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Abstract 

Most research on weak mutation testing focuses on 
predicate statements. Relative little attention has been 
paid to arithmetic expressions. In this paper, we analyse 
the latter type of expression and prove that, given an 
atomic arithmetic expression, if it contains no variable 
or if the operator is the unary tt ” or “ -- ”, then 
a single test case is sujficient and necessary to kill any 
fundamental mutant; otherwise, two test cases are suficient 
and necessary. 
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1. Introduction 

Since mutation testing was proposed as an effective 
method for software testing, there have been many 
improvements. Howden [4] classified mutation testing 
techniques into two categories: strong mutation testing and 
weak mutation testing. Strong mutation testing creates 
mutants for a complete program and test cases are generated 
to differentiate the program from its mutants. Weak 
mutation testing only creates mutants for a statement and 
test cases are generated to differentiate the statement from 
its mutants. 

In this paper, we are interested in weak mutation testing. 
We have found that most of the work in this area, such 
as [4] and [7], are concerned about predicate statements 
only. Relatively little work has been done on arithmetic 
expressions. The work of Foster [ 2 ] ,  for instance, is rather 
limited in scope. 
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There are two opposing thoughts on the testing of 
arithmetic expressions: it is considered either very simple 
or very complex. On one hand, some testers think 
that only one test case is sufficient. Typical examples 
are the code coverage methods [3] such as path testing, 
branch testing and statement testing. On the other 
hand, other testers consider the testing of arithmetic 
expression testing to be very complex because of an 
infinitely large input space and unfathomable possibilities 
of errors. Complex recommendations involving, for 
example, boundary values [ 5 , 9 ]  are often given. 

In this paper, we will discuss the test case generation 
for atomic arithmetic expression with no more than one 
operator. We shall formally prove that, given an atomic 
arithmetic expression, if it contains no variable or if the 
operator is the unary “ ++” or “ - - ”, then a single test case 
is sufficient and necessary to kill any fundamental mutant; 
otherwise, two test cases are sufficient and necessary. 

Our paper is grouped as follows: Section 2 gives some 
background of our analysis. Sections 3 and 4 discuss test 
cases for VDTR, Uuor and ORAN mutants, respectively. 
Section 5 gives the concluding remarks. 

2. Background 

In weak mutation testing, a mutant is produced by 
replacing operands or operators in a statement. There are 
an infinite number of possible replacements. Do we need 
to test all possible mutants for each expression? Offutt [6] 
pointed out that it would be redundant to test every mutant. 
In most cases, test cases that can detect one mutant are also 
effective in detecting others. Only five mutation operators 
are found to cover more than 99 percent of the situations 
in Fortran 77. Agrawal [ 11 figured out similar mutation 
operators for C programs. By comparing C, Fortran 77 
and Ada, Voas [8] also highlighted the same five mutation 
operators. Thus, in our research on the completeness of 
test cases, we shall only concentrate on the following five 
fundamental mutation operators: 
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Uuor: Insert unary operators in front of expres- 

VDTR: Force each arithmetic expression to take on 

ORAN: Replace each arithmetic operator with every 

ORRN: Replace relational operators with other 

OBBN: Replace logical connector with every syn- 

sions. 

a positive value, a negative value and zero. 

syntactically legal operator. 

relational operators. 

tactically logical operator. 

Among the five, only Uuor, VDTR and ORAN mutation 
operators are related to arithmetic expressions. Hence, we 
shall concentrate on these threc in the current paper. 

An atomic expression is an expression with no more than 
one operator. The following are the operators: +, -, *, I ,  %, 
=, ++ and --. According to the number of operators and 
operands, atomic arithmetic expressions can be divided into 
four categories: constants, simple variables, binary operator 
expressions and unary operator expressions. In this paper, 
we also assume that there is only one fault in an expression. 

Statement 

3. Complete Test Cases for VDTR and Uuor 
Mutants 

Results of Results of 
Test Case Test Case 

The conditions we give for the generation of test cases 
for one mutant are all sufficient and necessary. Test cases 
that satisfy the conditions can be used to detect the mutant. 
On the other hand, test cases that do not satisfy these 
conditions cannot be used to detect the mutants. 

Theorem 1 
At most two test cases are needed to distinguish an atomic 
expression from its VDTR and Uuor mutants. 

Proof 
We shall discuss VDTR and Uuor mutants for constants, 

simple variables, binary operators and unary operators 
separately. 

(U)  Constants 
If a constant is replaced by another, a single test case 
is sufficient. Any values can be taken as a test case. 

(b)  Simple Variable Expressions of the Form “x” 

Its VDTR mutant is K ,  where K is a constant. Its 
Uuor mutant is -x. Obviously, two test cases { V I ,  v 2 )  
such that v1 # v?; guarantee that the expression can 
be differentiated from its VDTR and Uuor mutants. 
On the other hand, a single test case “ v ”  cannot 
distinguish the statement “ z  = x ;  ” from the mutant 
‘‘z = v;”. Hence, a single test case will not be 
sufficient to detect all the mutants. 

Binary Operator Expressions of the Form “x O y” 

The VDTR mutants for the expression x 0 y are x 0 K 
and K a y ,  where K is a constant. The Uuor mutants 
are - x a y  and x a  -y. It is obvious that the use of 
one test case will not be sufficient to detect all these 
mutants, since the test case ( U ,  v) cannot differentiate 
xOyfrom themutantsuOyandxOv.  

The VDTR and Uuor mutants of the expression x + 
y are shown in Table 1. 

differentiate x +  y from its VDTR and Uuor mutants. 
For the expression x+y,  the test cases tl and t 2  can 

(i) x + y , x  -y,x * y  andx l y  (float) 
For expression x + y, we generate two test cases 
t l  : (UI, VI), fa : (u2, v2). They satisfy the 
following conditions: 

(Cl): 
(C2): 

U I  # u2 and V I  # v2 
U; # 0 and vi # 0 for i = 1 or 2 

Test cases that satisfy (CI) can detect VDTR 
mutants. Test cases that does not satisfy (Cl) 
cannot detect the mutant UI +y  orx+ V I .  

For the condition (C2), test cases such that 
ui # 0 and vi # 0 can detect Uuor mutants. A test 
case that does not satisfy this condition cannot 
detect a Uuor mutant. 

The same results can be obtained for the 
operators “ - ”, “ * ” and “ / ”  (float). However, 
for the operators “ / ”  (int) and ‘‘ % ”, generating 
test cases for VDTR mutants is slightly more 
complex. 

“ % ”  and “ / ”  are two special operators. Condition 
(Cl) is not sufficient to detect VDTR mutants for 
such expressions. The following is a brief discussion 
about the conditions of test cases to detect their VDTR 
mutants. 
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( i i )  x % y 
If the operator is “%”, two kinds of VDTR 
mutant are K % y and x % K ,  where K is some 
integer. Suppose tl : ( M I ,  V I )  and t2 : (up, v2) are 
two test cases. Let ml = U I  % V I ,  nl = M I  / v i .  
m2 = u2 % v~ and n2 = u2 / vz. For the mutant 
K % y ,  

if u1 % V I  = K % V I ,  then K = ml + p i v i  
if u2 % vz = K % vz ,  then K = mp+p2vz 

for some integers p1 and p z .  A sufficient and 
necessary condition for tl and t2 to kill this 
mutant is ml + vlpl  # m2 + v2p2. 

For the mutant y % K ,  where K is a constant, 
let nl = M I  / V I ,  n’, = U I  / K ,  nz = u2 / v2 and 
nI = u2 / K .  We have: 

if u1 % V I  = U I  % K ,  then K = vlnl / n’, 
if u2 % v2 = up % K ,  then K = van2 / n; 

If two test cases cannot detect the mutant, then 
vlnl / n’, = vpnZ / n; and IKl > max(mi, m2). 
At least one test case can detect the mutant if they 
satisfy the conditions vlnl / n’, = vznz / n; = 
K and K 5 max(ml, mz). In other words, K = 
GCD(vin1,  vzn2) = 1 or lKl 5 max(lmi1, Imzl). 
That is, GCD(vIn1, vznp) 5 max(lml1, ]mal). 

Obviously, the deduction process is reversible. 
Therefore, the sufficient and necessary condition 
to distinguish x % y from its VDTR mutants is 

mi - m2 # vzpz - v ip i  and 
GCD(vlnl ,v2n2)  5 max(mi, mz) 

where ml, ma. n l ,  n2, p i  and p~ are as defined 
above. 

(iii) x l y 
For the operator “/”, two kinds of VDTR mutant 
are x / K and K / y ,  where K is a constant. Let 
X I  / yi = n l ,  x2 / yz = n2, X I  % yi = mi and 
x2 % yz = m2. 

For the mutant x / K ,  

if X I  / y~ = X I  / K ,  then 

if x2 / y2 = xp / K ,  then 
x l = n l K + m l a n d O < m l < K  (1) 

xz = nzK+mp and 0 5 1122 < K (2) 

For ( I ) ,  XI / (nl + 1) < K 5 XI / nl. For (2), 
x2 / (nz + 1 )  < K 5 xp / nz. A test case that 
can detect the mutant must satisfy the condition 
XI / nl I xz / (nz + 1 ) .  

For the mutant K / y, 

ifxl / y1 = K / y l ,  then 

if x;! / yp = K / y ~ ,  then 
K = nlyl +mi (3) 

K = n 2 y 1 f  mz (4) 

For (31, niyi I K < (ni + 1 1 ~ 1 .  For (4), n2yz I 
K < (nz + 1)yp. Hence, n2yp 2 (ni + 1)yi or 
niyl 2 (nz + l)y;?.  The sufficient and necessary 
condition for detecting VDTR mutants of x / y is 
(xi / ni 5 xz / (nz + 1)) and (n2yz 2 (ni + I)yi 
or niyi 2 (np + I )y z ) .  

If the operator is ‘‘ = ”, its VDTR mutant can 
only be x = K and its Uuor mutant is x = - y .  
Obviously, two test cases are needed. 

(iv) x = y  

(d)  Unary Operator Expressions of the Form “x 0” or 
‘‘0 X’’ 

For unary operator expressions of the Form “xO ”, the 
operator can only be ‘‘ ++ ” or “ -- ”, in which case 
the expression has no VDTR or Uuor mutants. For 
unary operator expressions of the Form ‘‘ Ox”, if the 
operator is ” -  ”, two test cases { V I ,  v ~ }  such that 
vi # vz are sufficient. Otherwise the expression has 
no VDTR or Uuor mutants. 

We can see that, for atomic arithmetic expressions, two 
test cases are sufficient to differentiate an expression from 
its possible VDTR and Uuor mutants. In general, if an 
atomic arithmetic expression contains variables and the 
operator is not ‘‘ ++ ” or ‘‘ -- ” , then two test cases arc 
necessary. Otherwise, a single test case is sufficient. 

4. Complete Test Cases for ORAN Mutants 

There is no operator in constants or simple variables, and 
hence there is no ORAN mutant for such cases. In this 
section, therefore, we shall only discuss atomic arithmetic 
expressions with one operator. 

Theorem 2 
Given any atomic arithmetic expression, one test case can 
be found to distinguish it from its all ORAN mutants. 

Proof 
First, consider atomic arithmetic expressions with binary 

operators. All the possible binary arithmetic operators 
are listed in the seven rows of Table 2. The possible 
VDTR mutants are expressions with the original operators 
replied by other arithmetic operators, logical operators and 
relational operators. The former two kinds of replacement 
are shown in the nine columns of Table 2. The last kind of 
replacement will be discussed at the end of the proof. 
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x + y  x - y  x * y  x / y  x / y  x % y  x = y  x & & y  x l l y  
(float) (int) (int) 

Table 2. ORAN mutants 

Row I of Table 2 summarizes the sufficient and 
necessary conditions for detecting the listed ORAN 
mutants of the expression x + y. The details are as 
follows: 

( A l ) :  u # O  

(A3) :  u # u 2 / ( 1 - u )  
(A4) :  

(AS): 
(A6) :  u # O  
(A7) :  ( U + u # l  o r u = O o r u = O ) a n d  

(A8) :  U + U #  l a n d ( u # O o r u # O )  

(A2) :  U # U / (v- 1) 

(U # -U- 1 or U < 0) and 
(U # 2 or U # - 4 )  
U *  U > 0, I u I  2 2IuI or IuI < IuI 

(U # 0 or v # 0) 

(A I ) ,  (A2)  and (A3) are obviously the sufficient and 
necessary conditions for the mutants x - y, x * y and 
x / y (float), respectively. 

(A4) is used to distinguish the mutant x / y (int) 
from x + y. We know that, if x + y = x / y (int), then 
x = ( x +  y)y + n, giving n = x- (x+y)y. Ifx 2 0, then 
0 5 n < IyI. If x < 0, then -1yI < n 5 0. We have the 
following two cases: 

( i )  x 2 0 
I fy>O,thenx-(x+y)y>O,givingx> (x+y)y. 
Obviously, it is impossible. 

If y < 0, then 0 5 x - (x + y)y < -y, giving 
- ( y + 1 ) + 1 / ( 1 - y ) < x ~ - ( y + 1 ) , w h i c h i s  
also impossible. 

Ify > 0, then -y < x -  (x+y)y 5 0, giving -y- 1 
+ I  / ( I  -y) 5 x < -y, which means (x = -y - 2  
and y = 2 )  orx = -y - 1. 

If y < 0, then y < x- (x+y)y 5 0, which is 
impossible. 

(i i)  x < 0 

Hence, if x + y = x / y, then ( x  = -4  and y = 2 )  or 
(x = -y - 1 and y > 0). Thus, (A4)  is a sufficient 
condition. On the other hand, if ( x  = -4  and y = 2) or 
( x  = -y - 1 and y > 0), then obviously x + y = x / y .  
Hence, (A4) is necessary condition also. 

(AS) is the condition for test cases that distinguish 
x + y from x % y. First, any test case that satisfies the 
condition is sufficient to detect such a mutant. We need 
to consider three cases: 

( i )  u * v > 0  
In this case, (U > 0 and U > 0) or (U < 0 and 
U < 0). Since U and U are all greater than zero, 
we have U + U > v and U % U < U. The case for 
U < 0 and U < 0 is similar. Hence, when U * U  > 0, 
U + U # U % U. 

(4 I4 2 2 1 4  
Thus, U 2 21uI or U 5 -21~1. If U 2 2lul, then 
U + U 2 21vI + U  2 IuI, while U % U < IuI. If 
U 5 21~1, then U +  U 5 -2IuI + U  < -[U[, while 
U 70 U > - / V I .  

(iii) IUJ < IY I  

In this case, U % U = U while U + U # U, since 
U # 0. On the other hand, if (AS) cannot be 
satisfied, then U *  U < 0, I u I  < 21~1, and I u I  2 [ V I .  
If U > 0 and U < 0, then -v 5 U < -2u and U % 
U =  u+u. If U <Oandu > 0, then -2u < U 5 -U 
and U % u = U +U. 

Hence, if (AS) cannot be satisfied, the test cases cannot 
differentiate the mutant x % y from x +y.  

(A6) is the condition for distinguishing x = y from 
x + y. The proof is obvious. 

(A7) is the condition for distinguish x && y from 
x+y.  ( U + U  # 1 or U = 0 or U = 0) and (U # 0 
or U # 0) implies (U + U # 1 or U && U = 0) and 
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( u + v  # 0 or u && v = 1). In other words, ( ( u + v  # 1 
and (U + v # 0 or U && v = 1)) or ((U && v = 0) 
and (U+ v # 0 or U && v = I ) ) ,  so that ( u + v  # 1 
and U && v = 1) or (U && v = 0 and u + v  # 0). 
Obviously, u + v # U && v. If (A7) is not satisfied, 
(U+ v = 1 and u # 0 and v # 0) or (U = 0 and v = 0). 
then (U + v = 1 and U && v = 1) or (U + v = 0 and 
U && v = 0). Obviously, U + v = v && v. 

Test cases that can satisfy (AX) can distinguish x I I y 
fromx+y. S i n c e u # O o r v # O , u ) I v = l . H o w e v e r ,  
U + v # 1, and hence U + v # u 1 1  v. If (A8)  is not 
satisfied, then (U + v = 1) or (U = 0 and v = 0). If 
u + v  = I ,  then u + v  = u I (  v = 1. If u = v = 0, then u + v  
= U 1 1  v = 0. Hence, the mutant cannot be identified. 

To differentiate any ORAN mutant from x + y ,  we 
need only find a test case that satisfies the conditions 
( A I )  to (A8) .  For example, the test case u = S and 
v = 9 satisfies these conditions. 

Row 2 of Table 2 summaries the sufficient and 
necessary conditions for detecting the listed ORAN 
mutants of the expression x - y. The details are as 
follows: 

(BI): 
(B2) : 
(83): 
(B4) : 
(B5): 
(B6)  : 
(B7):  

(B8) :  

v # O  
# v / ( 1  - V I  

u # v 2  / (v- 1) 
(U # v +  1 or v < 0 )  and (U # 4 or v # 2) 
U *  v < 0, IuI 2 21vI or (uI < ( V I  
u # 2 v  
(U-.# 1 o r u = O o r v = O ) a n d  
(U # 0 or v # 0) 
U - v # l a n d ( u # O o r v # O )  

(Bl), (B2)  and (B3)  are the conditions for test cases 
to detect the mutants x + y, x * y and x / y (float), 
respectivcly. Their proofs are obvious. 

(B4) is the condition for test cases to detect the 
mutant x % y. The proof is similar to that of (A4) .  

(BS) is the condition for test case to detect the 
mutant x / y. If x - y = x / y, then x = ( x  - y)y + n. 
Hence, n = x - ( x  - y)y. If x 2 0, then 0 5 n < lyl. If 
x < 0, then - Iy(  < n 5 0. We have the following two 
cases: 

( i )  x 2 0 
If y > 0, then y > x - ( x  - y)y 2 0. Hence, 

y < x i y + l + l  / ( y - I ) .  T h u s , x = y + l  or 
( x = 4 a n d y = 2 ) .  

If y < 0, it is impossible for x - y = x / y. 

(ii) x < 0 
Whenx < 0, we have -1yI < x- (x-y)y <_ 0. It 
is impossible for whatever value of y .  

Obviously, (B5)  is a sufficient and necessary condition 
to detect the mutant x / y. 

(B6)  is the condition for a test case to distinguish 
x - y from x = y .  If the test cases satisfy U # 2v, then 
U - v # v. In this case, x - y can be distinguished from 
x = y. On the other hand, if U = 2v, then U - v = v. 
In this case, x - y cannot be distinguished from x = y. 
Hence, a single test case cannot differentiatex -y from 
x = y. 

(B7) and (BX) are the conditions for test cases to 
detect the mutants x && y and x 1 I y. Their proofs are 
similar to those of (A7) and (A8) ,  respectively. 

To differentiate any ORAN mutant from x - y, we 
need only find a test case that satisfies the conditions 
(Bl) to (88). For example, the test case u = 5 and 
v = 9 satisfies these conditions. 

Row 2 of Table 2 summaries the sufficient and 
necessary conditions for detecting the listed ORAN 
mutants of the expression x * y. The details are as 
follows: 

(Cl): 
(C2) : 
(C3) : 
(C4) : 
(C5): 

(C7) : 
(CX) : 

(C6): 

u # v / ( v - 1 )  
# v / (1 - v) 

u # O a n d v #  1 or-1 
ufOandvf Ior-1 

u # l a n d v # O  
u * v #  1 a n d u * v # O  
u * v #  1 and(u#Oorv#O)  

u # O  

The proofs of (Cl) and (C2) are identical to those 
of (A2) and (B2), respectively. 

(C3) is obviously the condition to detect the mutant 
x / y (float). 

(C4) is the condition for test cases to detect the 
mutant x / y (int). If x * y  = x / y (int), then x 2 xy2. 
Hence, x =  0 or y = - l , + l .  In other words, U = 0 
or v = - l , + l .  On the other hand, if U = 0, then 
x * y  = x  / y = 0. If v =  -1 ,1 ,  thenx*y = x  / y  = x =  U. 
Hence, x * y  = x / y. 

For (C5) ,  if u = 0, then x r y  = 0 and x % y = 0. 
Therefore, x y = x % y. On the other hand, if x * y = 
x % y, then 1x1 > I x * y (  or x = 0. Since it is impossible 
to have 1x1 > Ix*yl ,  we must have x = 0. Thus, U = 0. 

(C6) is the condition to detect the mutant x = y. If 
U = 1, thenx*y = u*v = v. Sincex = y  = v, we have 
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x * y identical to x = y.  On the other hand, if x + y is 
identical to x = y, then x * y  = y. Hence, x = 1 or y = 0. 
Thus, u = 1 or v = 0. 

The proofs of (0) and (C8) are similar to those of 
(A7)  and (AS) ,  respectively. 

To differentiate any ORAN mutant from x * y, we 
need only find a test case that satisfies the conditions 
(Cl) to (C8). For example, the test case u = 5 and 
v = 6 satisfies these conditions. 

(d)  x /y (float) 

Row 2 o,f Table 2 summaries the sufficient and 
necessary conditions for detecting the listed ORAN 
mutants of the expression x / y for floating point 
numbers. The details are as follows: 

(01): 
(02) : 
( 0 3 )  : 
( 0 4 )  : 
( 0 5 ) :  
( 0 6 )  : 
(07):  
( 0 8 ) :  

U # v2 / (1 - v )  
U # v2 / (v - 1 )  
u # O a n d v # l o r - 1  
U # nv for any integer n 
u # O  
U # v2 

u # v  
U # 0 and U # v 

The proofs of (DI), (02) and (03) are identical to 
those of (A3) ,  (83) and (C3) ,  respectively. 

( 0 4 )  is used to detect the mutant x / y (int). If 
U = nv for some integer n, then U / v (float) = U / v 
(int) = n. On the other hand, if ( 0 4 )  is not truc, then 
Iu / v (float)l > Iu / v (int)l. Thus, ( 0 4 )  is a sufficient 
and necessary condition. 

The proof of ( 0 5 )  is similar to that of (C5) .  

( 0 6 )  is the condition for test cases to detect the 
mutant x = y. If U = v2, thcn u / v = v. Therefore, 
x / y has the same value as x = y. On the other hand, if 
U # v2, then U / v # v. Hence, x / y is not equal to x = y. 
Thus, ( 0 6 )  is a sufficient and necessary condition. 

The proofs of ( 0 7 )  and (08) are similar to those of 
(A7)  and (A8) ,  respectively. 

To differentiate any ORAN mutant from x / y 
(float), we need only find a test case that satisfies the 
conditions (01) to ( 0 8 ) .  For example, the test case 
U = 7 and v = I O  satisfies these conditions. 

(e) x / y  (int) 

Row 2 of Table 2 summaries the sufficient and 
necessary conditions for detecting the listed ORAN 
mutants of the expressionx / y for integers. The details 
are as follows: 

( E l ) :  

( E 2 ) :  
( E 3 ) :  
( E 4 ) :  
( E 5 ) :  
( E 6 ) :  
( E 7 ) :  
( E 8 ) :  

(U # -v - 1 or v < 0) and 
(U # -4 or v # 2) 
(U # v +  1 or v >  0) and (U #4 o r v #  2 )  
u # 0 and v #  1 or - 1  
U # nv for any integer n 
( u < O o r l u l # n ( v + l ) ) a n d u # O  

u / v # I a n d u # O  
U # v2 

u l v # l  

The proofs of ( E l ) ,  (E2) ,  ( E 3 )  and ( E 4 )  are 
identical to those of (A4) ,  ( B 4 ) ,  (C4)  and (04),  
respectively. 

( E 5 )  is the condition to detect the mutant x % y. If 
v >Oand IuI = n ( v +  I ) ,  thenu / v = u  % v = n .  Hence, 
x / y = x % y .  On the other hand, suppose ( v  < 0 or 
IuI # n(v+ I ) )  and U # 0. If u > 0, then U / v < 0 
and U % v > 0. Hence, u / v # U % v. If U < 0, then 
U / v > 0 and U % v < 0. Also, U / v # U % v. Thus, 
( E 5 )  is sufficient and necessary condition. 

The proof of ( E 6 )  is similar to that of ( 0 6 ) .  

The proofs of ( E 7 )  and ( E S )  are similar to those of 
( A 7 )  and (A8) ,  respectively. 

To differentiate any ORAN mutant from x / y 
(int), we nced only find a test case that satisfies the 
conditions ( E l )  to ( E 8 ) .  For example, the test case 
U = 2 and v = 5 satisfies these conditions, 

(f) x % y (int) 

Row 2 of Table 2 summaries the sufficient and 
necessary conditions for detecting the listed ORAN 
mutants of the expression x % y for integers. The 
details are as follows: 

( F l ) :  
(F2): 
( F 3 ) :  
( F 4 ) :  
( F 5 ) :  
( F 6 ) :  
( F 7 ) :  
(F8): 

U * v > 0 or Iu( 1 2lvl or [U[ < / V I  
u * v < 0, IuI 1 21vI or IuI < IvI 
U # O  
U # nv for any integer n 
v < Oor JuI # n ( v +  1) and U # 0 
No constraint 
u # v + I a n d u # O  
u # v + l  

The proofs of (FI), (F2), ( F 3 ) ,  (F4) and ( F 5 )  are 
identical to those of (A5) ,  (B5) ,  (C5), ( 0 5 )  and ( E 5 ) ,  
respectively. 

For ( F 6 ) .  no constraint on test cases is necessary 
for distinguishing x % y from the mutant x = y,  since 

The proofs of ( F 7 )  and ( F 8 )  are similar to those of 

x % y < y .  

(A7)  and ( A 8 ) ,  respectively. 
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To differentiate any ORAN mutant from x o/u y, we 
need only find a test case that satisfies the conditions 
(F1) to ( F 8 ) .  For example, the test case U = 20 and 
v = 3 satisfies these conditions. 

Row 2 of Table 2 summaries the sufficient and 
necessary conditions for detecting the listed ORAN 
mutants of the expression x = y. The details are as 
follows: 

(Gl): 
(G2) : 
(G3): 
(G4) : 

(G6): 

(G8) : 

(G5) : 

(G7): 

u # O  
U # 2v 

u # v  

U #  1 andv j .0  
u z v :  

No constraint 
(U = 0 or v # 1) and v # 0 
(U # 0 or v # 0) and v # 1 

The proofs of (Gl), (G2), (G3), (G4), (G5) and 
(G6) are identical to those of (A6), (B6) ,  (C6), ( 0 6 ) ,  
( E 6 )  and ( F 6 ) ,  respectively. 

(G7) is used to detect the mutant x && y. If U = 0 
and v # 0, then U && v = 0 and (U = v )  # 0. If v # 1 
and v # 0, obviously u && v # v. On the other hand, 
suppose (G5) is not true. In other words, u # 0 and 
v =  1 )  or v = 0. If u # 0 and v =  1 ,  then U && v =  v = 
1. If v = 0, then U && v = v = 0. 

(G8) is the condition to detect the mutant x 1 1  y. If 
u f O a n d v f 0 ,  then u 1 )  v =  1. Sincev# 1, we have 
U I I v # v. On the other hand, suppose (G8) is not true. 
Then, (U = 0 and v =  0) or v = 1. If u = 0 and v = 0, 
then U 11 v = v = 0. If v = 1, then u 11 v = v = 1. 

To differentiate any ORAN mutant from x = y, we 
need only find a test case that satisfies the conditions 
( F I )  to ( F 8 ) .  For example, the test case u = 7 and 
v = 8 satisfies these conditions. 

For the case of a binary arithmetical operator being 
replacement by a relational operator, let E’ denote a mutant 
of an atomic expression E with the arithmetic operator 
replaced by a relational operator. The sufficient and 
necessary condition for detecting such a mutant is ( E  = 0 
and E’ # 0) or ( E  # 0 and E’ = 0). This condition can be 
added to the respective conditions in Table 2. No extra test 
case will be necessary. 

For an expression with a unary operator, x 0  or Ox, its 
ORAN mutant is x0’ or o’x. A single test case is sufficient. 
If the operator is “ ++ ” or “ - - ”, any value can he taken as 
a test case. If the operator is “+” or “ - ’0 any value except 
0 can be taken as a test case. w 

If, in the domain of x and y, no values can distinguish the 
expression x Oy from the mutant x d y ,  then we considcr the 
mutant to be equivalent to the original. 

5. Conclusion 

In this paper, we have discussed in detail the testing 
of atomic arithmetic expressions. We have covered the 
fundamental mutants for such expressions, namely Uuor 
mutants, VDTR mutants and ORAN mutants. Contrary to 
the belief in code coverage methods, we find that a single 
test case is not sufficient for testing an atomic arithmetic 
expression. On the other hand, it is not as complex as other 
testers have thought. Two test cases are sufficient to detect 
all the fundamental single-fault mutants. 

The results of this paper is not only useful for atomic 
arithmetic expressions but can be applied to further studies 
on the testing of complex programs. 
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