
Fault-Based Testing in the Absence of an Oracle *

T. Y. Chen
Swinburne University of

T. H. Tse t and Zhiquan Zhou
The University of

Technology, Australia Hong Kong

Abstract

Although testing is the mostpopular method for assuring
sofrware quality, there are two recognized limitations,
known as the reliable test set problem and the oracle
problem. Fault-based testing is un attempt by Morell
to alleviate the reliable test set problem. In this papec
we propose to enhance fault-based testing to address the
oracle problem as well. We present an integrated method
that combines metamorphic testing with fault-based testing
using real and symbolic inputs.

Keywords: Fault-based testing, metamorphic testing,
oracle problem, symbolic execution.

1. Introduction

There are two accepted ways of verifying the correctness
of a program: proving and testing. The former suffers from
the difficulty of the proofs. It is not easy even to prove the
correctness of a relatively simple program. Although testing
is the most popular method for assuring software quality,
there are two recognized limitations, known as the reliable
test set problem and the oracle problem. Much research in
software testing has adopted the definition of the reliable
test set originally given by Howden [16]: Suppose p is a
program computing function f on domain D. A test set
T C D is reliable for p if (Vt E T , p (t) = f (t)) + (Vt E
D, p (t) = f (t)) . In other words, the success of a reliable
test set implies the program correctness. Howden’s result
shows, however, that a rdiable test set of a finite size is not
attainable in general. It is called the reliable test setprobleni
or the reliability problem. The other fundamental limitation
in software testing is that, in some situations, testers are
unable to decide whether p (t) = f (t) , that is, whether the
program outcome is correct. This is known as the orucle
problem [14,271.

‘This research is supported in p a t by the Hong Kong Research Grants
Council and the University of Hong Kong Committee on Research and
Conference Grants.

‘All correspondence should be addressed to Dr. T. H. Tse, Department
of Computer Science and Information Systems, The University of Hong
Kong, Pokfulam Road, Hong Kong. Email: “tse@csis. hku. hk”.

Because of the reliable test set problem, it is necessary
to seek other approaches to defining the test set quality. The
concept of an adequate test set was introduced [6, 12, 131:
Let p be a program computing function f on domain D.
A test set T C D is adequate for p if, V programs 9,
(3t E D : q(t) # f (t)) +- (3 t E T : q (t) # f (t)) . Here, a
different perspective of testing is taken: Instead of directly
showing program correctness, an adequate test set is aimed
at uncovering errors in every faulty program, which is more
intuitive. Unfortunately, it was also shown that there is
no effective procedure to generate an adequate test set or
to decide whether a given test set is adequate [6, 131. To
alleviate this problem, the mutation adequacy (or relative
adequacy) criteria were introduced [5 , 12, 131, which limit
the faulty programs to a set of finite size. Thus, suppose p
is a program computing function f on domain D, and Q is
a finite set of programs. A test set T C D is adequate for p
relative to Q if, V programs q E Q, (3 t E D : q(t) # f (t)) +
(3 t E T : 9 (t) # f (t)) . In mutation testing, each program
q E Q such that q # p is called a niutunt of p . The purpose of
mutation testing is to generate a mutation adequate test set
T to kill all the mutant programs in Q. Mutation testing was
shown to be very powerful in revealing program faults both
experimentally and analytically [13, 23, 24, 261. Since the
“fault coupling effect” is very rare [15, 221, test cases that
detect simple faults can also detect more complex faults.

Morell [191 further developed the theory of fault-based
testing. In mutation testing, the set of mutants must be
finite. On the other hand, this set (called the set of
alternative programs by Morell) can be infinite in fault-
based testing. Hence, fault-based testing “prove[s] the
absence of infinitely many faults based on finitely many
executions” [19]. To achieve this goal, the technique
of symbolic execution [9, 171 was used, and statements
proclaiming the absence of certain types of faults were
created and proved during the testing process. In this way,
Morell combined program testing and proving in a unified
methodology.

It should be noted that in all the above methodologies
for alleviating the reliable test set problem, there is always
an underlying assumption that a testing oracle exists. An

0-7695-1372-7/01 $10.00 19 2001 IEEE 1 7 2

oracle is any mechanism specifying the expected execution
result of a program on input data. Testers check the program
output against the oracle to decide whether the program has
resulted correctly on test cases. In some practical situations,
however, an oracle is not attainable. This is known as
the oracle problem. In numerical analysis, for example, it
is often difficult to verify the results of calculations [14].
Weyuker [27] defined a program to be non-testable if
there is no oracle or if the oracle is too difficult to be
obtained in practice. Moreover, in the theory of fault-
based testing introduced by Morell, not only is the oracle
for real output required, but the oracle for symbolic output
is also demanded because it involves symbolic execution
and symbolic results. Without an oracle, all the above
techniques will not work. In this paper, we shall propose
an integrated approach that combines symbolic testing with
metamorphic testing (to be introduced in Section 3) to
alleviate the oracle problem for both real and symbolic
outputs. Our method is built upon the techniques of
symbolic execution [10,211 and constraint solving [13, 281.

2. Fault-Based Testing

As we know, the correctness of a program cannot
be proved by means of testing [2]. There have been
different perspectives regarding the purpose of software
testing. Some regard testing to be a means of revealing
program faults, and therefore consider successful test cases,
which fail to reveal errors, to be useless and a waste of
time [20]. Others argue that successful test cases are useful
and informative [7, 191. Fault-based testing adopts the latter
perspective and treats successful executions of a program
as indications of the absence of some types of faults [191.
Fault-based testing therefore receives from a successful
execution the information on the absence of certain types
of faults. In some sense, mutation testing can be regarded
as a special case of fault-based testing. A major difference
is that the set of mutants eliminated by the former is finite
whereas, by making use of symbolic executions, the set of
alternative programs eliminated by fault-based testing can
be infinite.

Fault-based testing with real input
The key of symbolic testing is to represent “infinitely
many alternatives by a single symbolic alterna-
tive” [191. The 3-line program P, as shown in Figure 1,
is the first example given by Morell to illustrate the
idea of symbolic testing. The program is supposed
to calculate f (x , y) = 2xy + 6. To ensure that there
is no error with respect to the constant “3” in line
2, we assume that it is replaced by another constant
“F”, as shown in line 2‘ of Program P’ in Figure 2 .
“F” denotes all possible alternatives for the constant

1: input(x, y);
2: x : = x * y + 3 ;
3: output(x * 2);

Figure 1. Program P for f(x, y) = 2xy + 6

1 : input (x, y);
2’: x : = x * y + F :
3: output (x * 2) ;

Figure 2. Program P’

“3”, and hence program P’ represents infinitely many
alternate programs for P.

Let x = 5 and y = 6 be a test case. The original
program P will output 66, which can easily be verified
to be correct against an oracle. By means of symbolic
execution of program P ‘ , we obtain an output of
(30 + F) * 2. Morell’s goal is to find all the constants
F such that program P’ will produce the same result
as the original program P. In other words, we must
find all the values of F such that (30 + F) * 2 = 66.
Solving the equation, we obtain F = 3. Hence? we
have proved that the test case (5, 6) distinguishes the
original program P from all mutants constructed by
replacing 3 in line 2 by any other constant values.
Note that, to carry out testing, an oracle is required for
checking the correctness of the output of the original
program.

(b) Fault-based testing with symbolic input

The above example shows how to eliminate the con-
stant substitution in fault-based testing with real input
data. Morell also illustrated how to eliminate more
complex alternatives such as variable substitution. To
achieve this goal, symbolic inputs instead of real inputs
were accepted. Figure 3 shows a sample program
taken from [19]. It calculates the area below the
graph of the function x2 + 1 over the interval between
a and b. Suppose the aim of the symbolic testing
is to show the absence of errors in the assignment
statement 3. Let the symbolic input be a = A, b = B ,
and incr = I such that B 2 A and A + I > B . Then
the symbolic output produced by symbolic execution
will be (A * A + 1) * (B - A) . Note that, according to
Morell’s method, a symbolic oracle is required here to
verify the correctness of the output.

Suppose we introduce a fault in the assignment
statement 3:

3’ : area := F; { Should be “area := 0;” }

173

Program CompuleArea (input, output);
var a, b, incr, area, v: real;
begin
read (a, b, incr); .[incr > 0 1 1 :

2: v : = a * a + l ;
3: area :=O;
4:

begin
5 : area := area + v * incr;
6: a := a + incr;
7: v : = a * a + l ;

end;
8: incr := b - a;
9: if incr >= 0 then

10:
1 I :

while a + incr <:= b do

begin
area := area + v * incr;
writeln (’are,i by rectangular method: ’. area);
end

writeln (’ille,pl values for a = ’, a, ’ and b = ’, b);
else

end.
12:

Figure 3. Program ComputeArea

where F is a constant. Following the same execution
path, we obtain an output of F + (A * A + 1) * (B -
A) . Morell’s goal is to find all the constants F such
that statement 3’ will produce the same result as the
original statement 3. Hence, we have F + (A2 + 1) *
(B - A) = (A2 + 1 :I * (B - A) , which can be solved to
give F = 0. Thus, statement 3’ can only be exactly the
same as statement 3 .

Morell also proved that alternate programs would
also be eliminated when F denotes a polynomial of
a. In other words, if F (a) denotes the set of all
polynomials in a , then it can be proved that F (a) can
only be 0.

Furthermore, Morell introduced another error in
statement 5. It is replaced by

5‘ : area := F; { Should be “area := area + v * incr;” }

Let the symbolic input be a = A, b = B, and incr = I
such that A + I 5 Li and A + 21 > B. Using a similar
procedure, the author obtained F = (A * A + 1) * I ,
thus contradicting the above. This proves that no
constant substitution can be found for statement 5 . By
executing the loop twice, Morell further eliminated all
alternative programs in which F could be a polynomial
of the variables area, v, and incr. In other words,
when the assignment fault introduced in statement 5
is a multinomial in ihe form F(area, v, incr), it can be
proved [I91 that F (x , y, z) = x+yz, which is exactly
the function compu1.ed in the original program.

We would like to point out again that these techniques
have been based on the assumption that both the real and

symbolic outputs can be verified against some oracles.
Otherwise, “in the case when only real outputs and not
symbolic outputs can be verified”, it is “necessary to
resort to algebraic testing” [19]. In algebraic testing [18],
however, an oracle for the real output is anyway needed, and
restrictions on the programs to which the algebraic testing
technique can be applied is so strict that the technique is
more a result in theory than an approach in practice.

In Section 4, we shall present an approach to carry out
fault-based testing in the absence of an oracle for real and
symbolic outputs. Before doing this, let us review the oracle
problem in more details.

.

3. Testing Without an Oracle

Weyuker [27] undertook a detailed study and introduced
various approaches to test “non-testable programs” via
static and dynamic properties of the functions being calcu-
lated. She gave an example of the testing of two programs
that computed the functions f (x) and f ’ (x) respectively,
where f ’ is the derivative o f f . From elementary results in
Taylor series, we know that f (x + A) = f (x) + A x f ’ (x) +
O(A2). Substituting A = 1, 0.1, 0.01, . . . into the formula
f (x + A) - (f (x) + A x f ’ < x)) , we can “see at a glance
whether f’ could be the derivative off.”

Following up with her work, many other approaches
were proposed to assist automatic verification of the
correctness of the testing result without the involvement of a
human oracle [1,3,4,7]. The basic idea of these approaches
were also to employ some mathematical properties of the
function from the theory and check whether the program
being tested adheres to these properties. Blum et al. 14)
introduced the concept of a program checker, which is a
program that probabilistically checks the correctness of the
output of another program. An example is a checker for the
graph isomorphism function, which employs the property
that if G and H are not isomorphic then this relation should
also be satisfied between G and permutations of H .

Blum et al. [3] extended the theory of the program
checker into the theory of self-testing I correcting. Given
a function f and a program P that implements f, a self-
tester T for f is a probabilistic program. T estimates the
error probability that P (x) # f (x) for a random input x. A
self-corrector C for f is also a probabilistic program. If it is
known that program P calculates f correctly for sufficiently
large amount of data on the input domain, then for any
input x: C will make calls to P and return the value of f (x)
correctly with a high probability. Blum et al. introduced
general techniques to construct self-tester / corrector for
a variety of numerical functions. The underlying concept
of this technique is also to make use of mathematical
properties of function f. For example, the self-tester I
corrector for integer multiplication functions essentially

employs the distributive law a x (b+ c) = a x b + a x c.
The self-tester / corrector for modular functions essentially
employs the property that (a + b) mod r = (U mod r +
b mod r) mod r.

Recently, a metamorphic testing (MT) method [7, 81 was
proposed, which can be explained as follows. Let XI, x2,
. . . , x, be different inputs to a function f . Suppose that,
given some relation R among XI, x2, . . . , x,, their results
f (x l) , f(x2), . . . , f (x ,) must satisfy some mathematical
property RJ. In formal terms, we have

R(xllx2,... , x n) +Rf(f(~l),f(~2),... ,f(+rn)) (1)

For example, if the function in question is “sine”, then for
any two inputs X I and x2 such that XI +x2 = 7c, we must have
sin(x1) = sin(x2). In formal terms,

(XI +x? = n) + (sin(x1) = sin(n2)). (2)

Let P be a program implementation of the function
f. Suppose P(x l) , P(x2), ... , P(x,$) are the outputs for
different inputs x i , x2, . . . ~ x,!. If the program is correct, the
inputs and outputs must obviously satisfy a mathematical
criterion similar to (I) above, namely

R(II r ~ 2 1 , ’ , ~ n) + Rf (P(xI), P (x ~) , . . . , P (x u))

This property is known as a metamorphic relation. It
is a necessurfcondition for the correctness of P. MT
proposes to check whether a program under test satisfies
such metamorphic relations. For example, for a program
P that computes the “sine” function, two executions are
needed to verify the metamorphic relation (2). The first
input to P is any real number x , and the second input is
7c - x . The two outputs are expected to be equal. Even
if a testing oracle does not exist, MT can still be applied
because i t checks the relations among the outputs of several
executions of the program, instead of checking a single
execution result.

There is a similarity between MT and the earlier methods
introduced in this section, in that all of them make use
of some properties of the functions to check the program
outputs. There are, however, differences between MT and
other methods in both practice and philosophy. In practice,
the function properties employed by the previous testing
methods, such as checkers and self-testers / correctors, are
equalities. In other words, although those properties can
also be regarded as metamorphic relations, they are all
related with equality. For example, the checker for the graph
isomorphism function [4] makes use of the relation that if
isomorphism(G, H) = FALSE, then isomorphism(G, H ’) =
FALSE, where U’ is any permutation of U . Another example
is the self-tester / corrector for integer multiplication
functions [3], which essentially employs the equality
a x (b + c) = a x b + a x c. In metamorphic testing, on
the other hand, the metamorphic relations may include, but

are not limited to, equality. MT employs a wider range of
properties. For example, if f(x) is a monotone increasing
function, then a metamorphic relation of f can be that
“ f (x) > f (y) if x > y”.

There also exists a difference in the purpose of testing
between other methods and MT. For example, the ultimate
goal of the program checker is to verify the correctness
of a single output. Even though other test cases may
be generated by the checker during the testing process,
the fundamental goal does not change. For metamorphic
testing, on the other hand, the ultimate goal is not to verify
the correctness of a single output, but is to verify whether
the program being tested possesses the expected properties
on all the input data over the input domain.

4. Integrating Fault-Based Testing with the
Metamorphic Method

As introduced in Section 3, metamorphic testing (MT)
is a method that checks whether the program satisfies
expected metamorphic relations. MT can therefore be
performed in the absence of an oracle. In this section, we
shall integrate MT and the symbolic testing to alleviate the
oracle problem for real and symbolic inputs.

4.1. Preliminary example

Similar to Morell’s fault-based testing, our integrated
method also allows two types of inputs: real and symbolic.
We shall use the 3-line program in Figure 1 as a preliminary
example to illustrate our technique for real input. By simple
algebra, we find that f (x , y) + f (- x , y) = 12. In formal
terms, the metamorphic relation is

(XI =-x2andyl =N)+ (~ (X , , . Y I) + ~ (X ~ , y 2) = 12).

For the test case (x , y) = (5, 6), the original program
in Figure 1 produces “66” as output. Suppose that this
program does not have a known oracle. I We continue to
generate next test case based on the metamorphic relation.
Thus, we obtain (x , J) = (-5, 6) as the second test case.
On this input the program yields -54. Now it needs to be
verified the two test cases satisfy the metamorphic relation.
Since 66 + (-54) = 12, the test is passed.

Let us now introduce the assignment fault F into the
program, as shown in Figure 2. For the same initial test
case (x , y) = (5, 6), the program produces 2 F + 60 by
symbolic execution. For the second test case (x , y) =
(-5, 6), the program yields 2 F - 60 by symbolic execution.
Our goal is to solve for the value(s) of F with which the

’We use this simple but artificial example to illustrate the procedure
behind metamorphic testing. Genuine examples where no oracle exists
will be given in Sections 4.2 and 4.3.

175

program satisfies the expected relation f (x , y) + f (-x , y) =
12. In other words, we must solve for F in the equation
(2F + 60) + (2F - 60) = 12. We obtain F = 3. This means
that all the alternate programs constructed by replacing
3 by other constants have been eliminated using the
metamorphic test cases (5, 6) and (- 5 , 6). This is the same
conclusion obtained by the conventional fault-based testing
in [19]. A fundamenta.1 difference is that by applying the
MT technique this time, a testing oracle is not needed any
more.

The above examplt: alone may not be sufficient to
convince readers, because there is actually an oracle in
Morell’s program, although we have chosen not to use it.
We shall describe in the next two sections how fault-based
testing can be achieved in the absence of an oracle, using
real and symbolic inputs.

4.2. Fault-based testing with real input in the
absence of an oracle

A program ComputePower is given in Figure 4. Pascal is
used for the purpose of consistency in this paper, since the
other programs quoted from [191 are all in this language.
Our method works equally well in other programming
languages such as C.

Given two real numbers a and b as input, the program
computes the value of ah. This is done in three ways:

(i) If b is zero, then otwiously ah = 1.

(ii) Otherwise, if b is a positive integer, then ah can
be found by multiplying a by itself the appropriate
number of times.

(iii) Otherwise, ah is computed by the mathematical
formula eh In (‘ I) .

The main objective of our testing lies with part (iii).
We have to deal with large number arithmetic in many

applications, such as in cryptography software [25]. We
cannot rely on the standlard programs for the logarithm or
exponential function, and hence there is a need to write
mathematical functions of our own. Errors may therefore
be introduced as a result. Furthermore, there are no obvious
oracles for verifying the results of these functions. If there
were alternative functions that provide such results to us,
then there would not have been a need for writing such
functions in the first place. One of the standard techniques
in testing complex functions is to consider special cases,
such as when the inputs are integers. Unfortunately, i t will
not work in this example because separate techniques (i)
and (ii) have been implemented for such special cases.

For the ease of presentation in this paper, we shall not
use complex techniques for the calculation of logarithm in
ConzputePower. In spite of this, we hope that the rationale

Program ComputePower (input, output);
var i , n: integer;
var a, b, check, logarithm, mainFactor. plusMinus, power,

begin
I : read (a, b);
2: i f b = Othen
3: power := 1

else begin

term, x : real:

4:
5:
6:

7 :
8:
9:

IO:
I I :
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:

22:

n := trunc (b);
check := n;
if (b > 0) and (check = b) then

begin
power := I;
fori := 1 to n do

end
power := power * a;

else begin
{ I n (a) = I n (l + x) = x - 1 / 2 * x A 2 + 1 / 3 * x * 3 -

x : = a - 1;
i := I :
plusMinus := I :
mainFactor := x;
term := x;
logarithm := x:
while abs (term) > 0.0000000 I do

begin
i : = i + l ;
plusMinus := - 1 * plusMinus;
mainFactor := x * mainFactor;
term := plusMinus * niainFactor / i;
logarithm := logarithm + term;
end;

power := exp(b * logarithm):
end;

end;
23: writeln (a:I0:6, ’ - ’, b:I0:6, ’ = ’, power: 10:6);

end.

...

Figure 4. Program ComputePower

behind the lack of an oracle has already been explained
clearly to readers.

Consider statement 15 in the program. Assume that we
can introduce a fault in the statement 15, of the form

15’ : logarithm := F; { Should be “logarithm := x;” }

Our goal is to find all the constants F (if any) such that
statement 15’ will produce the same result as the original
statement 15.

In the absence of an oracle, we would like to make
use of the metamorphic testing method. A property in the
mathematical function a h is that ah x ah = (a x u) ~ . For
real number arithmetic, where we cannot guarantee exact
equality, the property can be written as an inequality

1 < 10-5.
a h x a h - (a x a) h 1 (a x a P

Let U = 0.8 and b = 2.1 be a test case. After symbolic
execution of the program with the symbol “F” in statement
15’, we obtain the following symbolic output:

0.82.’ = ,2.1 x[F+Cjaz(-I)’-’(0.8-1)’/1].

Hence,

0.82 I 0.82 1 = e2x2 lX[F+E:f’,(-1)’-’(0 8-1)’/1]

On the other hand, for the test case (0.8 x 0.8, 2.1), the
output of the symbolic execution is

Since
0.82.’ x 0.8*.’ - (0.8 x 0.8)’.’ I < 10-5, 1 (0.8 x 0.8)2,1

we find that any constant F in statement 15‘ can only have
a value of -0.04000 f 0.00001.

Let a = 0.3 and b = 4.2 be another test case. By a simiiar
procedure, we can show that any constant F in statement
15’ can only have a value of -0.49000 f 0.00001.

These two results for the same constant F obviously
contradict each other. Hence, no constant can be found
for statement 15‘. In other words, we have proved that the
metamorphic test cases (a , 6) = (0.8, 2. I) , (0.8 x 0.8, 2. l) ,
(0.3, 4.2), and (0.3 x 0.3, 4.2) distinguish the original
ComputePower program from all mutants constructed by
replacing x in statement 15 by any other constant values.

4.3. Fault-based testing with symbolic input in the
absence of an oracle

Let us consider a further example as shown in Figure 5.
The program calculates the exponential e” for any input x.
Unless we are given another program that computes exactly
the same function, we cannot easily find an oracle, except
for the trivial test cases x = 0 and x = 1 .

Suppose statement 6 is replaced by an alternative

6’ : term := F * term / i;
{ Should be “term := x * term / i;” }

where F is a constant. Then, using the test cases x = 0 and
x = 1, we can easily apply Morell’s fault-based testing to
show that F will take two different values, hence leading
to a contradiction. This proves that no constant substitution
can be found for x in statement 6.

On the other hand, in the absence of a testing oracle,
i t will be difficult to apply the original fault-based testing
method to eliminate other alternative statements such as

6’’ : term := x * x * term / i ;
{ Should be “term := x * term / i;” }

Instead, let us test the program using the metamorphic
relation e.‘ x e-‘ = e’”. Consider a symbolic input x = X . By
symbolic execution of the alternative program containing
statement 6”, the output value of exponent is

1 + X * X + X * X * X * X / 2 + . . .

Program ComputeExponent (input, output);
var i: integer;
var x, term, exponent: real;
begin

{ exponent = exp (x) = 1 + x + x A 2 / 2! + x 3 / 3! + ... }
I : read(x);

2: i := 1;
3: term := 1;
4: exponent := 1;
5:

6:
7:
8:

9:

while abs (term) > 0.00000001 do
begin
term := x * term / i;
exponent := exponent + term;
i : = i + l ;
end;

writeln(’e ~ ’, x:lO:6, ’ = ’. exponent:l0:6);
end.

Figure 5. Program ComputeExponent

Hence, we have

e x x ex = 1 + 2 * X * X + 2 * X * X * X * X +. . .
and

ezr = 1 + 4 * ~ * X + S * X * x * x * x + .. .

Thus, we have a contradiction, which means that the
alternative statement 6” is impossible. Similar procedures
will enable us to prove that, in general, alternative
statements of the form

term := x * x * . . . * x * term / i;

{ Should be “term := x * term / i;” }

where x is multiplied n times for n 2 2, are impossible.
We must concede that our integrated method may not be

foolproof. For example, given an alternate statement of the
form

term := F * x term / i ;

{ Should be “term := x * term / i;” }

where F is a constant, we cannot use the same procedure to
prove that F must have a value of 1. Other properties of the
exponent function will have to be identified to achieve this
effect.

5. Conclusion

In this paper, we have looked into the oracle problem
in fault-based testing. We have found that, by integrating
metamorphic testing with fault-based testing, alternative
programs can be eliminated in the absence of oracles.
We have presented techniques of using real and symbolic
inputs.

We note, however, that the method will depend on the
properties of the functions under test, and is therefore only
a partial solution to the oracle problem, which in general

177

is unsolvable. As pointed out by Offutt [21], “the fact
that partial results for theoretically intractable problems are
valuable is a fortunate observation for software engineering,
since many software engineering problems do have negative
theoretical properties.”

We have only illustrated our approach using relatively
simple programs in this paper. Further studies will be
required for more complex program structures. Future
research will also include the development of automated
software testing tools to support our method.

References

[I] L. M. Adleman, M.-D. Huang, and K. Kompella. Efficient
checkers for number-theoretic computations. Information
and Computation, 121 (I) : 93-102, 1995.

[2] B. Beizer. Software Testing Techniques. Van Nostrand
Reinhold, New York, 1990.

[3] M. Blum, M. Luby, and R. Rubinfeld. Self-testing I
correcting with applications to numerical problems. Journal
of Computer and System Sciences, 47 (3): 549-595, 1993.

[4] M. Blum and S. Kannan. Designing programs that check
their work. Journal of the ACM, 42 (1): 269-291, 1995.

[5] T. A. Budd. Mutation analysis: ideas, examples, problems
and prospects. In B. Chandrasekaran and S. Radicchi,
editors, Computer Program Testing, pages 129-148. North-
Holland, Amsterdam, 198 1.

[6] T. A. Budd and D. Angluin. Two notions of correctness
and their relation to testing. Acta Informatica, 18 (I) : 3145,
1982.

[7] ET. Chan, T.Y. Chen, S.C. Cheung, M.F. Lau, and
S. M. Yiu. Application of metamorphic testing in numerical
analysis. In Proceedings of the IASTED International
Conference on Software Engineering (SE ’98), pages 191-
197. ACTA Press, Calgary, Canada, 1998.

[8] T.Y. Chen, S.C. Cheung, and S.M. Yiu. Metamorphic
testing: a new approach for generating next test cases. Tech-
nical Report HKUST-CS98-01, Department of Computer
Science, Hong Kong University of Science and Technology,
Hong Kong, 1998.

[9] L. A. Clarke and D. J . Richardson. Symbolic evaluation
methods: implementations and applications. In B. Chan-
drasekaran and S. Radicchi, editors, Computer Program
Testing, pages 65-102. North-Holland, Amsterdam, 1981.

[IO] G. Colman, P. Andreae, and L. Groves. Program analysis
by symbolic execution and generalization. In C. Rattray and
G. Robert, editors, The Unifed Computation Luboraton:
Modelling, Specifications, and Tools, pages 367-380.
Clarendon Press, Oxford, 1992.

[I l l D. Coward and D. Ince. The Symbolic Execution of
Software: the SYM-BOL System. Chapman and Hall,
London, 1995.

[I21 R. A. DeMillo, R. J. Lipton, and E G. Sayward. Hints on test
data selection: help for the practicing programmer. IEEE
Computer, 11 (4): 34-41, 1978.

[131 R. A. DeMillo and A. J. Offutt. Constraint-based automatic
test data generation. IEEE Transactions on Software Engi-
neering, 17 (9): 900-910, 1991.

[14] M.-C. Gaudel. Testing can be formal, too. In Proceedings
of the 6th International Joint CAAP/FASE Conference on
Theon and Practice of Software Development (TAPSOFT
’ 9 3 , volume 915 of Lecture Notes in Computer Science,
pages 82-96. Springer-Verlag, Berlin, 1995.

[I51 K.S. How Tai Wah. A theoretical study of fault coupling.
Software Testing, VeriJication and Reliability, I O (I) : 3-45,
2000.

[16] W.E. Howden. Reliability of the path analysis testing
strategy. IEEE Transactions on Software Engineering, SE-

[I71 W.E. Howden. Symbolic testing and the DISSECT sym-
bolic evaluation system. IEEE Transactions on Software
Engineering, SE-3 (4): 266-278, 1977.

[181 W. E. Howden. Algebraic program testing. Acta Infornzatica,

[I93 L. J. Morell. A theory of fault-based testing. IEEE Transac-
tions on Software Engineering, 16 (8) : 844-857, 1990.

[20] G. J . Myers. The Art of Software Testing. John Wiley, New
York, 1979.

[21] A. J. Offutt and E. J. Seaman. Using symbolic execution
to aid automatic test data generation. In Systems Integrity,
Software Safety and Process Security: Proceedings of the
5th Annual Conference on Computer Assurance (COMPASS
’90). pages 12-21. IEEE Computer Society, Los Alamitos,
California, 1990.

[22] A. J . Offutt. Investigations of the software testing coupling
effect. ACM Transactions on Software Engineering and
Methodology, 1 (1): 5-20, 1992.

[23] A. J. Offutt and S. D. Lee. An empirical evaluation of weak
mutation. IEEE Transactions on Software Engineering,

[24] A. J. Offutt, A. Lee, G. Rothermel, R.H. Untch, and
C. Zapf. An experimental determination of sufficient mutant
operators. ACM Transactions on Software Engineering and
Methodology, 5 (2): 99-1 18, 1996.

[25] W. Stallings. Cqptograplzy and Network Securify: Princi-
ples and Practice. Prentice Hall, Upper Saddle River, New
Jersey, 1999.

[26] J.M. Voas and G. McGraw. Software Fault Injection:
Inoculating Programs against Errors. John Wiley, New
York, 1998.

[27] E. J. Weyuker. On testing non-testable programs. The
Cornputer Journal, 25 (4): 465-470, 1982.

[28] J . Zhang. Specification analysis and test data generation by
solving Boolean combinations of numeric constraints. In
Proceedings of the 1st Asia-PaciJc Conference on Quality
Software (APAQS 2000). pages 267-274. IEEE Computer
Society, Los Alamitos, California, 2000.

2(3): 208-215, 1976.

I O (I) : 53-66, 1978.

20 (5): 337-344, 1994.

178

