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Abstract 

Although testing is the mostpopular method for  assuring 
sofrware quality, there are two recognized limitations, 
known as the reliable test set problem and the oracle 
problem. Fault-based testing is un attempt by Morell 
to alleviate the reliable test set problem. In this papec 
we propose to enhance fault-based testing to address the 
oracle problem as well. We present an integrated method 
that combines metamorphic testing with fault-based testing 
using real and symbolic inputs. 
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1. Introduction 

There are two accepted ways of verifying the correctness 
of a program: proving and testing. The former suffers from 
the difficulty of the proofs. It is not easy even to prove the 
correctness of a relatively simple program. Although testing 
is the most popular method for assuring software quality, 
there are two recognized limitations, known as the reliable 
test set problem and the oracle problem. Much research in 
software testing has adopted the definition of the reliable 
test set originally given by Howden [16]: Suppose p is a 
program computing function f on domain D. A test set 
T C D is reliable for p if (Vt  E T ,  p ( t )  = f ( t ) )  + (Vt  E 
D, p ( t )  = f ( t ) ) .  In other words, the success of a reliable 
test set implies the program correctness. Howden’s result 
shows, however, that a rdiable test set of a finite size is not 
attainable in general. It is called the reliable test setprobleni 
or the reliability problem. The other fundamental limitation 
in software testing is that, in some situations, testers are 
unable to decide whether p ( t )  = f ( t ) ,  that is, whether the 
program outcome is correct. This is known as the orucle 
problem [ 14,271. 
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Because of the reliable test set problem, it is necessary 
to seek other approaches to defining the test set quality. The 
concept of an adequate test set was introduced [6, 12, 131: 
Let p be a program computing function f on domain D. 
A test set T C D is adequate for  p if, V programs 9, 
(3t  E D : q( t )  # f ( t ) )  +- ( 3 t  E T : q ( t )  # f ( t ) ) .  Here, a 
different perspective of testing is taken: Instead of directly 
showing program correctness, an adequate test set is aimed 
at uncovering errors in every faulty program, which is more 
intuitive. Unfortunately, it was also shown that there is 
no effective procedure to generate an adequate test set or 
to decide whether a given test set is adequate [6, 131. To 
alleviate this problem, the mutation adequacy (or relative 
adequacy) criteria were introduced [ 5 ,  12, 131, which limit 
the faulty programs to a set of finite size. Thus, suppose p 
is a program computing function f on domain D,  and Q is 
a finite set of programs. A test set T C D is adequate for  p 
relative to Q if, V programs q E Q, (3 t E D : q( t )  # f (t)) + 
( 3 t  E T : 9 ( t )  # f ( t ) ) .  In mutation testing, each program 
q E Q such that q # p is called a niutunt of p .  The purpose of 
mutation testing is to generate a mutation adequate test set 
T to kill all the mutant programs in Q. Mutation testing was 
shown to be very powerful in revealing program faults both 
experimentally and analytically [ 13, 23, 24, 261. Since the 
“fault coupling effect” is very rare [ 15, 221, test cases that 
detect simple faults can also detect more complex faults. 

Morell [ 191 further developed the theory of fault-based 
testing. In mutation testing, the set of mutants must be 
finite. On the other hand, this set (called the set of 
alternative programs by Morell) can be infinite in fault- 
based testing. Hence, fault-based testing “prove[s] the 
absence of infinitely many faults based on finitely many 
executions” [19]. To achieve this goal, the technique 
of symbolic execution [9, 171 was used, and statements 
proclaiming the absence of certain types of faults were 
created and proved during the testing process. In this way, 
Morell combined program testing and proving in a unified 
methodology. 

It should be noted that in all the above methodologies 
for alleviating the reliable test set problem, there is always 
an underlying assumption that a testing oracle exists. An 
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oracle is any mechanism specifying the expected execution 
result of a program on input data. Testers check the program 
output against the oracle to decide whether the program has 
resulted correctly on test cases. In some practical situations, 
however, an oracle is not attainable. This is known as 
the oracle problem. In numerical analysis, for example, it 
is often difficult to verify the results of calculations [14]. 
Weyuker [27] defined a program to be non-testable if 
there is no oracle or if the oracle is too difficult to be 
obtained in practice. Moreover, in the theory of fault- 
based testing introduced by Morell, not only is the oracle 
for real output required, but the oracle for symbolic output 
is also demanded because it involves symbolic execution 
and symbolic results. Without an oracle, all the above 
techniques will not work. In this paper, we shall propose 
an integrated approach that combines symbolic testing with 
metamorphic testing (to be introduced in Section 3) to 
alleviate the oracle problem for both real and symbolic 
outputs. Our method is built upon the techniques of 
symbolic execution [ 10,211 and constraint solving [13, 281. 

2. Fault-Based Testing 

As we know, the correctness of a program cannot 
be proved by means of testing [2].  There have been 
different perspectives regarding the purpose of software 
testing. Some regard testing to be a means of revealing 
program faults, and therefore consider successful test cases, 
which fail to reveal errors, to be useless and a waste of 
time [20]. Others argue that successful test cases are useful 
and informative [7, 191. Fault-based testing adopts the latter 
perspective and treats successful executions of a program 
as indications of the absence of some types of faults [ 191. 
Fault-based testing therefore receives from a successful 
execution the information on the absence of certain types 
of faults. In some sense, mutation testing can be regarded 
as a special case of fault-based testing. A major difference 
is that the set of mutants eliminated by the former is finite 
whereas, by making use of symbolic executions, the set of 
alternative programs eliminated by fault-based testing can 
be infinite. 

Fault-based testing with real input 
The key of symbolic testing is to represent “infinitely 
many alternatives by a single symbolic alterna- 
tive” [ 191. The 3-line program P, as shown in Figure 1, 
is the first example given by Morell to illustrate the 
idea of symbolic testing. The program is supposed 
to calculate f ( x ,  y )  = 2xy + 6. To ensure that there 
is no error with respect to the constant “3” in line 
2, we assume that it is replaced by another constant 
“F”, as shown in line 2‘ of Program P’ in Figure 2 .  
“F” denotes all possible alternatives for the constant 

1: input(x, y); 
2: x : = x * y + 3 ;  
3: output(x * 2); 

Figure 1. Program P for f(x, y) = 2xy + 6 

1 :  input (x, y); 
2’: x : = x * y + F :  
3: output (x * 2 ) ;  

Figure 2. Program P’ 

“3”, and hence program P’ represents infinitely many 
alternate programs for P. 

Let x = 5 and y = 6 be a test case. The original 
program P will output 66, which can easily be verified 
to be correct against an oracle. By means of symbolic 
execution of program P ‘ ,  we obtain an output of 
(30 + F )  * 2. Morell’s goal is to find all the constants 
F such that program P’ will produce the same result 
as the original program P. In other words, we must 
find all the values of F such that (30 + F )  * 2 = 66. 
Solving the equation, we obtain F = 3. Hence? we 
have proved that the test case (5, 6) distinguishes the 
original program P from all mutants constructed by 
replacing 3 in line 2 by any other constant values. 
Note that, to carry out testing, an oracle is required for 
checking the correctness of the output of the original 
program. 

(b) Fault-based testing with symbolic input 

The above example shows how to eliminate the con- 
stant substitution in fault-based testing with real input 
data. Morell also illustrated how to eliminate more 
complex alternatives such as variable substitution. To 
achieve this goal, symbolic inputs instead of real inputs 
were accepted. Figure 3 shows a sample program 
taken from [19]. It calculates the area below the 
graph of the function x2 + 1 over the interval between 
a and b. Suppose the aim of the symbolic testing 
is to show the absence of errors in the assignment 
statement 3. Let the symbolic input be a = A,  b = B ,  
and incr = I such that B 2 A and A + I > B .  Then 
the symbolic output produced by symbolic execution 
will be ( A  * A  + 1) * ( B  - A ) .  Note that, according to 
Morell’s method, a symbolic oracle is required here to 
verify the correctness of the output. 

Suppose we introduce a fault in the assignment 
statement 3: 

3’ : area := F; { Should be “area := 0;” } 
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Program CompuleArea (input, output); 
var a, b, incr, area, v: real; 
begin 
read (a, b, incr); .[ incr > 0 1 1 : 

2:  v : = a * a + l ;  
3: area :=O; 
4: 

begin 
5 :  area := area + v * incr; 
6: a := a + incr; 
7: v : = a * a + l ;  

end; 
8: incr := b - a; 
9: if incr >= 0 then 

10: 
1 I :  

while a + incr <:= b do 

begin 
area := area + v * incr; 
writeln (’are,i by rectangular method: ’. area); 
end 

writeln (’ille,pl values for a = ’, a, ’ and b = ’, b); 
else 

end. 
12: 

Figure 3. Program ComputeArea 

where F is a constant. Following the same execution 
path, we obtain an output of F + (A  * A  + 1) * ( B  - 
A ) .  Morell’s goal is to find all the constants F such 
that statement 3’ will produce the same result as the 
original statement 3. Hence, we have F + (A2 + 1) * 
( B  - A )  = (A2 + 1 :I * ( B  - A ) ,  which can be solved to 
give F = 0. Thus, statement 3’ can only be exactly the 
same as statement 3 .  

Morell also proved that alternate programs would 
also be eliminated when F denotes a polynomial of 
a. In other words, if F ( a )  denotes the set of all 
polynomials in a ,  then it can be proved that F ( a )  can 
only be 0. 

Furthermore, Morell introduced another error in 
statement 5. It is replaced by 

5‘ : area := F; { Should be “area := area + v * incr;” } 

Let the symbolic input be a = A,  b = B,  and incr = I 
such that A + I  5 Li and A + 21 > B.  Using a similar 
procedure, the author obtained F = (A * A  + 1) * I ,  
thus contradicting the above. This proves that no 
constant substitution can be found for statement 5 .  By 
executing the loop twice, Morell further eliminated all 
alternative programs in which F could be a polynomial 
of the variables area, v, and incr. In other words, 
when the assignment fault introduced in statement 5 
is a multinomial in ihe form F(area, v,  incr), it can be 
proved [I91 that F ( x ,  y, z )  = x+yz, which is exactly 
the function compu1.ed in the original program. 

We would like to point out again that these techniques 
have been based on the assumption that both the real and 

symbolic outputs can be verified against some oracles. 
Otherwise, “in the case when only real outputs and not 
symbolic outputs can be verified”, it is “necessary to 
resort to algebraic testing” [19]. In algebraic testing [18], 
however, an oracle for the real output is anyway needed, and 
restrictions on the programs to which the algebraic testing 
technique can be applied is so strict that the technique is 
more a result in theory than an approach in practice. 

In Section 4, we shall present an approach to carry out 
fault-based testing in the absence of an oracle for real and 
symbolic outputs. Before doing this, let us review the oracle 
problem in more details. 

. 

3. Testing Without an Oracle 

Weyuker [27] undertook a detailed study and introduced 
various approaches to test “non-testable programs” via 
static and dynamic properties of the functions being calcu- 
lated. She gave an example of the testing of two programs 
that computed the functions f ( x )  and f ’ ( x )  respectively, 
where f ’  is the derivative o f f .  From elementary results in 
Taylor series, we know that f ( x  + A) = f ( x )  + A  x f ’ ( x )  + 
O(A2). Substituting A = 1, 0.1, 0.01, . . . into the formula 
f ( x  + A) - ( f ( x )  + A x f ’ < x ) ) ,  we can “see at a glance 
whether f’ could be the derivative off.” 

Following up with her work, many other approaches 
were proposed to assist automatic verification of the 
correctness of the testing result without the involvement of a 
human oracle [ 1,3,4,7]. The basic idea of these approaches 
were also to employ some mathematical properties of the 
function from the theory and check whether the program 
being tested adheres to these properties. Blum et al. 14) 
introduced the concept of a program checker, which is a 
program that probabilistically checks the correctness of the 
output of another program. An example is a checker for the 
graph isomorphism function, which employs the property 
that if G and H are not isomorphic then this relation should 
also be satisfied between G and permutations of H .  

Blum et al. [3] extended the theory of the program 
checker into the theory of self-testing I correcting. Given 
a function f and a program P that implements f, a self- 
tester T for f is a probabilistic program. T estimates the 
error probability that P ( x )  # f ( x )  for a random input x. A 
self-corrector C for f is also a probabilistic program. If it is 
known that program P calculates f correctly for sufficiently 
large amount of data on the input domain, then for any 
input x: C will make calls to P and return the value of f ( x )  
correctly with a high probability. Blum et al. introduced 
general techniques to construct self-tester / corrector for 
a variety of numerical functions. The underlying concept 
of this technique is also to make use of mathematical 
properties of function f. For example, the self-tester I 
corrector for integer multiplication functions essentially 



employs the distributive law a x (b+ c )  = a x b + a  x c. 
The self-tester / corrector for modular functions essentially 
employs the property that (a  + b)  mod r = (U mod r + 
b mod r )  mod r. 

Recently, a metamorphic testing (MT) method [7, 81 was 
proposed, which can be explained as follows. Let XI, x2, 
. . . , x, be different inputs to a function f .  Suppose that, 
given some relation R among XI, x2, . . . , x,, their results 
f ( x l ) ,  f(x2), . . . , f ( x , )  must satisfy some mathematical 
property RJ.  In formal terms, we have 

R(xllx2,... , x n )  +Rf(f(~l),f(~2),... ,f(+rn)) ( 1 )  

For example, if the function in question is “sine”, then for 
any two inputs X I  and x2 such that XI +x2 = 7c, we must have 
sin(x1) = sin(x2). In formal terms, 

(XI +x? = n) + (sin(x1) = sin(n2)). (2) 

Let P be a program implementation of the function 
f. Suppose P(x l ) ,  P(x2), ... , P(x,$)  are the outputs for 
different inputs x i ,  x2, . . . ~ x,!. If the program is correct, the 
inputs and outputs must obviously satisfy a mathematical 
criterion similar to ( I )  above, namely 

R(II r ~ 2 1 ,  ’ , ~ n )  + Rf (P(xI ), P ( x ~ ) ,  . . . , P ( x u ) )  

This property is known as a metamorphic relation. It 
is a necessurfcondition for the correctness of P. MT 
proposes to check whether a program under test satisfies 
such metamorphic relations. For example, for a program 
P that computes the “sine” function, two executions are 
needed to verify the metamorphic relation (2). The first 
input to P is any real number x ,  and the second input is 
7c - x .  The two outputs are expected to be equal. Even 
if a testing oracle does not exist, MT can still be applied 
because i t  checks the relations among the outputs of several 
executions of the program, instead of checking a single 
execution result. 

There is a similarity between MT and the earlier methods 
introduced in this section, in that all of them make use 
of some properties of the functions to check the program 
outputs. There are, however, differences between MT and 
other methods in both practice and philosophy. In practice, 
the function properties employed by the previous testing 
methods, such as checkers and self-testers / correctors, are 
equalities. In other words, although those properties can 
also be regarded as metamorphic relations, they are all 
related with equality. For example, the checker for the graph 
isomorphism function [4] makes use of the relation that if 
isomorphism(G, H )  = FALSE, then isomorphism(G, H ’ )  = 
FALSE, where U’ is any permutation of U .  Another example 
is the self-tester / corrector for integer multiplication 
functions [3], which essentially employs the equality 
a x (b + c) = a x b + a x c. In metamorphic testing, on 
the other hand, the metamorphic relations may include, but 

are not limited to, equality. MT employs a wider range of 
properties. For example, if f(x) is a monotone increasing 
function, then a metamorphic relation of f can be that 
“ f ( x )  > f (y)  if x > y”. 

There also exists a difference in the purpose of testing 
between other methods and MT. For example, the ultimate 
goal of the program checker is to verify the correctness 
of a single output. Even though other test cases may 
be generated by the checker during the testing process, 
the fundamental goal does not change. For metamorphic 
testing, on the other hand, the ultimate goal is not to verify 
the correctness of a single output, but is to verify whether 
the program being tested possesses the expected properties 
on all the input data over the input domain. 

4. Integrating Fault-Based Testing with the 
Metamorphic Method 

As introduced in Section 3, metamorphic testing (MT) 
is a method that checks whether the program satisfies 
expected metamorphic relations. MT can therefore be 
performed in the absence of an oracle. In this section, we 
shall integrate MT and the symbolic testing to alleviate the 
oracle problem for real and symbolic inputs. 

4.1. Preliminary example 

Similar to Morell’s fault-based testing, our integrated 
method also allows two types of inputs: real and symbolic. 
We shall use the 3-line program in Figure 1 as a preliminary 
example to illustrate our technique for real input. By simple 
algebra, we find that f ( x ,  y) + f ( - x ,  y) = 12. In formal 
terms, the metamorphic relation is 

(XI =-x2andyl =N)+ ( ~ ( X , , . Y I ) + ~ ( X ~ ,  y 2 ) =  12). 

For the test case ( x ,  y) = (5, 6), the original program 
in Figure 1 produces “66” as output. Suppose that this 
program does not have a known oracle. I We continue to 
generate next test case based on the metamorphic relation. 
Thus, we obtain ( x ,  J) = (-5, 6) as the second test case. 
On this input the program yields -54. Now it needs to be 
verified the two test cases satisfy the metamorphic relation. 
Since 66 + (-54) = 12, the test is passed. 

Let us now introduce the assignment fault F into the 
program, as shown in Figure 2. For the same initial test 
case ( x ,  y) = (5, 6), the program produces 2 F  + 60 by 
symbolic execution. For the second test case ( x ,  y) = 
(-5, 6), the program yields 2 F  - 60 by symbolic execution. 
Our goal is to solve for the value(s) of F with which the 

’We use this simple but artificial example to illustrate the procedure 
behind metamorphic testing. Genuine examples where no oracle exists 
will be given in Sections 4.2 and 4.3. 
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program satisfies the expected relation f ( x ,  y) + f (  -x ,  y) = 
12. In other words, we must solve for F in the equation 
(2F + 60) + (2F - 60) = 12. We obtain F = 3. This means 
that all the alternate programs constructed by replacing 
3 by other constants have been eliminated using the 
metamorphic test cases (5, 6) and ( - 5 ,  6). This is the same 
conclusion obtained by the conventional fault-based testing 
in [19]. A fundamenta.1 difference is that by applying the 
MT technique this time, a testing oracle is not needed any 
more. 

The above examplt: alone may not be sufficient to 
convince readers, because there is actually an oracle in 
Morell’s program, although we have chosen not to use it. 
We shall describe in the next two sections how fault-based 
testing can be achieved in the absence of an oracle, using 
real and symbolic inputs. 

4.2. Fault-based testing with real input in the 
absence of an oracle 

A program ComputePower is given in Figure 4. Pascal is 
used for the purpose of consistency in this paper, since the 
other programs quoted from [ 191 are all in this language. 
Our method works equally well in other programming 
languages such as C. 

Given two real numbers a and b as input, the program 
computes the value of ah. This is done in three ways: 

(i) If b is zero, then otwiously ah = 1. 

(ii) Otherwise, if b is a positive integer, then ah can 
be found by multiplying a by itself the appropriate 
number of times. 

(iii) Otherwise, ah  is computed by the mathematical 
formula eh In  ( ‘ I ) .  

The main objective of our testing lies with part (iii). 
We have to deal with large number arithmetic in many 

applications, such as in cryptography software [25].  We 
cannot rely on the standlard programs for the logarithm or 
exponential function, and hence there is a need to write 
mathematical functions of our own. Errors may therefore 
be introduced as a result. Furthermore, there are no obvious 
oracles for verifying the results of these functions. If there 
were alternative functions that provide such results to us, 
then there would not have been a need for writing such 
functions in the first place. One of the standard techniques 
in testing complex functions is to consider special cases, 
such as when the inputs are integers. Unfortunately, i t  will 
not work in this example because separate techniques (i) 
and (ii) have been implemented for such special cases. 

For the ease of presentation in this paper, we shall not 
use complex techniques for the calculation of logarithm in 
ConzputePower. In spite of this, we hope that the rationale 

Program ComputePower (input, output); 
var i ,  n: integer; 
var a, b, check, logarithm, mainFactor. plusMinus, power, 

begin 
I :  read (a, b); 
2: i f b =  Othen 
3: power := 1 

else begin 

term, x : real: 

4: 
5: 
6:  

7 :  
8: 
9: 

IO: 
I I :  
12: 
13: 
14: 
15: 
16: 

17: 
18: 
19: 
20: 
21: 

22: 

n := trunc (b); 
check := n; 
if (b > 0) and (check = b) then 

begin 
power := I; 
fori := 1 to n do 

end 
power := power * a; 

else begin 
{ I n ( a ) = I n ( l  + x ) = x -  1 / 2 * x A 2 +  1 / 3 * x * 3 -  

x : = a -  1; 
i :=  I :  
plusMinus := I :  
mainFactor := x;  
term := x;  
logarithm := x: 
while abs (term) > 0.0000000 I do 

begin 
i : = i + l ;  
plusMinus := - 1 * plusMinus; 
mainFactor := x * mainFactor; 
term := plusMinus * niainFactor / i; 
logarithm := logarithm + term; 
end; 

power := exp(b * logarithm): 
end; 

end; 
23: writeln (a:I0:6, ’ - ’, b:I0:6, ’ = ’, power: 10:6); 

end. 

... 

Figure 4. Program ComputePower 

behind the lack of an oracle has already been explained 
clearly to readers. 

Consider statement 15 in the program. Assume that we 
can introduce a fault in the statement 15, of the form 

15’ : logarithm := F; { Should be “logarithm := x;” } 

Our goal is to find all the constants F (if any) such that 
statement 15’ will produce the same result as the original 
statement 15. 

In the absence of an oracle, we would like to make 
use of the metamorphic testing method. A property in the 
mathematical function a h  is that ah  x ah  = (a  x u ) ~ .  For 
real number arithmetic, where we cannot guarantee exact 
equality, the property can be written as an inequality 

1 < 10-5. 
a h  x a h  - ( a  x a ) h  1 ( a x a P  

Let U = 0.8 and b = 2.1 be a test case. After symbolic 
execution of the program with the symbol “F” in statement 
15’, we obtain the following symbolic output: 



0.82.’ = ,2.1 x[F+Cjaz(-I)’-’(0.8-1)’/1]. 

Hence, 

0.82 I 0.82 1 = e2x2 lX[F+E:f’,(-1)’-’(0 8-1)’/1] 

On the other hand, for the test case (0.8 x 0.8, 2.1), the 
output of the symbolic execution is 

Since 
0.82.’ x 0.8*.’ - (0.8 x 0.8)’.’ I < 10-5, 1 (0.8 x 0.8)2,1 

we find that any constant F in statement 15‘ can only have 
a value of -0.04000 f 0.00001. 

Let a = 0.3 and b = 4.2 be another test case. By a simiiar 
procedure, we can show that any constant F in statement 
15’ can only have a value of -0.49000 f 0.00001. 

These two results for the same constant F obviously 
contradict each other. Hence, no constant can be found 
for statement 15‘. In other words, we have proved that the 
metamorphic test cases (a ,  6) = (0.8, 2. I ) ,  (0.8 x 0.8, 2. l ) ,  
(0.3, 4.2), and (0.3 x 0.3, 4.2) distinguish the original 
ComputePower program from all mutants constructed by 
replacing x in statement 15 by any other constant values. 

4.3. Fault-based testing with symbolic input in the 
absence of an oracle 

Let us  consider a further example as shown in Figure 5. 
The program calculates the exponential e” for any input x. 
Unless we are given another program that computes exactly 
the same function, we cannot easily find an oracle, except 
for the trivial test cases x = 0 and x = 1 .  

Suppose statement 6 is replaced by an alternative 

6’ : term := F * term / i; 
{ Should be “term := x * term / i;” } 

where F is a constant. Then, using the test cases x = 0 and 
x = 1, we can easily apply Morell’s fault-based testing to 
show that F will take two different values, hence leading 
to a contradiction. This proves that no constant substitution 
can be found for x in  statement 6. 

On the other hand, in the absence of a testing oracle, 
i t  will be difficult to apply the original fault-based testing 
method to eliminate other alternative statements such as 

6’’ : term := x * x * term / i ;  
{ Should be “term := x * term / i;” } 

Instead, let us test the program using the metamorphic 
relation e.‘ x e-‘ = e’”. Consider a symbolic input x = X .  By 
symbolic execution of the alternative program containing 
statement 6”, the output value of exponent is 

1 + X * X + X * X * X * X / 2 + . .  . 

Program ComputeExponent (input, output); 
var i: integer; 
var x, term, exponent: real; 
begin 

{ exponent = exp (x) = 1 + x + x A 2 / 2! + x 3 / 3! + ... } 
I :  read(x); 

2: i := 1; 
3: term := 1; 
4: exponent := 1; 
5: 

6: 
7: 
8: 

9: 

while abs (term) > 0.00000001 do 
begin 
term := x * term / i;  
exponent := exponent + term; 
i : = i + l ;  
end; 

writeln(’e ~ ’, x:lO:6, ’ = ’. exponent:l0:6); 
end. 

Figure 5. Program ComputeExponent 

Hence, we have 

e x  x ex = 1 + 2 * X  * X + 2 * X  * X  * X  * X  +. . . 
and 

ezr = 1 + 4 * ~  * X + S * X  * x * x * x +  .. . 

Thus, we have a contradiction, which means that the 
alternative statement 6” is impossible. Similar procedures 
will enable us to prove that, in general, alternative 
statements of the form 

term := x * x * . . . * x * term / i; 

{ Should be “term := x * term / i;” } 

where x is multiplied n times for n 2 2, are impossible. 
We must concede that our integrated method may not be 

foolproof. For example, given an alternate statement of the 
form 

term := F * x term / i ;  

{ Should be “term := x * term / i;” } 

where F is a constant, we cannot use the same procedure to 
prove that F must have a value of 1. Other properties of the 
exponent function will have to be identified to achieve this 
effect. 

5. Conclusion 

In this paper, we have looked into the oracle problem 
in fault-based testing. We have found that, by integrating 
metamorphic testing with fault-based testing, alternative 
programs can be eliminated in the absence of oracles. 
We have presented techniques of using real and symbolic 
inputs. 

We note, however, that the method will depend on the 
properties of the functions under test, and is therefore only 
a partial solution to the oracle problem, which in general 
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is unsolvable. As pointed out by Offutt [21], “the fact 
that partial results for theoretically intractable problems are 
valuable is a fortunate observation for software engineering, 
since many software engineering problems do have negative 
theoretical properties.” 

We have only illustrated our approach using relatively 
simple programs in this paper. Further studies will be 
required for more complex program structures. Future 
research will also include the development of automated 
software testing tools to support our method. 
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