
On the Completeness of Test Cases
for Atomic Arithmetic Expressions *

T. H. Tset T. Y. Chen X. Feng
The University of Swinburne University of The University of

Hong Kong Technology, Australia Hong Kong

Abstract

Most research on weak mutation testing focuses on
predicate statements. Relative little attention has been
paid to arithmetic expressions. In this paper, we analyse
the latter type of expression and prove that, given an
atomic arithmetic expression, if it contains no variable
or if the operator is the unary tt ” or “ -- ”, then
a single test case is sujficient and necessary to kill any
fundamental mutant; otherwise, two test cases are suficient
and necessary.

Keywords: Arithmetic expressions, completeness of
test cases, mutation operators, mutation testing. software
testing.

1. Introduction

Since mutation testing was proposed as an effective
method for software testing, there have been many
improvements. Howden [4] classified mutation testing
techniques into two categories: strong mutation testing and
weak mutation testing. Strong mutation testing creates
mutants for a complete program and test cases are generated
to differentiate the program from its mutants. Weak
mutation testing only creates mutants for a statement and
test cases are generated to differentiate the statement from
its mutants.

In this paper, we are interested in weak mutation testing.
We have found that most of the work in this area, such
as [4] and [7], are concerned about predicate statements
only. Relatively little work has been done on arithmetic
expressions. The work of Foster [2] , for instance, is rather
limited in scope.

‘This research is supported in part by the Hong Kong Research Grants
Council and the University of Hong Kong Committee on Research and
Conference Grants.

‘All correspondence should be addressed to Dr. T. H. Tse, Department
of Computer Science and Information Systems, The University of Hong
Kong, Pokfulam Road. Hong Kong. Email: “tseecsis. hku. hk”.

There are two opposing thoughts on the testing of
arithmetic expressions: it is considered either very simple
or very complex. On one hand, some testers think
that only one test case is sufficient. Typical examples
are the code coverage methods [3] such as path testing,
branch testing and statement testing. On the other
hand, other testers consider the testing of arithmetic
expression testing to be very complex because of an
infinitely large input space and unfathomable possibilities
of errors. Complex recommendations involving, for
example, boundary values [5 , 9] are often given.

In this paper, we will discuss the test case generation
for atomic arithmetic expression with no more than one
operator. We shall formally prove that, given an atomic
arithmetic expression, if it contains no variable or if the
operator is the unary “ ++” or “ - - ”, then a single test case
is sufficient and necessary to kill any fundamental mutant;
otherwise, two test cases are sufficient and necessary.

Our paper is grouped as follows: Section 2 gives some
background of our analysis. Sections 3 and 4 discuss test
cases for VDTR, Uuor and ORAN mutants, respectively.
Section 5 gives the concluding remarks.

2. Background

In weak mutation testing, a mutant is produced by
replacing operands or operators in a statement. There are
an infinite number of possible replacements. Do we need
to test all possible mutants for each expression? Offutt [6]
pointed out that it would be redundant to test every mutant.
In most cases, test cases that can detect one mutant are also
effective in detecting others. Only five mutation operators
are found to cover more than 99 percent of the situations
in Fortran 77. Agrawal [11 figured out similar mutation
operators for C programs. By comparing C, Fortran 77
and Ada, Voas [8] also highlighted the same five mutation
operators. Thus, in our research on the completeness of
test cases, we shall only concentrate on the following five
fundamental mutation operators:

149
0-7695-0825-1/00 $10.00 0 2000 IEEE

Uuor: Insert unary operators in front of expres-

VDTR: Force each arithmetic expression to take on

ORAN: Replace each arithmetic operator with every

ORRN: Replace relational operators with other

OBBN: Replace logical connector with every syn-

sions.

a positive value, a negative value and zero.

syntactically legal operator.

relational operators.

tactically logical operator.

Among the five, only Uuor, VDTR and ORAN mutation
operators are related to arithmetic expressions. Hence, we
shall concentrate on these threc in the current paper.

An atomic expression is an expression with no more than
one operator. The following are the operators: +, -, *, I , %,
=, ++ and --. According to the number of operators and
operands, atomic arithmetic expressions can be divided into
four categories: constants, simple variables, binary operator
expressions and unary operator expressions. In this paper,
we also assume that there is only one fault in an expression.

Statement

3. Complete Test Cases for VDTR and Uuor
Mutants

Results of Results of
Test Case Test Case

The conditions we give for the generation of test cases
for one mutant are all sufficient and necessary. Test cases
that satisfy the conditions can be used to detect the mutant.
On the other hand, test cases that do not satisfy these
conditions cannot be used to detect the mutants.

Theorem 1
At most two test cases are needed to distinguish an atomic
expression from its VDTR and Uuor mutants.

Proof
We shall discuss VDTR and Uuor mutants for constants,

simple variables, binary operators and unary operators
separately.

(U) Constants
If a constant is replaced by another, a single test case
is sufficient. Any values can be taken as a test case.

(b) Simple Variable Expressions of the Form “x”

Its VDTR mutant is K , where K is a constant. Its
Uuor mutant is -x. Obviously, two test cases { V I , v 2)
such that v1 # v?; guarantee that the expression can
be differentiated from its VDTR and Uuor mutants.
On the other hand, a single test case “ v ” cannot
distinguish the statement “ z = x ; ” from the mutant
‘‘z = v;”. Hence, a single test case will not be
sufficient to detect all the mutants.

Binary Operator Expressions of the Form “x O y”

The VDTR mutants for the expression x 0 y are x 0 K
and K a y , where K is a constant. The Uuor mutants
are - x a y and x a -y. It is obvious that the use of
one test case will not be sufficient to detect all these
mutants, since the test case (U , v) cannot differentiate
xOyfrom themutantsuOyandxOv.

The VDTR and Uuor mutants of the expression x +
y are shown in Table 1.

differentiate x + y from its VDTR and Uuor mutants.
For the expression x+y, the test cases tl and t 2 can

(i) x + y , x -y,x * y andx l y (float)
For expression x + y, we generate two test cases
t l : (UI, VI), fa : (u2, v2). They satisfy the
following conditions:

(Cl):
(C2):

U I # u2 and V I # v2
U; # 0 and vi # 0 for i = 1 or 2

Test cases that satisfy (CI) can detect VDTR
mutants. Test cases that does not satisfy (Cl)
cannot detect the mutant UI +y orx+ V I .

For the condition (C2), test cases such that
ui # 0 and vi # 0 can detect Uuor mutants. A test
case that does not satisfy this condition cannot
detect a Uuor mutant.

The same results can be obtained for the
operators “ - ”, “ * ” and “ / ” (float). However,
for the operators “ / ” (int) and ‘‘ % ”, generating
test cases for VDTR mutants is slightly more
complex.

“ % ” and “ / ” are two special operators. Condition
(Cl) is not sufficient to detect VDTR mutants for
such expressions. The following is a brief discussion
about the conditions of test cases to detect their VDTR
mutants.

150

(i i) x % y
If the operator is “%”, two kinds of VDTR
mutant are K % y and x % K , where K is some
integer. Suppose tl : (M I , V I) and t2 : (up, v2) are
two test cases. Let ml = U I % V I , nl = M I / v i .
m2 = u2 % v~ and n2 = u2 / vz. For the mutant
K % y ,

if u1 % V I = K % V I , then K = ml + p i v i
if u2 % vz = K % vz , then K = mp+p2vz

for some integers p1 and p z . A sufficient and
necessary condition for tl and t2 to kill this
mutant is ml + vlpl # m2 + v2p2.

For the mutant y % K , where K is a constant,
let nl = M I / V I , n’, = U I / K , nz = u2 / v2 and
nI = u2 / K . We have:

if u1 % V I = U I % K , then K = vlnl / n’,
if u2 % v2 = up % K , then K = van2 / n;

If two test cases cannot detect the mutant, then
vlnl / n’, = vpnZ / n; and IKl > max(mi, m2).
At least one test case can detect the mutant if they
satisfy the conditions vlnl / n’, = vznz / n; =
K and K 5 max(ml, mz). In other words, K =
GCD(vin1, vzn2) = 1 or lKl 5 max(lmi1, Imzl).
That is, GCD(vIn1, vznp) 5 max(lml1,]mal).

Obviously, the deduction process is reversible.
Therefore, the sufficient and necessary condition
to distinguish x % y from its VDTR mutants is

mi - m2 # vzpz - v ip i and
GCD(vlnl ,v2n2) 5 max(mi, mz)

where ml, ma. n l , n2, p i and p~ are as defined
above.

(iii) x l y
For the operator “/”, two kinds of VDTR mutant
are x / K and K / y , where K is a constant. Let
X I / yi = n l , x2 / yz = n2, X I % yi = mi and
x2 % yz = m2.

For the mutant x / K ,

if X I / y~ = X I / K , then

if x2 / y2 = xp / K , then
x l = n l K + m l a n d O < m l < K (1)

xz = nzK+mp and 0 5 1122 < K (2)

For (I) , XI / (nl + 1) < K 5 XI / nl. For (2),
x2 / (nz + 1) < K 5 xp / nz. A test case that
can detect the mutant must satisfy the condition
XI / nl I xz / (nz + 1) .

For the mutant K / y,

ifxl / y1 = K / y l , then

if x;! / yp = K / y ~ , then
K = nlyl +mi (3)

K = n 2 y 1 f mz (4)

For (31, niyi I K < (ni + 1 1 ~ 1 . For (4), n2yz I
K < (nz + 1)yp. Hence, n2yp 2 (ni + 1)yi or
niyl 2 (nz + l)y;?. The sufficient and necessary
condition for detecting VDTR mutants of x / y is
(xi / ni 5 xz / (nz + 1)) and (n2yz 2 (ni + I)yi
or niyi 2 (np + I)y z) .

If the operator is ‘‘ = ”, its VDTR mutant can
only be x = K and its Uuor mutant is x = - y .
Obviously, two test cases are needed.

(iv) x = y

(d) Unary Operator Expressions of the Form “x 0” or
‘‘0 X’’

For unary operator expressions of the Form “xO ”, the
operator can only be ‘‘ ++ ” or “ -- ”, in which case
the expression has no VDTR or Uuor mutants. For
unary operator expressions of the Form ‘‘ Ox”, if the
operator is ” - ”, two test cases { V I , v ~ } such that
vi # vz are sufficient. Otherwise the expression has
no VDTR or Uuor mutants.

We can see that, for atomic arithmetic expressions, two
test cases are sufficient to differentiate an expression from
its possible VDTR and Uuor mutants. In general, if an
atomic arithmetic expression contains variables and the
operator is not ‘‘ ++ ” or ‘‘ -- ” , then two test cases arc
necessary. Otherwise, a single test case is sufficient.

4. Complete Test Cases for ORAN Mutants

There is no operator in constants or simple variables, and
hence there is no ORAN mutant for such cases. In this
section, therefore, we shall only discuss atomic arithmetic
expressions with one operator.

Theorem 2
Given any atomic arithmetic expression, one test case can
be found to distinguish it from its all ORAN mutants.

Proof
First, consider atomic arithmetic expressions with binary

operators. All the possible binary arithmetic operators
are listed in the seven rows of Table 2. The possible
VDTR mutants are expressions with the original operators
replied by other arithmetic operators, logical operators and
relational operators. The former two kinds of replacement
are shown in the nine columns of Table 2. The last kind of
replacement will be discussed at the end of the proof.

151

x + y x - y x * y x / y x / y x % y x = y x & & y x l l y
(float) (int) (int)

Table 2. ORAN mutants

Row I of Table 2 summarizes the sufficient and
necessary conditions for detecting the listed ORAN
mutants of the expression x + y. The details are as
follows:

(A l) : u # O

(A3) : u # u 2 / (1 - u)
(A4) :

(AS):
(A6) : u # O
(A7) : (U + u # l o r u = O o r u = O) a n d

(A8) : U + U # l a n d (u # O o r u # O)

(A2) : U # U / (v- 1)

(U # -U- 1 or U < 0) and
(U # 2 or U # - 4)
U * U > 0, I u I 2 2IuI or IuI < IuI

(U # 0 or v # 0)

(A I) , (A2) and (A3) are obviously the sufficient and
necessary conditions for the mutants x - y, x * y and
x / y (float), respectively.

(A4) is used to distinguish the mutant x / y (int)
from x + y. We know that, if x + y = x / y (int), then
x = (x + y)y + n, giving n = x- (x+y)y. Ifx 2 0, then
0 5 n < IyI. If x < 0, then -1yI < n 5 0. We have the
following two cases:

(i) x 2 0
I fy>O,thenx-(x+y)y>O,givingx> (x+y)y.
Obviously, it is impossible.

If y < 0, then 0 5 x - (x + y)y < -y, giving
- (y + 1) + 1 / (1 - y) < x ~ - (y + 1) , w h i c h i s
also impossible.

Ify > 0, then -y < x - (x+y)y 5 0, giving -y- 1
+ I / (I -y) 5 x < -y, which means (x = -y - 2
and y = 2) orx = -y - 1.

If y < 0, then y < x- (x+y)y 5 0, which is
impossible.

(i i) x < 0

Hence, if x + y = x / y, then (x = -4 and y = 2) or
(x = -y - 1 and y > 0). Thus, (A4) is a sufficient
condition. On the other hand, if (x = -4 and y = 2) or
(x = -y - 1 and y > 0), then obviously x + y = x / y .
Hence, (A4) is necessary condition also.

(AS) is the condition for test cases that distinguish
x + y from x % y. First, any test case that satisfies the
condition is sufficient to detect such a mutant. We need
to consider three cases:

(i) u * v > 0
In this case, (U > 0 and U > 0) or (U < 0 and
U < 0). Since U and U are all greater than zero,
we have U + U > v and U % U < U. The case for
U < 0 and U < 0 is similar. Hence, when U * U > 0,
U + U # U % U.

(4 I4 2 2 1 4
Thus, U 2 21uI or U 5 -21~1. If U 2 2lul, then
U + U 2 21vI + U 2 IuI, while U % U < IuI. If
U 5 21~1, then U + U 5 -2IuI + U < -[U[, while
U 70 U > - / V I .

(iii) IUJ < IY I

In this case, U % U = U while U + U # U, since
U # 0. On the other hand, if (AS) cannot be
satisfied, then U * U < 0, I u I < 21~1, and I u I 2 [V I .
If U > 0 and U < 0, then -v 5 U < -2u and U %
U = u+u. If U <Oandu > 0, then -2u < U 5 -U
and U % u = U +U.

Hence, if (AS) cannot be satisfied, the test cases cannot
differentiate the mutant x % y from x +y.

(A6) is the condition for distinguishing x = y from
x + y. The proof is obvious.

(A7) is the condition for distinguish x && y from
x+y. (U + U # 1 or U = 0 or U = 0) and (U # 0
or U # 0) implies (U + U # 1 or U && U = 0) and

152

(u + v # 0 or u && v = 1). In other words, ((u + v # 1
and (U + v # 0 or U && v = 1)) or ((U && v = 0)
and (U+ v # 0 or U && v = I)) , so that (u + v # 1
and U && v = 1) or (U && v = 0 and u + v # 0).
Obviously, u + v # U && v. If (A7) is not satisfied,
(U+ v = 1 and u # 0 and v # 0) or (U = 0 and v = 0).
then (U + v = 1 and U && v = 1) or (U + v = 0 and
U && v = 0). Obviously, U + v = v && v.

Test cases that can satisfy (AX) can distinguish x I I y
fromx+y. S i n c e u # O o r v # O , u) I v = l . H o w e v e r ,
U + v # 1, and hence U + v # u 1 1 v. If (A8) is not
satisfied, then (U + v = 1) or (U = 0 and v = 0). If
u + v = I , then u + v = u I (v = 1. If u = v = 0, then u + v
= U 1 1 v = 0. Hence, the mutant cannot be identified.

To differentiate any ORAN mutant from x + y , we
need only find a test case that satisfies the conditions
(A I) to (A8) . For example, the test case u = S and
v = 9 satisfies these conditions.

Row 2 of Table 2 summaries the sufficient and
necessary conditions for detecting the listed ORAN
mutants of the expression x - y. The details are as
follows:

(BI):
(B2) :
(83):
(B4) :
(B5):
(B6) :
(B7):

(B8) :

v # O
v / (1 - V I

u # v 2 / (v- 1)
(U # v + 1 or v < 0) and (U # 4 or v # 2)
U * v < 0, IuI 2 21vI or (uI < (V I
u # 2 v
(U-.# 1 o r u = O o r v = O) a n d
(U # 0 or v # 0)
U - v # l a n d (u # O o r v # O)

(Bl), (B2) and (B3) are the conditions for test cases
to detect the mutants x + y, x * y and x / y (float),
respectivcly. Their proofs are obvious.

(B4) is the condition for test cases to detect the
mutant x % y. The proof is similar to that of (A4) .

(BS) is the condition for test case to detect the
mutant x / y. If x - y = x / y, then x = (x - y)y + n.
Hence, n = x - (x - y)y. If x 2 0, then 0 5 n < lyl. If
x < 0, then - Iy(< n 5 0. We have the following two
cases:

(i) x 2 0
If y > 0, then y > x - (x - y)y 2 0. Hence,

y < x i y + l + l / (y - I) . T h u s , x = y + l or
(x = 4 a n d y = 2) .

If y < 0, it is impossible for x - y = x / y.

(ii) x < 0
Whenx < 0, we have -1yI < x- (x-y)y <_ 0. It
is impossible for whatever value of y .

Obviously, (B5) is a sufficient and necessary condition
to detect the mutant x / y.

(B6) is the condition for a test case to distinguish
x - y from x = y . If the test cases satisfy U # 2v, then
U - v # v. In this case, x - y can be distinguished from
x = y. On the other hand, if U = 2v, then U - v = v.
In this case, x - y cannot be distinguished from x = y.
Hence, a single test case cannot differentiatex -y from
x = y.

(B7) and (BX) are the conditions for test cases to
detect the mutants x && y and x 1 I y. Their proofs are
similar to those of (A7) and (A8) , respectively.

To differentiate any ORAN mutant from x - y, we
need only find a test case that satisfies the conditions
(Bl) to (88). For example, the test case u = 5 and
v = 9 satisfies these conditions.

Row 2 of Table 2 summaries the sufficient and
necessary conditions for detecting the listed ORAN
mutants of the expression x * y. The details are as
follows:

(Cl):
(C2) :
(C3) :
(C4) :
(C5):

(C7) :
(CX) :

(C6):

u # v / (v - 1)
v / (1 - v)

u # O a n d v # 1 or-1
ufOandvf Ior-1

u # l a n d v # O
u * v # 1 a n d u * v # O
u * v # 1 and(u#Oorv#O)

u # O

The proofs of (Cl) and (C2) are identical to those
of (A2) and (B2), respectively.

(C3) is obviously the condition to detect the mutant
x / y (float).

(C4) is the condition for test cases to detect the
mutant x / y (int). If x * y = x / y (int), then x 2 xy2.
Hence, x = 0 or y = - l , + l . In other words, U = 0
or v = - l , + l . On the other hand, if U = 0, then
x * y = x / y = 0. If v = -1 ,1 , thenx*y = x / y = x = U.
Hence, x * y = x / y.

For (C5) , if u = 0, then x r y = 0 and x % y = 0.
Therefore, x y = x % y. On the other hand, if x * y =
x % y, then 1x1 > I x * y (or x = 0. Since it is impossible
to have 1x1 > Ix*yl , we must have x = 0. Thus, U = 0.

(C6) is the condition to detect the mutant x = y. If
U = 1, thenx*y = u*v = v. Sincex = y = v, we have

153

x * y identical to x = y. On the other hand, if x + y is
identical to x = y, then x * y = y. Hence, x = 1 or y = 0.
Thus, u = 1 or v = 0.

The proofs of (0) and (C8) are similar to those of
(A7) and (AS) , respectively.

To differentiate any ORAN mutant from x * y, we
need only find a test case that satisfies the conditions
(Cl) to (C8). For example, the test case u = 5 and
v = 6 satisfies these conditions.

(d) x /y (float)

Row 2 o,f Table 2 summaries the sufficient and
necessary conditions for detecting the listed ORAN
mutants of the expression x / y for floating point
numbers. The details are as follows:

(01):
(02) :
(0 3) :
(0 4) :
(0 5) :
(0 6) :
(07):
(0 8) :

U # v2 / (1 - v)
U # v2 / (v - 1)
u # O a n d v # l o r - 1
U # nv for any integer n
u # O
U # v2

u # v
U # 0 and U # v

The proofs of (DI), (02) and (03) are identical to
those of (A3) , (83) and (C3) , respectively.

(0 4) is used to detect the mutant x / y (int). If
U = nv for some integer n, then U / v (float) = U / v
(int) = n. On the other hand, if (0 4) is not truc, then
Iu / v (float)l > Iu / v (int)l. Thus, (0 4) is a sufficient
and necessary condition.

The proof of (0 5) is similar to that of (C5) .

(0 6) is the condition for test cases to detect the
mutant x = y. If U = v2, thcn u / v = v. Therefore,
x / y has the same value as x = y. On the other hand, if
U # v2, then U / v # v. Hence, x / y is not equal to x = y.
Thus, (0 6) is a sufficient and necessary condition.

The proofs of (0 7) and (08) are similar to those of
(A7) and (A8) , respectively.

To differentiate any ORAN mutant from x / y
(float), we need only find a test case that satisfies the
conditions (01) to (0 8) . For example, the test case
U = 7 and v = I O satisfies these conditions.

(e) x / y (int)

Row 2 of Table 2 summaries the sufficient and
necessary conditions for detecting the listed ORAN
mutants of the expressionx / y for integers. The details
are as follows:

(E l) :

(E 2) :
(E 3) :
(E 4) :
(E 5) :
(E 6) :
(E 7) :
(E 8) :

(U # -v - 1 or v < 0) and
(U # -4 or v # 2)
(U # v + 1 or v > 0) and (U #4 o r v # 2)
u # 0 and v # 1 or - 1
U # nv for any integer n
(u < O o r l u l # n (v + l)) a n d u # O

u / v # I a n d u # O
U # v2

u l v # l

The proofs of (E l) , (E2) , (E 3) and (E 4) are
identical to those of (A4) , (B 4) , (C4) and (04),
respectively.

(E 5) is the condition to detect the mutant x % y. If
v >Oand IuI = n (v + I) , thenu / v = u % v = n . Hence,
x / y = x % y . On the other hand, suppose (v < 0 or
IuI # n(v+ I)) and U # 0. If u > 0, then U / v < 0
and U % v > 0. Hence, u / v # U % v. If U < 0, then
U / v > 0 and U % v < 0. Also, U / v # U % v. Thus,
(E 5) is sufficient and necessary condition.

The proof of (E 6) is similar to that of (0 6) .

The proofs of (E 7) and (E S) are similar to those of
(A 7) and (A8) , respectively.

To differentiate any ORAN mutant from x / y
(int), we nced only find a test case that satisfies the
conditions (E l) to (E 8) . For example, the test case
U = 2 and v = 5 satisfies these conditions,

(f) x % y (int)

Row 2 of Table 2 summaries the sufficient and
necessary conditions for detecting the listed ORAN
mutants of the expression x % y for integers. The
details are as follows:

(F l) :
(F2):
(F 3) :
(F 4) :
(F 5) :
(F 6) :
(F 7) :
(F8):

U * v > 0 or Iu(1 2lvl or [U[< / V I
u * v < 0, IuI 1 21vI or IuI < IvI
U # O
U # nv for any integer n
v < Oor JuI # n (v + 1) and U # 0
No constraint
u # v + I a n d u # O
u # v + l

The proofs of (FI), (F2), (F 3) , (F4) and (F 5) are
identical to those of (A5) , (B5) , (C5), (0 5) and (E 5) ,
respectively.

For (F 6) . no constraint on test cases is necessary
for distinguishing x % y from the mutant x = y, since

The proofs of (F 7) and (F 8) are similar to those of

x % y < y .

(A7) and (A 8) , respectively.

154

To differentiate any ORAN mutant from x o/u y, we
need only find a test case that satisfies the conditions
(F1) to (F 8) . For example, the test case U = 20 and
v = 3 satisfies these conditions.

Row 2 of Table 2 summaries the sufficient and
necessary conditions for detecting the listed ORAN
mutants of the expression x = y. The details are as
follows:

(Gl):
(G2) :
(G3):
(G4) :

(G6):

(G8) :

(G5) :

(G7):

u # O
U # 2v

u # v

U # 1 andv j .0
u z v :

No constraint
(U = 0 or v # 1) and v # 0
(U # 0 or v # 0) and v # 1

The proofs of (Gl), (G2), (G3), (G4), (G5) and
(G6) are identical to those of (A6), (B6) , (C6), (0 6) ,
(E 6) and (F 6) , respectively.

(G7) is used to detect the mutant x && y. If U = 0
and v # 0, then U && v = 0 and (U = v) # 0. If v # 1
and v # 0, obviously u && v # v. On the other hand,
suppose (G5) is not true. In other words, u # 0 and
v = 1) or v = 0. If u # 0 and v = 1 , then U && v = v =
1. If v = 0, then U && v = v = 0.

(G8) is the condition to detect the mutant x 1 1 y. If
u f O a n d v f 0 , then u 1) v = 1. Sincev# 1, we have
U I I v # v. On the other hand, suppose (G8) is not true.
Then, (U = 0 and v = 0) or v = 1. If u = 0 and v = 0,
then U 11 v = v = 0. If v = 1, then u 11 v = v = 1.

To differentiate any ORAN mutant from x = y, we
need only find a test case that satisfies the conditions
(F I) to (F 8) . For example, the test case u = 7 and
v = 8 satisfies these conditions.

For the case of a binary arithmetical operator being
replacement by a relational operator, let E’ denote a mutant
of an atomic expression E with the arithmetic operator
replaced by a relational operator. The sufficient and
necessary condition for detecting such a mutant is (E = 0
and E’ # 0) or (E # 0 and E’ = 0). This condition can be
added to the respective conditions in Table 2. No extra test
case will be necessary.

For an expression with a unary operator, x 0 or Ox, its
ORAN mutant is x0’ or o’x. A single test case is sufficient.
If the operator is “ ++ ” or “ - - ”, any value can he taken as
a test case. If the operator is “+” or “ - ’0 any value except
0 can be taken as a test case. w

If, in the domain of x and y, no values can distinguish the
expression x Oy from the mutant x d y , then we considcr the
mutant to be equivalent to the original.

5. Conclusion

In this paper, we have discussed in detail the testing
of atomic arithmetic expressions. We have covered the
fundamental mutants for such expressions, namely Uuor
mutants, VDTR mutants and ORAN mutants. Contrary to
the belief in code coverage methods, we find that a single
test case is not sufficient for testing an atomic arithmetic
expression. On the other hand, it is not as complex as other
testers have thought. Two test cases are sufficient to detect
all the fundamental single-fault mutants.

The results of this paper is not only useful for atomic
arithmetic expressions but can be applied to further studies
on the testing of complex programs.

References

[I] H. Agrawal, R.A. DeMillo, B. Hathaway, W. Hsu,
W. Hsu, E.W. Krawser, R.J. Martin, A. Mathur and
E. Spafford. Design of mutation operators for the C
programming language. Technical Report SERC-TR-4lp,
Software Engineering Research Center, Department of
Computer Science, Purdue University, Indiana, 1989.

[2] K. A. Foster. Error sensitive test cases analysis (ESTCA).
IEEE Transactions on Software Engineering, 6 (3): 258-
264, 1980.

[3] P.G. Frank1 and E. J. Weyuker. Provable improvements on
branch testing. IEEE Transactions on Sofware Engineering,
19(10):962-975, 1993.

[4] W. E. Howden. Weak mutation testing and completeness
of test sets. IEEE Transactions on Software Engineering,
8 (4): 371-379, 1982.

[5] B. Jeng and E. J. Weyuker. A simplified domain-testing
strategy. ACM Transactions on Software Engineering and
Methodology, 3 (3): 254-270, 1994.

[6] A. J. Offutt, A. Lee, G . Rothermel, R .H. Untch and
C. Zapf. An experimental determination of sufficient mutant
operators. ACM Transactions on Sofware Engineering and
Methodology, 5 (2): 99-1 18, 1996.

[7] K.-C. Tai. Theory of fault-based predicate testing for
computer programs. IEEE Transactions on Sofware
Engineering, 22 (8) : 552-562, 1996.

[XI J.M. Voas and G. McGraw. Software Fault Injection:
Inoculating Programs against Errors, John Wiley, New
York, 1998.

[9] L. J. White and E.1. Cohen. A domain strategy for
computer program testing. IEEE Transactions on Software
Engineering, SE-6(3): 247-257, 1980.

155

