Thisis apre-published version

Competitive Deadline Scheduling via
Additional or Faster Processors

Chiu-Yuen Koo Tak-Wah Lam Tsuen-Wan Ngan Kar-Keung To

Department of Computer Science, University of Hong Kong, Hong Kong
Email: {cykoo, twlam, twngan, kkto}@cs.hku.hk

November 11, 2000

Abstract. We consider the online problem of scheduling jobs with deadlines in
a single-processor system that allows preemption. The aim is to maximize the total
value of jobs completed by their deadlines. It is known that the competitive ratio
for this problem is ©(k), where k is the ratio of the maximum possible value density
to the smallest possible one. Yet, if the online scheduler is given a processor faster
(say, two times faster) than the adversary, there exists an algorithm called SLACKER
that can achieve an O(1) competitive ratio. In this paper, we show that using only
additional unit speed processors is a possible but not a cost effective way to achieve
constant competitiveness. Specifically, we find that ©(logk) unit speed processors
are required. On the other hand, we give a better analysis of the competitiveness
of SLACKER; this new analysis enables us to show that SLACKER when extended to
the multi-processor systems can still guarantee constant competitiveness.

1 Introduction

We study online algorithms for the following firm-deadline scheduling problem in a single-
processor system. Jobs are released in an unpredictable fashion and the processing time
and deadline of a job are known only when the job is released. Preemption is allowed at
no cost. In general, a system may be overloaded in the sense that there is no schedule
meeting the deadline of every job released. A scheduler aims to maximize the total value
of jobs that can be completed by their deadlines, where the walue of a job is another

tSome results in this paper appears as part of Performance Guarantee for Online Deadline Scheduling
in the Presence of Overload, in Proceedings of the Twelfth Annual ACM-STAM Symposium on Discrete
Algorithms, 2001.

parameter given upon the release of the job, which reflects the importance of the job. To
ease our discussion, let us define the value density of a job to be its value divided by the
processing time. The importance ratio of a system is the ratio of the largest possible value
density to the smallest possible one. See [18] for more discussion on deadline scheduling.

We analyze the performance of online algorithms with respect to their competitiveness
(see, e.g., [5] and [17] for general background). In this paper, we say that an online
algorithm A is c-competitive if for any job sequence, A guarantees to obtain at least a
factor 1/c¢ of the total value obtained by any offline algorithm. For the firm-deadline
scheduling problem, the early work of Dertouzos [7] showed that the Earliest Deadline
First (EDF) strategy is 1-competitive for underloaded systems. That is, whenever there
exists a schedule meeting the deadline of every job, EDF can always do so. However,
without the underloaded assumption, no algorithm can be 1-competitive; indeed, Baruah
et al. [2,3] gave a lower bound of (1 + v/k)? on the competitive ratio, where k is the
importance ratio. That means, even if all jobs have uniform job density (i.e., k = 1), the
best algorithm we can expect is 4-competitive. Afterward, Koren and Shasha [13] showed
that this lower bound is tight by giving a (1 4+ v/k)?-competitive algorithm. Notice that
when £ is large, such performance guarantee is not satisfactory.

In recent years, a plausible approach to obtaining better performance guarantee with-
out making assumption on future inputs is to allow the online scheduler to have more
resources than the adversary (e.g., [4,6,8,10,14, 16]). Specifically, we would like to com-
pare the online scheduler using a faster processor or more than one (unit speed) processors
against an adversary using a unit speed processor. Intuitively, the additional resources
are needed to compensate the online scheduler for the lack of future information. The key
question is whether a moderate amount of additional resources can provide satisfactory
competitiveness. For the firm-deadline scheduling problem, the pioneer work of Kalyana-
sundaram and Pruhs [10] showed that the competitive ratio can be improved to a constant
independent of the importance ratio & when the online scheduler is given a moderately
faster processor; precisely, they gave an algorithm called SLACKER, which, if given a
speed-(1+26) processor for any § > 0, is (L+0 1) (146 Y2)(1+6"2 4§~ 1)-competitive.
(A speed-s processor means a processor s times faster than a unit speed processor.) For
example, with a speed-2 processor, the competitive ratio of SLACKER is 32. Recently,
Lam and To [15] showed that 1-competitiveness can be achieved if a processor of 4[log k|
times faster is used.

In reality, processor speed is bounded by technology and we may not be able to satisfy
the demand of an arbitrarily fast processor. Using additional unit speed processors instead
of a faster processor is a more feasible solution. Notice that a schedule using p > 1 unit
speed processors always implies one using a speed-p processor; the converse is not true,
though. For the firm-deadline scheduling problem, it is not known how to make use of
additional unit speed processors to improve the competitive ratio from (14 v/%)? to O(1).
Nevertheless, there are two related results when value densities are not a concern. First,
Baruah [1] considered jobs with uniform value density and showed that the competitive

o 0.01 0.1 0.5 1 2 10

speed | 1.02 1.2 2 3 5) 21
1+ HA+0Y2)(1+012+671)] 123321 648.4 32.0 12 5.65 2.05
14+26"1+4672 | 40201 421 21 7 3 1.24

Table 1: The first row illustrates the competitive ratio of SLACKER given in [10]; the
second row shows our new result.

ratio can be improved from 4 (due to the result in [13]) to 2 using two unit speed processors,
and in general to p/(p — 1) with p processors. Second, if the concern is to maximize the
total number of job completions, Kalyanasundaram and Pruhs [9] gave an algorithm that
is O(1)-competitive when given two unit speed processors.

In this paper, we revisit the problem of maximizing the total value with respect to
jobs with non-uniform value densities. We observe that the SAFE-RISKY Algorithm given
by Koren [11] is indeed k-competitive when given two processors. (This implies an im-
provement over Baruah’s result [1]; specifically, for the uniform value density setting, two
processors are sufficient to guarantee 1-competitiveness.) More interestingly, SAFE-RISKY
can be easily adapted to become 2-competitive when given 2[log k| unit speed processors.
Furthermore, we find that the processor bound is asymptotically tight as we prove that no
online algorithm using p processors is O(1)-competitive unless p = Q(log k). Intuitively,
increasing the computational power of the online scheduler with additional unit speed
processors is not an effective way to attain O(1) competitiveness.

Another contribution of this paper is a new analysis of SLACKER, improving the
competitive ratio from (1+81)(1+51/2)(14+67Y24671) to 1+25 1 +45 2. For example,
given a speed-2 processor, our analysis reveals that SLACKER is actually 21-competitive
instead of 32-competitive. See Table 1 for a comparison. The importance of this result lies
on its application to the multi-processor setting. For firm-deadline scheduling on m > 2
processors, it is known that the algorithm MOCA [12] is (1 + m(k'/¥ — 1))-competitive,
where ¢ = mlnk/2(Ink + 1), but no result has been heard on using faster processors
to attain constant competitive ratio. In fact, SLACKER has a natural extension to the
multiprocessor setting, but it is non-trivial to generalize the analysis of SLACKER in [10].
Based on our new analytical tool, we show that the multiprocessor version of SLACKER,
when given m speed-(1+2§) processors for any ¢ > 0, is still (1426 +46~2)-competitive
against an adversary using m unit speed processors.

The remainder of this paper is organized as follows. Section 2 shows a tight bound
on the number of unit speed processors to attain constant competitiveness. Section 3
extends the algorithm SLACKER and gives a better analysis on the competitive ratio.

Throughout this paper, we denote the release time, processing time, deadline, value,
and value density of a job J as r(J),p(J), d(J), v(J), and p(J), respectively. Without loss
of generality, we assume that all jobs have value densities in the range [1, k], where £ is the

importance ratio. It is also worth-mentioning that an online scheduling algorithm operates
by reacting to the release or completion of jobs, and possibly other events scheduled by
the algorithm itself.

2 Competitiveness via additional processors

In this section, we investigate the competitiveness of online algorithms that are given
additional unit speed processors to solve the single-processor firm-deadline scheduling
problem. We first observe that Koren’s SAFE-RISKY algorithm [11] is O(1)-competitive
when given O(logk) unit speed processors, where k is the importance ratio. Next, we
give a lower bound of Q(log k) on the number of unit speed processors to guarantee O(1)-
competitiveness.

Throughout this section, our concern is on processors of unit speed only. Unless
otherwise specified, a processor is meant to be a unit speed processor.

2.1 The SAFE-RISKY Algorithm

The SAFE-RISKY algorithm is given by Koren [11] for solving the firm-deadline scheduling
problem involving jobs with uniform value density. SAFE-RISKY naturally uses two pro-
cessors, and Koren [11] showed that SAFE-RISKY is 2-competitive for the two-processor
firm-deadline scheduling problem. I.e., SAFE-RISKY, running on two processors, is 2-
competitive against an adversary using two processors. In fact, Koren’s work is readily
to give a more general result as follows.

Lemma 1 [11] Let ¢ be any positive integer. For jobs with uniform value density, SAFE-
RISKY, when using two processors, is c-competitive against an adversary using ¢ proces-
S0TS8.

Notice that SAFE-RISKY can also be used to schedule jobs with non-uniform value
densities. l.e., SAFE-RISKY simply ignores the varying value densities. In this case, the
performance of SAFE-RISKY is as follows.

Corollary 2 With respect to jobs with non-uniform value densities, SAFE-RISKY, using
two processors, is k-competitive against an adversary using one processor, where k is the
importance ratio.

Proof. Let X be any sequence of jobs with value densities in the range [1, k], and let
X' be identical to X except that the value density of each job is set to one. By Lemma 1,
with respect to X', the value obtained by SAFE-RISKY, using two processors, is no less
than the value obtained by the optimal offline schedule using one processor. On the other

4

hand, the value obtained on X by an adversary using one processor is at most & times of
the value obtained on X’ by the optimal offline schedule using one processor. Thus, the
corollary follows. 0

Based on Corollary 2, we can prove the main result of this section. Let p be any positive
integer. We generalize SAFE-RISKY to an algorithm using 2p processors as follows. Divide
jobs into p categories. For 1 < < p, the i-th category comprises jobs with value densities
between k(~/P and k*/P. The 2p processors are also divided into p pairs, each pair is
running a copy of SAFE-RISKY and is responsible for jobs of a unique category. Notice
that the importance ratio of the set of jobs that are handled by each copy of SAFE-
RISKY is bounded by k'/P. We call this algorithm p-SAFE-RISKY. Below we prove that
p-SAFE-RISKY is k'/P-competitive against an adversary using one processor.

Theorem 3 With respect to jobs with non-uniform value densities, the algorithm p-SAFE-
RISKY, which uses 2p processors, is k'/P-competitive against an adversary using one pro-
cessor, where k is the importance ratio.

Proof. Consider any job sequence X. Let X; C X contain the jobs of the i-th category.
By Corollary 2, with respect to each X;, the value obtained by p-SAFE-RISKY is at least
1/k'/? times of the value obtained by an optimal offline schedule for X; using one processor.
With respect to X, any offline schedule for X using one processor gives a value no more
than the sum of the values obtained by an optimal single-processor offline schedule for
each individual X;. Thus, the total value obtained by p-SAFE-RISKY on X is at least
1/k'/? times of the value obtained by an adversary. The lemma follows. Il

Corollary 4 For any constant ¢ > 1, let p = [log.k|. The algorithm p-SAFE-RISKY,
which uses 2[log, k| processors, is c-competitive against an adversary using one processor.

2.2 Lower bound

In this section, we derive a lower bound on the number of unit speed processors required
to achieve constant competitiveness for the firm-deadline scheduling problem. Recall that
k denotes the importance ratio. Precisely, we show that for any firm-deadline scheduling
algorithm A, if A, using p processors, is O(1)-competitive against an adversary using one
processor, then p = Q(logk). Below, unless otherwise specified, when we say that an
algorithm is competitive, it is meant to be competitive against an adversary using one
processor.

The lower bound stems from the following theorem.

Theorem 5 Any firm-deadline scheduling algorithm using p < logk processors has a
competitive ratio at least %kl/”.

Let us first look at the consequence of the above theorem. Suppose there is an online
algorithm that uses p processors and is c-competitive for some constant c. If p < logk,

then by Theorem 5, ¢ > %k%, or equivalently, p > log,. k. Therefore, p = Q(log k).

The rest of this section is devoted to proving Theorem 5. Let A be an scheduling
algorithm using p < logk processors. To avoid triviality, we assume that £ > 2 and
p > 1. Below we construct a set of inputs that make A perform poorly. For any real
numbers d,e > 0, define T'(d,e) to be a set of p + 1 jobs, each belongs to a distinct
category defined below.

job category value density processing time value

0 1 1 1

1 2d € 2de
2 (2d)? g2 (2de)?
p (2d)P ep (2de)P

Furthermore, each job .J in T'(d, <) has zero slack time, i.e., d(J) = r(J) + p(J).
To prove A is not O(1)-competitive, we set d = %kl/” and ¢ = zﬁ' Thend>1,e <1,
and 2de = plk < 1. Notice that the job value is decreasing from Category 0 to Category p.

Consider a game played between an adversary using one processor and the online
algorithm A (which uses p processors). The game consists of disjoint stages. At the
beginning of each stage, the adversary releases a new job set T'(d,¢), i.e., p + 1 jobs.
Based on the way A schedules the jobs in a stage, the adversary determines when the
next stage begins.

The first stage begins at time 0. Since p + 1 jobs are released and .4 uses only p
processors, there is a job not processed by A at time 0. Denote this job as .Jy. The
adversary schedules .J, using its only processor. After the adversary completes .Jy, the
second stage begins and another set of T'(d,) is released.

In general, at the beginning of the i-th stage, say, at time t;, the adversary releases
another set of T'(d, €) and chooses a job J; to execute as follows. Note that at ty, the jobs
chosen by A may not have distinct value densities because A may continue to process
some jobs released in previous stages. Let ¢ be the smallest category such that A processes
only ¢ jobs in Categories 0 to ¢. That is, A processes ¢ jobs in Categories 0 to £ — 1, but
not any in Category £. Let J; be the the job in Category ¢ just released. Denote o; = ¢
as the category of J;. The last stage lasts for a time period of 1; this ensures that the
deadline of every job released so far is on or before the end of the last stage.

Before we analyze the performance of A, it is useful to note that jobs are released
only at the beginning of each stage and they all have zero slack time. Thus, if a job is
not scheduled to run on a processor upon release, it will definitely miss its deadline. In
other words, in the middle of a stage, it makes no sense to schedule a processor to switch

to another job (which must be released before), and we can assume that within a stage,
a processor works on at most one job.

Fact. In any i-th stage, the adversary completes the job .J;, obtaining a value of v(.J;) =
(2de)*.

Lemma 6 In any i-th stage except the last stage, the value that can be obtained by A is
at most %(2de)*, i.e., at most v(J;)/d.

Proof. By the definition of «;, A at the beginning of the i-th stage works on «; jobs
in Categories 0 to o; — 1 and at most p — «; jobs in Categories a; + 1 to p. Once the i-th
stage has begun, no other jobs will be processed.

Let us first consider jobs in Categories «; + 1 to p. We show that the total value due
to such jobs is at most (—1150”'. The duration of the i-th stage is €%, which is long enough to
complete any job in Categories a; +1 to p. Each processor scheduled to a job in Category
¢ > a; + 1 gives a value of (2ds) < (2de)®+!. Thus, the total value obtained by such
processors is bounded by

p(2de)* ™ < p(2d)Peit!
1

— LL/pyp o

p(k™/7) T

= —e%,

Next, we consider the jobs in Categories 0 to a; —1. Recall that these «; jobs may not
have distinct value densities. Nevertheless, by the definition of «;, the sum of their value
densities is at most 1 4+ 2d + (2d)? + ... + (2d)® . Assuming all these jobs are processed
throughout the i-th stage, the value obtained by A is at most

2d)* — 1
[1+2d+ (2d)° + ... + 2d)* g™ = @d)* -1
2d — 1
2d)% — 1
< B

Summing the above two parts together, we conclude that the value obtained by A
during the i-stage is at most 560‘1’ + @%sai, which is equal to 5(2(15)0‘1'. This completes

the proof of Lemma 6. Il

In the last stage, the best A can do is to complete the first p jobs just released,
obtaining a total value of at most p. The adversary on the other hand completes the job
with value 1.

Consider an instance of the above game that consists of h 4+ 1 stages. Let O be the
value obtained by the adversary in the first h stages. By Lemma 6, the competitive ratio

7

of A is at least (O + 1)/(O/d + p). Notice that p is a constant, and we can choose a
sufficient large h to make O arbitraily large and (O 4 1)/(O/d + p) arbitrarily close to d.
Therefore, the competitive ratio of A has a lower bound of d, which is defined as %kl/”.
This completes the proof of Theorem 5.

3 Competitiveness via a faster processor

For firm-deadline scheduling on a single processor, the algorithm SLACKER given by
Kalyanasundaram and Pruhs [10] is (1 4+ 6=")(1 4 6 "/2)(1 + §='/2 4+ §~')-competitive
when using a speed-(1+ 24) processor for any § > 0. For example, with a speed-2 proces-
sor, the competitive ratio is 32. There is however no similar result known for firm-deadline
scheduling on two or more processors. In this section, we give a straightforward extension
of SLACKER, denoted MSLACKER below, for scheduling jobs on any m > 1 processors,
and we show that MSLACKER, when given m speed-(1 + 20) processors for any 6 > 0, is
(1426~ +457%)-competitive against any offline adversary using m unit speed processors.
The competitive ratio of MSLACKER also implies an improvement for SLACKER since
SLACKER is a special case of MSLACKER. This improvement is mainly resulted from a
new upper bound on the total value of jobs that can be completed by the adversary.

MSLACKER. is parameterized by two real values 6 > 0 and ¢ > 1. MSLACKER is
equipped with m > 1 speed-s processors where s = 1 4+ 2§, and keeps an initially empty
set of privileged jobs M. At any time, MSLACKER runs all jobs in M if M has m or
fewer jobs; otherwise, it runs the m highest-value-density jobs in M. When a job J is
released, J is added to M if M contains less than m jobs, or p(J) > ¢p(J,) where J, is
the m-th highest-value-density job in M. If J cannot be added to M immediately, the
same checking will be done to J again whenever a job is completed, until the remaining
slack (i.e., d(J) — ’% —t, where ¢ is the current time) is less than § ’%. Notice that when
a job completion occurs, if there are jobs other than J waiting to be added into M, we
perform the checking for them in an arbitrary order. A job is removed from M if either it
is completed, or its remaining slack becomes negative. Figure 1 shows how MSLACKER
considers a job for execution.

Below we analyze the performance of MSLACKER, showing that if ¢ is chosen as
1+ 257!, then MSLACKER when given speed-(1 + 24) processors is (1 + 267! + 4672)-
competitive.

Definition. Consider any input job sequence. Let O be the set of jobs completed
by the optimal offline algorithm, and let S and R denote the sets of jobs completed by
MSLACKER and ever added into M, respectively. Let ||S|| be the total value of jobs in S,
and similar for ||O|| and ||R||. By definition, ||S|| < [|R]].

Definition. A released job J is said to be fresh at any time before d(.J) — (1 + 5)@.

To bound the competitive ratio of MSLACKER, it is equivalent to derive a general

J is released

Less

Discard J k
eat Slack of J | Waiting

becomes -ve

Figure 1: The Life-Cycle of a Job as Scheduled by MSLACKER

upper bound of ||O]|/||S]|. That is, we want to determine a lower bound of ||S]|| and an
upper bound of ||O]|. Intuitively, MSLACKER is very conservative and can complete most
of jobs added into M; specifically, we show that ||S|| is at least a significant fraction of
IR|| (see Lemma 10). On the other hand, the adversary may be able to pick some more
valuable jobs to execute, but the way MSLACKER selects the jobs guarantees that ||O||
cannot exceed ||R|| too much (see Lemma 8).

We first show the upper bound of ||O|. We consider the upper bound of ||O|| by
analyzing separately the jobs that MSLACKER also meet the deadlines and jobs that
MSLACKER miss the deadlines. This is unlike the proof in [10], which consider both
types of jobs at the same time. Our approach leads to a simpler and tighter analysis, and
makes it applicable to the multi-processor setting. First of all, let us observe a simple
property of MSLACKER.

Lemma 7 At any time t when a job J has not yet completed by MSLACKER and J is
still fresh, if J is not processed by MSLACKER, then MSLACKER is processing m other

. Meet
than'm jobs are Deadline
privileged?
Some other job A Jisin M
completes [N | ro---oooooo oo
| J completes
|
|
. ! J is
Unprivileged o N p(J) is ' :
P & large enough? | runniig
|
| i
' Some job is released, Some job
Slack of J | and J becomes completes, and J
is reduced to | the m + 1-st becomes the m-th
less than op(.J)/s : most dense job y | most dense job
|
|
E J is
|
|
|
|

jobs each with value density at least p(J)/c.

Proof. At time t, J may or may not be in M. If J is in M and not being executed, then
the value density of any job MSLACKER is executing is at least p(.J). Next, we consider
J not in M. Throughout the period [r(J),¢], J is not qualified to get into M, i.e., M
contains at least m jobs, and p(J) < ¢p(J,) where J, is the m-th highest-value-density
job in M. At time ¢, MSLACKER is executing m other jobs each with value density at
least p(J)/c. [

We are now ready to show the upper bound of ||O||.
Lemma 8 |Of < [|S] + 5[R] -

Proof. Partition O into O° = ONS and O" = O — 8. Since O° C S, [|O]| < ||S]| + ||OY|-
Intuitively, each job in O" must be fresh for a large proportion of the time when the
optimal offline algorithm chooses the job for execution. On the other hand, Lemma 7
guarantees that at such time MSLACKER must have chosen jobs with large value density
for execution. Details are as follows.

For any job J in O", define a,(J) (resp. az(.J)) to be the total amount of time when
the optimal offline algorithm executes J while .J is fresh (resp. J is no longer fresh).
Obviously, a;(J) + az(J) = p(J). For any job J € O", ay(J) < (1 + 5)@, and ay(J) =
p(J) —az(J) > 6’% (recall that s = 1+ 26). Thus, $v(J) = 2p(J)p(J) < ar(J)p(J),
and 2[|O"| < 3 jcou ar(I)p(J).

To derive an upper bound of ||O||, we consider a,(.J) for each job J € O". By definition,
every job J € O" is not completed by MSLACKER. At any time when the adversary
executes a job J € O" while J is fresh, Lemma 7 tells us that MSLACKER either executes
J, or executes m jobs each of value density at least p(.J)/c. In general, at any time ¢, let
X; be the set of fresh jobs in O" currently executed by the adversary; then for each job
J € Xy, we can identify a distinct job currently executed by MSLACKER with job density
at least p(.J)/c. In other words, the total value density of jobs in X is at most ¢ times the
total value density of jobs currently executed by MSLACKER. To bound Y jcou a1 (J)p(J),
it suffices to consider the sum over all time ¢ of the total value density of jobs in X, which
is at most ¢ times of the sum over all time ¢ of the total value density of jobs executed
by MSLACKER at time ¢. Note that each job J € R can contribute a quantity of at most
p(J)’% to the latter sum. Thus, the latter sum can be expressed as Y- ;cr p(J)LSJ), which
is equal to 1||R||. In summary, ¥ couai(J)p(J) < £||R||. Therefore, §]|O"|| < ¢||R]],

and [|Of < [|S]| +[|0"]] < [IS]] + §[IR]]- 0

Next, we show the lower bound of ||S||. The proof is similar to the analysis given in
[10]. This similarity roots at the following lemma about MSLACKER.

Lemma 9 At any time, for any 1 < i < |M|— m, the i-th most dense job in M is at
least ¢ times as dense as the (i +m)-th most dense job in M.

10

Proof. We prove the lemma by focusing on an arbitrary job J in M, and show the property
that when it is the i-th most dense job in M, the value density of the (i + m)-th most
dense job in M is no more than p(.J)/c.

It is clear by the rules of MSLACKER that when J is added to M as the i-th most
dense job, it must be at least ¢ times as dense as the new (m + 1)-st most dense job, and
thus must be at least ¢ times as dense as the (i+m)-th most dense job. So we just need to
show that the property is preserved when other jobs are added to and removed from M.
Assume that .J is the #'-th most dense job in M when such an operation is performed.
Obviously, adding or removing a job more dense than J or less dense than the (i’ +m)-th
most dense job does not affect this property. If a job between the (i’ + 1)-st and the
(¢" + m)-th most dense job in M is removed from M, the property is preserved since a
less dense job then becomes the (i' + m)-th most dense job. Finally, if a job with value
density between that of J and the (i + m)-th most dense job in M is added to M, the
newly added job must be at least ¢ times as dense as the (m + 1)-st most dense job, and
thus the (i + m)-th most dense job. Since the newly added job has smaller value density
than J, the property is again preserved. 0

Lemma 10 [S]| > H=U=t|R||

Proof. We use the following amortization scheme. Each job .J in R is associated with an
account U(.J). If J € S, ¥(J) has an initial balance of v(.J) credits. Otherwise, W(.J)
has an initial balance of 0 credit. We show how to transfer credits among the accounts

of jobs in R, so that each account has a final balance of at least v(J) — a?éi)n' The

total initial balance is ||S]|, while the total final balance is at least Y ;e (v(J) — 5’(’£i)1)) =
(1 = 5= IRl Thus [|S]| = (1 — 5 IR

The transfer takes place as follows. Whenever a privileged job has to wait, credits is
transferred to the account of the job at a rate of s/ times its value density, from the
account of a running job. More precisely, consider any time when a job .J is the i-th most
dense job in M, where ¢ < m. For each job J' being the (i + m)-th, (i + 2m)-th, ...,
(i + [(|M]| — i)/m|m)-th most dense job, credits are transfered from W(J) to W(J') at a
rate of sp(J')/J.

By definition, the account of each job J € S receives v(.J) credit initially. On the
other hand, the account of each job J € R — &, which misses deadline, also receives at
least v(J) credit subsequently. This is because when J is added to M, it is fresh and
thus has a slack of at least d p(.J)/s. For J to miss deadline, it must be idling for at least
that amount of time when it is in M. It thus receives at least (0 p(J)/s)sp(J)/0 = v(J)
credits.

Finally, by Lemma 9, at a time when J is the i-th most dense job where ¢ < m, the jobs
receiving credits from W(.J) have value densities at most p(.J)/c, p(J)/c?, ..., respectively.

Thus the total rate of transfer from J is less than (1/c+1/c*+---)sp(J)/d = 55(’2(;?). Since

11

J runs for at most p(.J)/s time, the amount transfered from W(.J) is at most (;éi)l). The
v(J)

S 88 required. U

Based on the above upper bound and lower bound results, we can conclude the com-
petitiveness of MSLACKER.

final balance of each account is thus at least v(.J) —

Theorem 11 MSLACKER, when given speed-(1 4 28) processors and when c is chosen as
1+261 ds (14201 + 40 2)-competitive.

Proof. 1t follows from Lemmas 8 and 10. Il

References

[1] S. Baruah. Overload tolerance for single-processor workloads. In IEEE Symposium
on Real time technology and application, pages 2—11, 1998.

[2] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha,
and F. Wang. On the competitiveness of on-line real-time task scheduling. Journal
of Real-Time Systems, 4:124-144, 1992.

[3] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and D. Shasha. On-
line scheduling in the presence of overload. In Proceedings of the IEEE 32nd Annual
Symposium on Foundations of Computer Science, pages 101-110, San Juan, Puerto
Rico, 1991.

[4] P. Berman and C. Coulston. Speed is more powerful than clairvoyance. In Proceedings
of the Sizth Scandinavian Workshop on Algorithm Theory, pages 255-263, Stockholm,
Sweden, 8-10 July 1998.

[5] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, The Pitt Building, Trumpington Street, Cambridge,
United Kingdom, 1998.

[6] Mark Brehob, Eric Torng, and Patchrawat Uthaisombut. Applying extra-resource
analysis to load balancing. In Proceedings of the Eleventh Annual ACM-SIAM Sympo-
situm on Discrete Algorithms, pages 560-561, San Francisco, California, 9-11 January
2000.

[7] Michael L. Dertouzos. Control robotics: the procedural control of physical processes.
In Proceedings of IFIP Congress, pages 807-813, 1974.

[8] Jeff Edmonds. Scheduling in the dark. In Proceedings of the Thirty-First Annual
ACM Symposium on Theory of Computing, pages 179-188, 1999.

12

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Bala Kalyanasundaram and Kirk R. Pruhs. Maximizing job completions online. In
Proceedings of the Sixth European Symposium on Algorithms, pages 235-246, 1998.

Bala Kalyanasundaram and Kirk R. Pruhs. Speed is as powerful as clairvoyance.
Journal of the ACM, 47(4):617-643, 2000.

Gilad Koren. Competitive on-line scheduling for overloaded real-time systems. 1993.
PhD Thesis, Department of Computer Science, New York University.

Gilad Koren and Dennis Shasha. MOCA: A multiprocessor on-line competitive algo-
rithm real-time system scheduling. Theoretical Computer Science, 128:75-97, 1994.

Gilad Koren and Dennis Shasha. D°"*": An optimal on-line scheduling algorithm for
overloaded uniprocessor real-time systems. SIAM Journal on Computing, 24(2):318-
339, April 1995.

T.W. Lam and K.K. To. Trade-offs between speed and processor in hard-deadline
scheduling. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 623-632, Baltimore, Maryland, 17-19 January 1999.

T.W. Lam and K.K. To. Performance guarantee for online deadline scheduling in the
presence of overload. In Proceedings of the Tenth Annual ACM-SIAM Symposium on
Discrete Algorithms, 2001. To appear.

Cynthia A. Phillips, Cliff Stein, Eric Torng, and Joel Wein. Optimal time-critical
scheduling via resource augmentation. In Proceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing, pages 140-149, El Paso, Texas, 4—6 May
1997.

Jifi Sgall. On-line scheduling — a survery. In A. Fiat and G. Woeginger, editors,
On-line Algorithms: The State of the Art, pages 196-231. Lecture Notes in Computer
Science, Springer Verlag, 1998.

John Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio Buttazzo. Deadline
scheduling for real-time systems: FEDF and related algorithms. Kluwer Academic
Publishers, Boston, Mass., 1998.

13

