′1 ∼att u2) such that u′1 ∼att u1.

PROOF. Assume the contrary. Then there exist some test case ¬(u1 ∼att u2) which

does not reveal any error, and some u′1 ∼att u1 such that ¬(u′1 ∼att u2) reveals an error.

By Corollary 2, (Θ(u′1) ≈att Θ(u2)). Since u1 ∼att u′1, if the equivalence criterion has

been fulfilled, by Theorem 3(d), Θ(u1) ≈att Θ(u′1). By the transitivity property of the

equivalence relation, therefore, (Θ(u1)≈att Θ(u2)). This contradicts the assumption that

the test case ¬(u1 ∼att u2) does not reveal any error.

(c) In general situations, it is of course impossible to prove by means of software testing

that the implementation fully satisfies the equivalence criterion. Hence, we may need

more test paths from the initial node to the nodes. Step (4) serves this purpose.

(d) Although the equivalence criterion cannot be proved by means of software testing,

if the users have a certain confidence for their test results on equivalent ground terms,

Theorem 5 will enable them to have the same confidence on the selection strategy in

steps (2) and (3) of the GAN approach.

(e) It may be argued that the number of test cases involved in step (4) may be unreason-

ably large in many situations. We observe, however, that this step has been introduced

as an extra precaution because the equivalence criterion in Theorem 5 cannot be proved.

Hence, users do not have to decide on the adequacy of the testing of non-equivalence of

test cases based on step (4) alone, but make their decisions in conjunction with observa-

tions (b), (c), and (d).

4.5 Determining whether a Test Case of Non-Equivalent Terms Reveals an Error

Suppose the attributively non-equivalent terms ¬(u1 ∼att u2) are selected as a class-level

test case for a given specification using the GAN approach in Section 4.4. To apply this test

case to an implementation of the specification, we should map each operation in u1 and

u2 to a method in the program. If the implementation is complete, this mapping is well

defined. It can be supported either manually by the implementation designer or automat-

ically according to a given interface specification. Suppose this mapping generates two

method sequences s1 and s2 in the implementation. Let O1 and O2 be two objects result-

ing from the execution of s1 and s2, respectively. In order to judge whether the test case

¬(u1 ∼att u2) reveals an implementation error, by Corollary 2(b), we should use the set of

all observers of the given class to determine whether O1 ≈att O2. If so, an implementation

error is revealed. Otherwise, this test case does not expose any implementation error. This

decision is effective since the set of all observers of the given class must be finite, and its

size is small in general.

4.6 Discussions on Basic Assumptions

In the above approaches for class-level testing, we have assumed that the given specifica-

tion is canonical and has proper imports, and the implementation is complete. We would

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 27

like to discuss whether these assumptions are too restrictive and hence not useful in prac-

tice.

(1) Canonical Specifications

Intuitively, a ground term represents a sequence of operations on an object while the nor-

mal form of the ground term denotes the “abstract object value” [Breu and Breu 1993].

Given a canonical specification, every ground term can be transformed into a unique

normal form in a finite number of steps. This means that every sequence of operations

on any object must result in a unique “abstract object value”. If we relaxed the canonical

requirement for a specification, then two executions of the same sequence of operations

on the same object might result in two different “abstract object values”. In that case,

we would not be able to decide whether the software under test contains an error. Thus,

it should be reasonable to do software testing against canonical specifications.

(2) Proper Imports

Consider the following example of improper imports:

Example 7. Suppose the classes Stack′ and List in a specification import each other.

The output class of an observer top of Stack′ is List, while that of an observer head of

List is Stack′. In this case, the imports to the specification are improper because infinite

oc sequences such as newStack′.top.head.top.head. · · · will result.

Such specifications are a nuisance not only to software testing but also to software de-

velopment in general.

(3) Complete Implementations

If an implementation is not complete, we will have the following situations:

(a) There exists some operation f0 that is (i) not implemented by any method or (ii)
implemented by two or more different methods in the same class. Case (i) is obvi-

ously an error, since the implemented system will fail when f0 is called. Case (ii)
is ambiguous, since the implemented system can be executed with two different out-

comes. On the other hand, the problem can easily be identified by comparing the list

of operations in the specification with the list of methods in the implementation. We

recommend that this trivial checking be done before any attempt to test the software

comprehensively.

(b) There exists some imported class in the specification that is not implemented by

any imported class in the program, or implemented by two or more different imported

classes. This trivial problem should also be identified before any attempt to test the

software thoroughly.

(c) There exists some primitive type in the specification that has not been implemented.

Such kind of error can easily be detected.

In summary, it is reasonable to require a specification to be canonical and contain proper

imports, since no useful conclusion can be drawn from the testing of a program against an

ambiguous specification. It is also acceptable to require an implementation to be complete

because the checking is trivial and any incompleteness will lead to immediate problems.

4.7 Implementation and Experimentation of the GAN Approach

In the GAN approach, rewriting technique is used to construct state-transition diagrams

from the algebraic specifications of given classes. This can easily be implemented in

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

28 · H. Y. Chen, T. H. Tse, and T. Y. Chen

Prolog. Hence, we have developed an interactive prototype of the GAN approach using

Arity/Prolog32 for Windows 98. Interested readers may refer to our supplementary report

[Chen and Tse 2000] for the source code of the top-level module of the Prolog implemen-

tation.

We have experimented with a number of scenarios on the GAN prototype. One of them is

related to an algebraic specification for the class IntStack of stacks of non-negative integers

with a maximum size of 10. The following are some of the axioms in the specification:

a6: S.push(N).height = S.height +1 if S.height < 10

a7: S.push(N).top = N if S.height < 10

a8: S.push(N) = S if S.height = 10

a9: S.push(N).pop = S if S.height < 10

Suppose an implementation of the class contains a single error as follows:

void intStack :: push(int i)
{
i f (ht < 9) /* Error: The condition should be ht <= 9 */

{
ht = ht +1;

array[ht] = i;

}
}

The above error cannot be revealed using equivalent ground terms as test cases. It can be

revealed, however, by test cases of attributively non-equivalent ground terms through the

GAN approach. First, a state transition diagram is constructed for the given class, consisting

of four nodes:

n0 (initial node),
n1 = (empty = true, top = nil, ht = 0),
n2 = (empty = f alse, top ≥ 0, 1 ≤ ht ≤ 9),
n3 = (empty = f alse, top ≥ 0, ht = 10).

One path from n0 to n1, two paths from n0 to n2, and one path from n0 to n3 are then

generated. The ground terms corresponding to these paths are:

u1 = new,

u21 = new.push(1),
u29 = new.push(1).push(2).push(3). · · · .push(8).push(9),
u3 = new.push(1).push(2).push(3). · · · .push(8).push(9).push(10).

The following pairs of attributively non-equivalent ground terms are selected as test cases

in the order as listed:

¬(u1 ∼att u21), ¬(u1 ∼att u29), ¬(u1 ∼att u3), ¬(u21 ∼att u3), and

¬(u29 ∼att u3).

The last pair of non-equivalent terms, ¬(u29 ∼att u3), reveals the implementation error

above, since the execution results are, respectively,

(array, ht)

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 29

O29 = ([1, 2, . . . , 9], 9),
O3 = ([1, 2, . . . , 9], 9)

and obviously O29 ≈att O3.

Readers may refer to our supplementary report [Chen and Tse 2000] for more examples

and further details of the experimentation on the GAN prototype.

5. CONTRACT SPECIFICATIONS

Even if an implementation is consistent with respect to all equivalent and non-equivalent

ground terms derived from the algebraic specification of each individual class, it may still

have faults in the behavioral dependencies or interactions among cooperating objects of

different classes in a given cluster, since these dependencies and interactions may not be

expressed in terms of the algebraic specifications. Such faults cannot be covered by class-

level tests. Cluster-level testing is therefore necessary. In our approach, cluster-level testing

is based on Contract specifications.

An algebraic specification emphasizes on the functions of the attributes and operations

in a class. An interface specification stresses the description of the mapping from ground

terms in the functional specification to method sequences in the implementation of the

class. Neither of them is suitable for the specification of message passing and other in-

teractions among cooperating classes in a given cluster for the purpose of testing. The

following example illustrates this point.

Example 8. Suppose the operation SavingAccount.trans f erTo(CheckAccount, M) trans-

fers money M from a saving account SavingAccount to a check account CheckAccount in

the cluster of a bank system. When M does not exceed the balance of SavingAccount, this

operation consists of two functions:

(1) Debit money M from SavingAccount, that is, send and activate the message debit(M)
to SavingAccount.

(2) Then credit M to CheckAccount, that is, send and activate the message credit(M) to

CheckAccount.

In an algebraic specification of SavingAccount, the first function may be described by

an axiom:

SavingAccount.trans f erTo(CheckAccount, M).balance

= SavingAccount.debit(M).balance

i f M ≤ SavingAccount.balance.

The second function, however, cannot be described by pure algebraic specifications.

In formal specification languages with an object interface layer, such as in Larch [Guttag

and Horning 1993], these two functions can be described as follows:

SavingAccount trans f erTo(CheckAccount CA, Money M)
{
i f sel f .balance ≥ M then

{
result = sel f .debit(M);
(CA)′ = (CA)∧.credit(M);
};

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

30 · H. Y. Chen, T. H. Tse, and T. Y. Chen

· · ·
}

where the symbol ∧ refers to the value immediately before executing the procedure, and

the symbol ′ refers to the value immediately afterwards. However, this description for

message passing is implicit and scattered among different operations. In other functional

object-oriented languages such as FOOPS [Goguen and Meseguer 1987; Borba and Goguen

1994] this is also implemented implicitly using side effects. Thus, these languages are not

immediately suitable for specifying message-passing properties that are vital to cluster-

level testing.

On the other hand, Contract, a formal specification technique proposed by [Helm et

al. 1990], describes systematically and explicitly the interactions and message passing

among cooperating classes in a given cluster. It “extends the usual type signatures to

include constraints on behavior that capture the behavioral dependencies between objects

of classes” [Helm et al. 1990]. We propose, therefore, that Contract specifications be used

in cluster-level testing.

The main syntax of a Contract specification is the message-passing rule.

DEFINITION 13 MESSAGE-PASSING RULE. In a given cluster, a statement ri is

called a message-passing rule or an mp-rule if and only if it contains the symbol =>.

The left hand side of the symbol => is called the head of the rule and the right hand side

is called the body. If the body contains the symbol “;”, then each part separated by “;”

is called an mp-item of the body. Otherwise, we say that the body consists of a single mp-

item. Each mp-item specifies a message-passing expression, a group of message-passing

expressions, a post-condition, or a related action such as setting a value or returning

a value. A message-passing expression is of the form Class <– Message. A group of

message-passing expressions may be specified in one of two forms; namely

(expression0 / expression1 / . . . / expressionn) or (/ Variable : condition : expression).

The semantics of Contract specifications can be explained by the following example:

Example 9. A cluster CustomerAccount contains the class Customer and the class

Accounts. Each object of the class Customer is a customer of the bank. An object of

the class Accounts is a set of Account’s (such as saving account, check account, and fixed

deposit account) that belong to one customer.

The message passing and interactions between the classes Customer and Accounts can

be specified by the following Contract:

contract CustomerAccount

Customer supports

[

address : String

accounts : Accounts

· · ·
r1: Customer <– setAddress(S : String) =>

@Customer.address; {Customer.address = S};

Customer <– noti f y()
r2: Customer <– getAddress() =>

return Customer.address

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 31

r3: Customer <– noti f y() =>
(/ Ac : Ac in accounts : Ac <– update())

r4: Customer <– openAccount(Ac : Account) =>
{Ac in accounts}

r5: Customer <– closeAccount(Ac : Account) =>
{Ac not in accounts}

]

Accounts : SetOf (Account) where each Account supports

[

customer : Customer

f reeze : Boolean

· · ·
r6: Account <– setFreeze(B : Boolean) =>

@Account. f reeze; {Account. f reeze = B}
r7: Account <– update() =>

if Account. f reeze then return ′′Account is f rozen′′

else Account <– changeAddr()
r8: Account <– changeAddr() =>

customer <– getAddress();
{Account reflects customer.address}

r9: Account <– setCustomer(C : Customer) =>
{customer = C}

]

instantiation

(/ Ac : Ac in Accounts : (Customer <– openAccount(Ac) /
Ac <– setCustomer(Customer)))

end contract

Here, the words in bold are reserved words of the Contract language. An object in the

class Customer has at least two attributes; namely address of type String and accounts of

the class Accounts. An object of the class Customer can accept the messages setAddress,

getAddress, noti f y, openAccount, and closeAccount. The class Account contains at least

two attributes; namely customer of the class Customer and f reeze of type Boolean. r1, r2,

. . ., r9 are statement labels for the ease of reference.

Class <– Message => ContractSequence

means that an object of a Class receiving the Message will result

in ContractSequence, where ContractSequence is a sequence of message-passing expres-

sions, post-conditions, or related actions. The message-passing expression

Class <– Message

means sending a Message to an object of the Class. Each message corresponds to a specific

operation or method. For example, statement r1 means that when an object of the Customer

class receives a message setAddress(S : String), it will result in a sequence

@Customer.address; {Customer.address = S}; Customer <– noti f y()

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

32 · H. Y. Chen, T. H. Tse, and T. Y. Chen

The notation Ob ject.attribute denotes the value of the attribute of the Ob ject while

Ob ject.operation(Parameters) denotes the result of executing the operation on the Ob ject

using the Parameters. The notation @Ob ject.attribute sets a value to the attribute of the

Ob ject. A condition in curly brackets { }, such as {Customer.address = S}, is a post-

condition. P; Q denotes two items P and Q occurring sequentially, while P / Q denotes

two items occurring in any sequence. A notation of the form (/ V : condition : expression)
means, for all the values of the variable V that satisfy the condition, perform the expression

repeatedly in any sequence. For example,

(/ Ac : Ac in accounts : Ac <– update())

is interpreted as “Ac1 <– update() / Ac2 <– update() / . . . for all Ac1, Ac2, . . . in

accounts”.

Example 10. Referring to Example 8, the two functions of the operation

SavingAccount.trans f erTo(CheckAccount, M) can be described using the following state-

ment r1 in Contract:

contract Accounts

SavingAccount supports

[

balance : Money

· · ·
r1: SavingAccount <– trans f erTo(CheckAccount :

CheckAccount, M : Money) =>
if M ≤ SavingAccount.balance then

[SavingAccount <– debit(M);
CheckAccount <– credit(M)]

else return ′′overdrawn′′

· · ·
]

CheckAccount supports

· · ·
end contract

Finally, to facilitate manipulations, we will represent every mp-rule of the form

Class <– Message => Items1; if P then Q else R; Items2

by two mp-rules

Class <– Message => Items1; if P then Q; Items2

and

Class <– Message => Items1; if not P then R; Items2

For instance, mp-rule r1 of Example 10 will be represented by

r1a: SavingAccount <– trans f erTo(CheckAccount :

CheckAccount, M : Money) =>
if M ≤ SavingAccount.balance then

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 33

[SavingAccount <– debit(M);
CheckAccount <– credit(M)]

r1b: SavingAccount <– trans f erTo(CheckAccount :

CheckAccount, M : Money) =>
if M > SavingAccount.balance then

return ′′overdrawn′′

6. CLUSTER-LEVEL TESTING WITH INDIVIDUAL MP-RULES

The third phase of our TACCLE methodology covers cluster-level testing, including that

related to individual mp-rules and that related to composite message-passing sequences.

Each mp-rule in the Contract can be individually used for cluster-level testing, since the

behavioral dependencies and interactions among cooperating objects of the classes in a

given cluster are described in the mp-rules of the Contract for the cluster.

6.1 The TIM Approach

We propose a TIM approach for Testing the interactions using Individual Mp-rules. The

approach is illustrated by the following example:

Example 11. Referring to Example 10, in order to use the mp-rule r1 for cluster-level

testing, the following steps should be taken:

(1) Perform class-level testing on the class SavingAccount and the class

CheckAccount, respectively.

(2) Analyze the body of the mp-rule r1 to find the messages passing across different

classes, such as CheckAccount <– credit(M), from the class SavingAccount under the

condition M ≤ SavingAccount.balance. The message passing should take place in the

operation trans f erTo.

(3) Construct an object Ochk of the class CheckAccount by running a sequence of opera-

tions in the program of the class CheckAccount, such as the sequence:

newCheckAccount(′John′).credit(1500).writeCheck(1000)
Save its current state in the variable Pre-Ochk.

(4) Construct an object Osav of the class SavingAccount by running a sequence of opera-

tions in the program of the class SavingAccount, such as the sequence

newSavingAccount(′John′).credit(2000).debit(300)
We note that the sequence must not contain the operation trans f erTo.

(5) Run Osav.trans f erTo(Ochk, M) in the program of the cluster Accounts, where M is a

value of the class Money satisfying the condition M ≤ Osav.balance. During the execu-

tion, the object Osav will activate a method Md to be executed on Ochk. This method Md

serves to implement the message credit(M) passed to Ochk. It will change the state of

Ochk.

(6) Run Pre-Ochk.credit(M), and examine whether the execution result is observation-

ally equivalent to Ochk using the DOE algorithm described in Section 3. If not, report

an implementation error on the message CheckAccount <– credit(M) in the operation

trans f erTo of the class SavingAccount.

In general, we have

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

34 · H. Y. Chen, T. H. Tse, and T. Y. Chen

The TIM Approach (for cluster-level Testing by Individual Mp-rules)

Let Clus be a cluster containing two classes, sender and receiver. Let Osender and

Oreceiver denote the objects of the respective classes. Suppose

r: Osender <– operation(Oreceiver : receiver, Parameters) => .. . ;
if predicate1(Parameters), then

Oreceiver <– operation′1(Parameters′1); . . . ;
if predicate2(Parameters), then

Oreceiver <– operation′2(Parameters′2); . . . ;
if predicaten(Parameters), then

Oreceiver <– operation′n(Parameters′n); . . . ;

is an mp-rule in the Contract for Clus. In other words, the body of the mp-rule contains

n messages operation′i(Parameters′i), i = 1, 2, . . . , n, passed to the object Oreceiver. The

following are the steps for cluster-level testing based on the individual mp-rule:

(1) Perform class-level testing on the classes sender and receiver, respectively.

(2) Analyze the body of the mp-rule r to find the messages operation′i(Parameters′i), i =
1, 2, . . . , n, sent to the object Oreceiver.

(3) Based on the GAN approach, select a path p j from the initial node to some node in the

state-transition diagram (STD) of the class receiver. Construct a concrete object Oreceiver

in the class receiver by running the operation sequence corresponding to the path p j.

Save the current state of the object in the variable Pre Oreceiver.

(4) Similarly, select a path pk from the initial node to some node in the STD of the class

sender. Construct a concrete object Osender in the class sender by running the operation

sequence corresponding to the path pk. Note that the sequence must not contain the

operation operation in the mp-rule r.

(5) Randomly select a set of values of Parameters that satisfy the conditions

predicatei(Parameters), i = 1, 2, . . . , n. Run Osender.operation(Oreceiver, Parameters)
in the program of the cluster Clus. If the conditions are not specified, select any set of

values from the domain(s) of Parameters. During the execution, the class Osender will

activate the corresponding methods Mdi, i = 1, 2, . . . , n, to be executed on Oreceiver.

Each method Mdi serves to implement the message operation′i(Parameters′i) passed to

Oreceiver. These messages will change the state of Oreceiver.

If no value of Parameters satisfies the conditions predicatei(Parameters), i = 1, 2, . . . ,
n, then backtrack to step (3) or (4) to traverse a path to another node in the STD and

construct another Oreceiver or Osender. This is repeated until the conditions are satisfied

or every node nk in the STD has been considered. In the latter case, report that no error

has been found, and exit from the procedure.

(6) Run Pre Oreceiver.operation′i(Parameters′i), i = 1, 2, . . . , n, sequentially. Using the

DOE algorithm described in Section 3 and in [Chen et al. 1998], examine whether the

final execution result is observationally equivalent to Oreceiver. If not, report an im-

plementation error corresponding to the message passed to Oreceiver, and exit from the

procedure. Otherwise, backtrack to step (3) or (4) to traverse a path to another node

in the STD and construct another Oreceiver or Osender. If every node nk in the STD has

been considered in the backtracking process, report that no error has been found, and

exit from the procedure.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 35

6.2 Discussions on the TIM Approach

(a) Consider step (5) of the TIM approach. Suppose in the implementation of

Osender.operation(Oreceiver, Parameters),
the implementor introduces a new condition p2(Osender, Oreceiver, Parameters) under the

condition predicatei(Parameters), thus resulting in two implementation sub-branches.

In order to improve on the comprehensiveness of test cases, we should select two groups

of values of (Osender, Oreceiver, Parameters) such that one group satisfies the conditions

predicatei(Parameters) = true, and

p2(Osender, Oreceiver, Parameters) = true,

and the other satisfies the conditions

predicatei(Parameters) = true, and

p2(Osender, Oreceiver, Parameters) = f alse.

This partitioning is based on the implementation and hence a white-box approach.

(b) Instead of randomly selecting the values of Parameters in step (5) of the TIM ap-

proach, we can alternatively adopt the domain strategy of [White and Cohen 1980] or

the simplified testing strategy of [Jeng and Weyuker 1994] so as to improve on the ef-

fectiveness.

(c) Every mp-rule of the form

“Class <– Message => Items1; if P then Q else R; Items2”

has been divided into two mp-rules as indicated at the end of Section 5. By applying the

TIM approach to these two mp-rules, we are partitioning the input domain of parameters

of P into two subdomains. P is true in one subdomain and false in the other. This

partitioning is based on the Contract specification and hence a black-box approach.

(d) In step (5), we should select a set of values of Parameters that satisfy the conditions

predicatei(Parameters), i = 1, 2, . . . , n. According to the statistical investigations by

[White and Cohen 1980], most conditions in real-life programs are simple predicates.

This is especially the case for class-level methods in object-oriented programs. Hence,

this step is reasonable.

(e) Suppose there are j nodes in the state-transition diagram (STD) of the class receiver

and k nodes in the STD of the class sender. Then the maximum number of backtracking

will be j×k. This would not be excessive especially when each node in an STD denotes

a subspace rather than a concrete state.

6.3 Implementation and Experimentation of the TIM Approach

In order to implement the TIM approach, we need only write a sub-module AMP to Analyze

the body of the given MP-rule to find the messages passing across different classes in the

cluster. Then we can construct a control module CM to integrate AMP with GFT, DOE, and

GAN. The module CM will call and coordinate AMP, GFT, DOE, and GAN to perform the

requirements described in Section 6.1. They will be incorporated into an integrated testing

system in our future work, as outlined in Section 8.

A case study of the TIM approach has been conducted. It deals with the cluster

BankAccounts, which contains the classes SavingAccount and CheckAccount. Suppose

an implementation of the cluster contains a single error as follows:

void savingAccount :: trans f erTo(checkAccount ∗ ca, money m)
{

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

36 · H. Y. Chen, T. H. Tse, and T. Y. Chen

i f (balance >= m)
{
debit(m);
ca –> writeCheck(m);

/* Error: writeCheck(m) should be credit(m) */

}
else cout << ′′overdrawn′′;

}

This error cannot be revealed by class-level testing, regardless of whether we use equivalent

or non-equivalent ground terms as test cases. It can be revealed, however, by cluster-level

testing using the TIM approach. Interested readers may refer to our supplementary report

[Chen and Tse 2000] for more details.

7. CLUSTER-LEVEL TESTING WITH COMPOSITE MESSAGE-PASSING

SEQUENCES

A composite message-passing sequence from the Contract specification contains message-

passing expressions, post-conditions, and related actions. The sequence is generated by

joining the mp-rules in the Contract specification. In Example 9, for instance, the mp-rule

r8 can be joined with r2 into a composite message-passing sequence

Account <– changeAddr(); Customer <– getAddress();
return Customer.address; {Account reflects Customer.address}

which is obtained by inserting the body of r2 into the body of r8 at the position after the

mp-item Customer <– getAddress().

Each mp-rule corresponds to a program component, that is, a method in a class. When a

program is an integration of smaller parts, both the isolated parts and the integrated whole

must be tested. The success of one test may not guarantee the same for the other. This

property of software testing is well known to most software testers, and has been formally

stated as the anti-composition and anti-decomposition axioms by [Perry and Kaiser 1990;

Weyuker 1986]. Thus, we should test the interactions among classes using each individ-

ual mp-rule separately, as well as the interactions based on composite message-passing

sequences. The former is discussed in the last section and the latter in this section.

The procedure for testing composite message-passing sequences can be summarized as

three components as follows. They will be discussed in detail in Sections 7.2 to 7.5.

(1) The GCS algorithm generates a composite message-passing sequence

CompositeContractSequence from the Contract specification of Class <–

Message.

(2) The ESI and GCS algorithms together produce the corresponding composite message-

passing sequence CompositeImplementSequence from the implementation of Class <–

Message.

(3) We then check whether the message-passing expressions and related actions in

CompositeImplementSequence match those in CompositeContractSequence, and

whether the post-conditions in CompositeContractSequence really hold when perform-

ing Class <– Message in the program implementing the cluster. If not, then there is an

error.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 37

In our system, steps (1) and (2) are done interactively. However, step (3) can only be done

manually for general situations.

7.1 The Necessity of Testing Composite Message-Passing Sequences

A question arises here. In step (5) of the TIM approach, when Oreceiver.operation′

(Parameters′) is being run, operation′ may automatically invoke another mp-rule ri1 ,

which may invoke another mp-rule ri2 , and so on. In such a situation, is it necessary to

check the composite message-passing sequences of r joined with ri1 , ri2 , . . . , rik ? The

answer is yes, because of the following reasons:

(a) Suppose a message-passing expression m j that appears in operation′ or in the body of

one of the mp-rules ri1 , ri2 , . . ., rik is missing from the implementation. Since neither

Oreceiver.operation′(Parameters′) in step (5) of the TIM approach nor

Pre Oreceiver.operation′(Parameters′) in step (6) executes m j, their execution results

should be observationally equivalent, and hence the error cannot be revealed by the TIM

approach.

(b) By running Oreceiver.operation′(Parameters′) and Pre Oreceiver.operation′

(Parameters′), the TIM approach traverses only one of the paths produced by joining

operation′ with ri1 , ri2 , . . ., rik .

(c) Suppose a message-passing expression mi appears in the body of the mp-rule ri1 and

also in the head of the mp-rule ri2 , and suppose the implementations of ri1 and ri2

use different names for the same message-passing expression mi by mistake. Since

neither Oreceiver.operation′(Parameters′) nor Pre Oreceiver.operation′(Parameters′) in-

vokes ri2 , their execution results may be observationally equivalent, and hence the error

cannot be exposed by the TIM approach.

In order to cater for such a situation, we should have an additional procedure to check the

composite message-passing sequences. The GCS algorithm for joining message-passing

sequences, as presented in Section 7.2, will support this additional procedure.

7.2 Basic Idea of the GCS Algorithm

We propose a GCS Algorithm for Generating Composite Message-passing sequences, as

outlined in this section.

Suppose the Contract specification of a given cluster is held in a file named contractFile.

The composite message-passing sequences are placed in a file named

contractSequenceFile. The GCS algorithm reads and analyzes the contractFile, and gener-

ates and outputs the composite message-passing sequences to the

contractSequenceFile. It processes every mp-rule of the given Contract as follows.

(1) If the first mp-item in the body of the current mp-rule is a post-condition or a related

action, output it to the contractSequenceFile and then delete the item.

(2) If the first mp-item is a message-passing expression Class <– Message that cannot

match the head of any mp-rule of the Contract specification, output it to the

contractSequenceFile and then delete this mp-item.

(3) If the first mp-item is a message-passing expression Class <– Message that can match

the head of another mp-rule Class <– Message => Body1 of the Contract specification,

output it to the contractSequenceFile and then replace this mp-item by Body1.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

38 · H. Y. Chen, T. H. Tse, and T. Y. Chen

(4) If the first mp-item is of the form “if P then Q”, output “if P:” to the

contractSequenceFile and then replace this mp-item by Q.

(5) If the first mp-term is of the form (/ V : condition : Class <– Message),
where Class <– Message can match the head of another mp-rule

Class <– Message => Body2 of the Contract specification, output it to the

contractSequenceFile and then replace this mp-item by Body2.

(6) If the first mp-item is of the form (/ V : condition : Class <– Message) but Class <–

Message cannot match the head of any mp-rule of the Contract specification, output it

to the contractSequenceFile and then delete this mp-item.

(7) Repeat the above iteratively for the first mp-item of the updated body until the updated

body is empty.

Readers may refer to our supplementary report [Chen and Tse 2000] for the details of the

GCS Algorithm.

7.3 Testing Tool Based on the GCS Algorithm

Based on the GCS algorithm, we have constructed a testing tool in Arity/Prolog for gen-

erating composite message-passing sequences from Contract specifications. The tool is

also known as GCS, and consists of a translator and a generator. The translator transforms

the given Contract specification into Prolog syntax, from which the generator produces the

expected composite message-passing sequences.

7.3.1 Reason for Using Prolog. We appreciate that the semantics of an mp-rule in

Contract is very different from that of a rule in Prolog. As far as control mechanism is

concerned, however, the concepts of mp-rules, heads, bodies, and mp-items in Contract

specifications used in the GCS algorithm are very similar to those of rules, heads, bodies,

and subgoals in the Prolog inference engine, respectively. The techniques of searching,

unification, and substitution in the GCS algorithm are fundamentally the same as those

in the Prolog inference engine [Chen 1987; Chen and Wah 1987; Clocksin and Mellish

1994]. It is therefore appropriate and convenient to use the Prolog inference engine for

implementing the GCS algorithm above.

7.3.2 The Translator. The first part of the GCS tool is a translator, which transforms ev-

ery mp-rule in the given Contract specification into a Prolog rule. It transforms the symbols

“=>” and “;”, the message-passing expression Class <– Message, post-condition {Post},

and the action Act in each mp-rule of the Contract into the Prolog operators “: −” and

“,”, the Prolog structures send(Class, Message), postcondition(Post), and action(Act), re-

spectively. It also transforms the notation (/ V : condition : expression) in Contract into

the Prolog structure f orAll(/ V, condition, expression), and translates the mp-item of the

form “if P then Q” into the Prolog structure i f (P, Q).
The transformed Contract specification is called a Contract in Prolog f orm. The trans-

lator inputs the contractFile and produces the corresponding Contract in Prolog form,

which is output to the contractPrologFile. The translator has been implemented using

standard techniques and the implementation is quite straightforward.

7.3.3 The Generator. The second part of the GCS tool is a generator,

which is an implementation of the GCS algorithm in Arity/Prolog. It accepts the

contractPrologFile and generates the expected composite message-passing

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 39

sequences to an output file contractSequenceFile.

The main program for the generator can be found in [Chen and Tse 2000].

7.4 Capturing Composite Message-Passing Sequences from an Implementation

The capturing of composite message-passing sequences from an implementation involves

two processes. The first process extracts a sequence of message-passing expressions and

related actions from each given method by analyzing the source code of the method. The

message-passing sequence from each method in a given implemented class is unique7,

and corresponds to an individual mp-rule in the Contract. The second process joins these

sequences using the GCS algorithm.

7.4.1 Extracting Message-Passing Sequences. Suppose the cluster of Accounts de-

scribed in Example 10 is implemented by the following program:

Example 12. Program for the Cluster of Accounts

// Accounts.hpp

typede f f loat money;

class savingAccount

{
private :

money balance;

· · ·
public :

void createSavingAccount();
money bal();
void credit(money m);
void debit(money m);
void trans f erTo(checkAccount ∗ ca, money m);
· · ·

};

class checkAccount

{
private :

money balance;

· · ·
public :

void createCheckAccount();
money bal();
void credit(money m);
void writeCheck(money m);
· · ·

};

· · ·

// Accounts.cpp

7Readers may recall that a message-passing sequence may contain not only message-passing expressions but also

conditional expressions and related actions.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

40 · H. Y. Chen, T. H. Tse, and T. Y. Chen

include < iostream.h >
include < string.h >
include < Accounts.hpp >
void savingAccount :: trans f erTo(checkAccount ∗ ca, money m)

{
i f (balance >= m)

{
debit(m);
ca –> credit(m);
}

else cout << ′′overdrawn′′;

}
· · ·

From the program, we can extract the following message-passing sequence for the method

trans f erTo(,).

FOR MESSAGE trans f erTo(∗ca, m) SENT TO savingAccount:

savingAccount <– trans f erTo(∗ca, m);
i f (savingAccount.balance >= m) :

savingAccount <– debit(m);
(ca –>) <– credit(m);
end-i f (savingAccount.balance >= m);
i f not (savingAccount.balance >= m) :

cout << ′′overdrawn′′;

end-i f not (savingAccount.balance >= m);

The task of extracting a message-passing sequence for each implemented method, as

illustrated in Example 12, is handled by the following algorithm:

The ESI Algorithm (for Extracting a message-passing Sequence for each method from

the Implementation)

This algorithm inputs the program Prog implementing the given cluster and, for each

method in the implementation, outputs a sequence of message-passing expressions and

related actions to the implementSequenceFile.

(1) Input Prog, and open the implementSequenceFile for writing;

(2) Write “MESSAGE-PASSING AND ACTION SEQUENCES

FROM THE IMPLEMENTATION Prog” to the current line of the

implementSequenceFile;

(3) For each Class in the given cluster, do (4);

(4) For each Method in the Class, do (5) and (6);

(5) Write a blank line to the implementSequenceFile;

Start a new line for the implementSequenceFile;

Write “FOR SENDING MESSAGE Method(Parameters) TO Class:”

to the current line of the implementSequenceFile;

Start a new line for the implementSequenceFile;

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 41

Write “Class <– Method(Parameters);”
to the current line of the implementSequenceFile;

(6) Invoke the recursive procedure process(Method)
to analyze the code of the Method.

process(Method):
for each statement ST in Method do

{
if ST is an i f -then-else statement,

{
recognize the condition CD, the then-body BD1,

and the else-body BD2;

start a new line in the implementSequenceFile

and write “if CD:” to this line;

process(BD1);
start a new line in the implementSequenceFile

and write “end-if CD;” to it;

start a new line in the implementSequenceFile

and write “if-not CD:” to it;

process(BD2);
start a new line in the implementSequenceFile

and write “end-if-not CD;” to it;

};

if ST is an i f -then, while, or f or statement,

{
recognize the condition CD and the body BD1;

start a new line in the implementSequenceFile

and write “if CD:” to this line;

process(BD1);
start a new line in the implementSequenceFile

and write “end-if CD;” to it;

};

if ST is a return or “cout << .. .” statement,

start a new line in the implementSequenceFile

and write the statement to this line;

if ST is a statement of the form

“dataMember = constant”, “dataMember = parameter”,

or “dataMember = arithmetic expression”,

start a new line in the implementSequenceFile

and write “@Class#dataMember;” to this line;

if ST is a statement of the form “Ob jectO fClass1.Method1;”,

start a new line in the implementSequenceFile

and write “Ob jectO fClass1 <– Method1;” to this line;

if ST is a statement of the form “Class1 –> Method1;” (where

Class1 is a pointer to an object of a class different from Class),

start a new line in the implementSequenceFile

and write “(Class1 –>) <– Method1;” to this line;

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

42 · H. Y. Chen, T. H. Tse, and T. Y. Chen

if ST is a statement of the form

“dataMember = Class1 –> Method1;” (where Class1 is

a pointer to an object of a class different from Class),

{
start a new line in the implementSequenceFile

and write “(Class1 –>) <– Method1;” to this line;

start a new line in the implementSequenceFile

and write “@Class#dataMember;” to it;

}
if ST is a statement of the form “Method1;”

(where Method1 is a method of Class),

start a new line in the implementSequenceFile

and write “Class <– Method1;” to this line;

}

Note that we extract message-passing sequences from the implementation by static anal-

ysis of the code rather than by dynamic execution. When a “while” or “for” statement is

encountered, we extract the message-passing sequence from the body of the statement once

and only once, rather than once for each iteration of the loop. There is no nesting or loop

problem. Readers may refer, for instance, to Example 12 above.

Since the time for parsing and handling every statement in Prog by the ESI algorithm has

an upper bound, the complexity of the algorithm is O(n), where n denotes the number of

statements in the program Prog. Based on this algorithm, we have developed an automatic

tool ESI for extracting sequences of message-passing expressions and related actions from

the implementation. Since this algorithm must parse the code of the program Prog, a better

way to implement it is to embed the algorithm into a compiler or interpreter, as in the case

of the tool DOE [Chen et al. 1998].

7.4.2 Joining Message-Passing Sequences. In order to compare the message-

passing sequences in the implementSequenceFile produced by the ESI algorithm with the

composite message-passing sequences generated from Contract by the GCS algorithm, the

sequences of message-passing expressions and related actions in the

implementSequenceFile must be joined. This can be done by inputting

implementSequenceFile to the GCS tool8, running the tool, and outputting the result into

another file CompositeImplementSequenceFile.

Thus, message-passing sequences in the CompositeImplementSequenceFile are com-

posite.

7.5 Determining whether a Composite Message-Passing Sequence Reveals an Error

Suppose ContractSequence is a composite message-passing sequence for Class <–

Message in the contractSequenceFile generated by the GCS testing tool. Suppose, fur-

ther, that ImplementSequence is the composite sequence for Class <– Message in the

CompositeImplementSequenceFile produced by the testing tools ESI and GCS. We must

8Since the format of message-passing sequence contained in the implementSequenceFile is a little different from

that of mp-rule in the contractFile, there are two entry points for GCS tool. One is for the former and the other is

for the latter.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 43

verify whether ImplementSequence matches ContractSequence. If not, an implementation

error is identified.

To verify whether ImplementSequence matches ContractSequence, we must ensure that

every message-passing expression or related action in ContractSequence has been im-

plemented by a method or a set of methods in ImplementSequence. To facilitate the

checking, it is assumed that a mapping of the components of the Contract specification

to the components in the implementation has been specified by the software designer.

In case the message-passing expression contains a pre-condition, we must also check

whether the pre-condition in CompositeImplementSequence satisfies its counterpart in

CompositeContractSequence. The whole verification process is done manually.

Note that ContractSequence may contain post-conditions, but

ImplementSequence may not. It is impossible to extract post-conditions from a program

implemented in C++ into ImplementSequence, even though it is possible in better-designed

languages such as Eiffel. If the above examination of ImplementSequence with reference

to ContractSequence cannot reveal an implementation error, we need to check manually

whether the post-conditions in ContractSequence are really satisfied when executing the

programs.

7.6 Discussions on GCS and ESI

(a) Generating all composite message-passing sequences by statically analyzing the source

code is generally an undecidable problem. Instead of doing this, we only analyze the

source code to extract a sequence of message-passing expressions related to a given

method. Every method in a given implemented class has one and only one such se-

quence, which corresponds to an individual mp-rule in the Contract. We then join the

extracted sequences using the GCS algorithm.

(b) The above task of extracting a sequence of message-passing expressions within a given

method is done by the ESI algorithm. The complexity of the ESI algorithm is analyzed

in Section 7.4.1.

(c) Like the Prolog inference mechanism, the GCS algorithm is rule-based. The techniques

of searching, unification, and substitution in the algorithm are fundamentally the same

as those in Prolog. Hence, the GCS algorithm is as “reasonable” as the Prolog inference

engine.

(d) Instead of monitoring the passing messages by means of program instrumentation, we

statically extract from the source code an individual sequence of passing messages and

related actions for each method, and then join them using the GCS algorithm.

(e) Like the Prolog inference mechanism, the working of the GCS algorithm is based on

the rules given in the Contract specification. If its instantiation incurs a non-terminating

computation, the latter is a result of problematic rules in the specification, rather than

resulting from the GCS algorithm. In such a situation, the same problem will apply to a

dynamic monitoring approach by means of program instrumentation.

7.7 Implementation and Experimentation on GCS and ESI

A more elaborate version of the GCS generator has been used in the actual prototype to

provide user-friendly interfaces. Interested readers may refer to our supplementary report

[Chen and Tse 2000] for the main program written. Some experimental results on GCS can

also be found in the report.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

44 · H. Y. Chen, T. H. Tse, and T. Y. Chen

Similarly to DOE, we have combined the implementation of the ESI algorithm with a

compiler, since the algorithm must parse the code of the program under test. Readers may

refer to our supplementary report [Chen and Tse 2000] for the main idea as well as fur-

ther details. For example, we present an implementation of the cluster CustomerAccount,

whose Contract specification is described in Example 9. For each method, we also present

the message-passing sequence, which can be extracted from the implementation using the

ESI algorithm.

8. OPEN ISSUES AND FUTURE WORK

The previous sections contain only some initial experimental results of the implementation

of our proposal. An in-depth empirical study would be beyond the scope of this paper. We

are setting up a new project to develop an integrated testing system that incorporates the

prototypes GFT and DOE in [Chen et al. 1998] with GAN, TIM, GCS, and ESI in this paper,

with a view to further experimentation on real-life programs.

The cluster-level testing with composite message-passing sequences given in this paper

is only static. On the other hand, the original ESI algorithm can be revised easily to support

program instrumentation, so that the passing of messages can be monitored dynamically.

Schematically, we need only change all the statements

start a new line in the implementSequenceFile and write “X” to this line;

in step (6) of the algorithm into

insert the statement “ f print f (aFile, %s . . . s%, ′X ′)” to the code before or

after the currently parsed statement;

We plan to supplement this dynamic monitoring approach by program instrumentation as

an alternative for cluster-level testing. More details for this dynamic approach will be

considered in our future work.

In this paper, we have not considered the non-deterministic choice operators and con-

currency issues in object-oriented program testing. We will consider them as future work

based on the Java language.

9. CONCLUSION

Our TACCLE methodology for object-oriented software testing consists of three compo-

nents: testing fundamental pairs of equivalent ground terms at the class level; testing

non-equivalent ground terms at the class level; and testing sequences of message-passing

expressions and post-conditions at the cluster level.

We can reduce the test case selection domain if we use fundamental pairs as class-level

test cases, but the comprehensiveness is no less than that of using equivalent ground terms

as test cases. This strategy is based on mathematical theorems proved in [Chen et al. 1998].

An interactive tool DOE has been developed to support this strategy.

The generation of non-equivalent ground terms as test cases is a necessary and non-

trivial task for object-oriented testing at the class level. In order to enhance the founda-

tions and correct some non-trivial problems in related work, we have defined in this paper

a few important concepts on term equivalence. They are rewriting relations, normal equiv-

alence, observational equivalence, and attributive equivalence. We have investigated in

detail the relationships among these four types of relations among terms. We find that,

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

TACCLE: object-oriented software Testing At the Class and Cluster LEvels · 45

given a canonical specification of a class, if two ground terms are observationally or at-

tributively non-equivalent, but their corresponding implemented method sequences pro-

duce observationally or attributively equivalent objects, respectively, then there is an error

in the implementation. Based on these findings and using state-transition diagrams, we

propose an approach to generate attributively non-equivalent ground terms as test cases in

class-level testing.

Cluster-level testing for object-oriented programming is important but has seldom been

investigated so far. This paper shows the feasibility of using Contract, a formal specifi-

cation language, for black-box testing at the cluster level. An approach for cluster-level

testing using every individual message-passing rule in the Contract has been given. An

algorithm for cluster-level checking using the composite message-passing rules has also

been proposed. The similarities and distinctions between the control mechanism of the

algorithm and the Prolog inference engine have been analyzed. Based on this analysis, an

implementation of the algorithm for generating composite message-passing sequences by

Arity/Prolog has been presented. Two automatic tools GCS and ESI have been developed

to support cluster-level testing.

Acknowledgments

We highly appreciate the anonymous referees for their invaluable comments and sugges-

tions, which has led our paper to a greater depth. We are also grateful to Mr. Yue Tang

Deng, now with Polytechnic University, Brooklyn, NY, and Mr. Shun Long of Jinan Uni-

versity for their help in the implementation and experimentation of some of the prototypes.

REFERENCES

BERNOT, G., GAUDEL, M.-C., AND MARRE, B. 1991. Software testing based on formal specifications: a

theory and a tool. Software Engineering Journal 6, 6, 387–405.

BORBA, P. AND GOGUEN, J. A. 1994. An operational semantics for FOOPS. In R. J. Wieringa and R. B. Feenstra,

Eds., International Workshop on Information Systems: Correctness and Reusability (IS-CORE ’94). Vrije

Universiteit te Amsterdam, Amsterdam.

BOUGE, L., CHOQUET, N., FRIBOURG, L., AND GAUDEL, M.-C. 1986. Test sets generation from algebraic

specifications using logic programming. Journal of Systems and Software 6, 343–360.

BREU, R. 1991. Algebraic Specification Techniques in Object-Oriented Programming Environments, Volume

562 of Lecture Notes in Computer Science. Springer-Verlag, Berlin.

BREU, R. AND BREU, M. 1993. Abstract and concrete objects: an algebraic design method for object-based

systems. In M. Nivat, C. Rattray, T. Rus, and G. Scollo, Eds., Algebraic Methodology and Software Technol-

ogy: Proceedings of the 3rd International Conference (AMAST ’93), pp. 343–348. Workshops in Computing,

Springer-Verlag, Berlin.

CHEN, H. Y. 1987. The heuristic search algorithm A*LP for logic programs. In Proceedings of the 2nd Interna-

tional Symposium on Intelligent System Methodologies, pp. 51–65. National Information Center, Washington

DC.

CHEN, H. Y. AND TSE, T. H. 2000. Prototypes and initial experimentation on the tools of the TACCLE method-

ology. http://www.cs.hku.hk/∼tse/Papers/staccSupp.pdf.

CHEN, H. Y., TSE, T. H., CHAN, F. T., AND CHEN, T. Y. 1998. In black and white: an integrated approach to

class-level testing of object-oriented programs. ACM Transactions on Software Engineering and Methodol-

ogy 7, 3, 250–295.

CHEN, H. Y. AND WAH, B. 1987. The “rid-redundant” procedure in C-Prolog. In Proceedings of the 2nd Inter-

national Symposium on Intelligent System Methodologies, pp. 71–83. National Information Center, Washing-

ton DC.

CLARKE, E. M. ET AL. 1996. Formal methods: state of the art and future directions. ACM Computing Sur-

veys 28, 4, 626–643.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

46 · H. Y. Chen, T. H. Tse, and T. Y. Chen

CLOCKSIN, W. F. AND MELLISH, C. S. 1994. Programming in Prolog. 4th Edition. Springer-Verlag, Berlin.

DOONG, R.-K. AND FRANKL, P. G. 1991. Case studies on testing object-oriented programs. In Proceedings

of the 4th ACM Annual Symposium on Testing, Analysis, and Verification (TAV 4), pp. 165–177. ACM Press,

New York.

DOONG, R.-K. AND FRANKL, P. G. 1994. The ASTOOT approach to testing object-oriented programs. ACM

Transactions on Software Engineering and Methodology 3, 2, 101–130.

FIEDLER, S. P. 1989. Object-oriented unit testing. Hewlett-Packard Journal 40, 4, 69–74.

FRANKL, P. G. AND DOONG, R.-K. 1990. Tools for testing object-oriented programs. In Proceedings of the

8th Pacific Northwest Conference on Software Quality, pp. 309–324.

GOGUEN, J. A. AND MALCOLM, G. 2000. A hidden agenda. Theoretical Computer Science 245, 1, 55–101.

The paper is also available at http://www-cse.ucsd.edu/users/goguen/ps/ha.ps.gz.

GOGUEN, J. A. AND MESEGUER, J. 1987. Unifying functional, object-oriented, and relational programming

with logical semantics. In B. Shriver and P. Wegner, Eds., Research Directions in Object-Oriented Program-

ming, pp. 417–477. MIT Press, Cambridge, Massachusetts.

GUTTAG, J. V. AND HORNING J. J., EDS. 1993. Larch: Languages and Tools for Formal Specification. Texts

and Monographs in Computer Science. Springer-Verlag, New York.

HARROLD, M. J., MCGREGOR, J. D., AND FITZPATRICK, K. J. 1992. Incremental testing of object-oriented

class structures. In Proceedings of the 14th IEEE International Conference on Software Engineering (ICSE

’92), pp. 68–80. IEEE Computer Society, Los Alamitos, California.

HELM, R., HOLLAND, I. M., AND GANGOPADHYAY, D. 1990. Contracts: specifying behavioral compositions

in object-oriented systems. In Proceedings of the 5th Annual Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA ’90), ACM SIGPLAN Notices 25, 10, 169–180.

JENG, B. AND WEYUKER, E. J. 1994. A simplified domain-testing strategy. ACM Transactions on Software

Engineering and Methodology 3, 3, 254–270.

JORGENSEN, P. C. AND ERICKSON, C. 1994. Object-oriented integration testing. Communications of the

ACM 37, 9, 30–38.

KUNG, D. C. H., GAO, J. Z., HSIA, P., TOYOSHIMA, Y., AND CHEN, C. 1995. A test strategy for object-

oriented programs. In Proceedings of the 19th Annual International Computer Software and Applications

Conference (COMPSAC ’95), pp. 239–244. IEEE Computer Society, Los Alamitos, California.

KUNG, D. C. H., SUCHAK, N., HSIA, P., TOYOSHIMA, Y., AND CHEN, C. 1994. On object state testing. In

Proceedings of the 18th Annual International Computer Software and Applications Conference (COMPSAC

’94), pp. 222–227. IEEE Computer Society, Los Alamitos, California.

PERRY, D. E. AND KAISER, G. E. 1990. Adequate testing and object-oriented programming. Journal of Object-

Oriented Programming 3, 5, 13–19.

SMITH, M. D. AND ROBSON, D. J. 1992. A framework for testing object-oriented programs. Journal of Object-

Oriented Programming 5, 3, 45–53.

TURNER, C. D. AND ROBSON, D. J. 1993a. Guidance for the testing of object-oriented programs. Technical

Report TR-2/93, Computer Science Division, School of Engineering and Computer Science, University of

Durham, Durham, UK.

TURNER, C. D. AND ROBSON, D. J. 1993b. State-based testing and inheritance. Technical Report TR-1/93,

Computer Science Division, School of Engineering and Computer Science, University of Durham, Durham,

UK.

TURNER, C. D. AND ROBSON, D. J. 1995. A state-based approach to the testing of class-based programs.

Software: Concepts and Tools 16, 3, 106–112.

WEYUKER, E. J. 1986. Axiomatizing software test data adequacy. IEEE Transactions on Software Engineer-

ing SE-12, 12, 1128–1138.

WHITE, L. J. AND COHEN, E. I. 1980. A domain strategy for computer program testing. IEEE Transactions on

Software Engineering SE-6, 3, 247–257.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.

