
The Split and Merge (SAM) Protocol for Interactive
Video-on-Demand Systems*

Wanjiun Liao and Victor 0. E(. Lit

Communication Sciences Ins ti tute
Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089-2565, USA

Abstract
A true Video-on-Demand (VOD) system provides

the ultimate flexibility in video services by allowing
users to select any video programs, at any time, and
to perform any VCR-like user interactions. To allow
true VOD, one approach is to have a dedicated video
stream for each customer. This is expensive, espe-
cially when multiple identical video streams are sent
to multiple customers accessing the same video. To be
commercially viable, VOD service must be priced com-
petitively with existing video rental services. Batching
may be used to reduce this cost. It allows multiple
users accessing the same video to share the same video
stream. The batching approach, however, complicates
the provision of user interactions. Existing batching
schemes only allow near VOD services. This paper de-
scribes a new protocol, called Split and Merge (SAM),
which offers true VOD services while allowing multiple
users to share the same video stream. This sharing is
transparent to the users and it appears as if each has
a dedicated video stream. Our approach is to split an
interactive user from the batch and to serve him with a
dedicated video stream. We develop an innovative way
to merge these individuals back to the batching streams
when they resume normal play mode. The SAM proto-
col therefore significantly improves the system resource
utilization and the number of simultaneous users, and
more importantly, allows true VOD services.

1 Introduction
Video-on-Demand (VOD) combines the TV with

information retrieval technology to provide electronic
video rental services over the broadband network [7].
A VOD system contains many components, including

*This research is supported in part by the Pacific Bell Ex-

t Corresponding author: vliOusc.edu, phone: (+1) 213-740-
ternal Technology Program.

4665, and fax: (+1) 213-740-8729.

Figure 1: VOD system architecture.

the video server, the transport network, and the set-
top box. Fig. 1 shows the typical architecture of a
VOD system. For a more detailed description of the
individual components, the reader is referred to [7].

In true VOD, customers are allowed to select the
programs they wish, view at the time they wish, and
interact with the programs via VCR-like functions,
such as fast-forward, rewind, etc. [3, 4, 8, 10, 111.
A VOD system which does not satisfy all of the above
requirements is called quasi-VOD or near VOD. To be
competitive with existing video rental services, true
VOD is desired. In fact, most existing VOD field tri-
als [9] do provide true VOD. To allow true VOD, one
solution is to have a dedicated video stream for each
customer. This is expensive since each stream requires
high-speed data transport, especially when multiple
identical video streams are sent to multiple customers
accessing the same video. To be commercially viable,
VOD service must be priced competitively with exist-
ing video rental services. To reduce the per-user video

'A video stream will typically consist of video segments, re-
trieved by a read-write head from the video server, transported
over a high speed network, and delivered to the set-top boxes
at the customer premises.

'For example, existing VOD field trials typically deliver
MPEG-1 or MPEG-2 compressed video, requiring 1.5 Mbps and
3 Mbps, respectively.

0-8186-7780-5/97 $10.00 0 1997 IEEE
11 b.3.1

1349

delivery cost, batching may be used. In a batching
operation, the same video stream will be multicasted
to, and shared by, multiple users accessing the same
video. The goal is to make this sharing transparent to
the users, while allowing true user interactivity. Ex-
isting solutions fail to achieve this goal. In staggered
VOD [2], for example, multiple copies (streams) of the
same video program will be broadcasted, staggered in
times. A user will be served by one of the streams, and
user interactions are simulated by jumping to a differ-
ent stream. However, not all user interactions can be
simulated in this fashion, and even for those that can
be simulated, the effect is limited by the staggering
interval. Yu et a1.[12] developed a look ahead schedul-
ing with set-aside buffer which attempts to take ad-
vantage of batching, but only supports the interactive
operation of pause and resume. Almeroth and Am-
mar [I] used the set-top box buffer to provide limited
interactive functions, utilizing staggered streams. We
would like to allow the full spectrum of user interac-
tions. In [B] , user interactions are handled by creating
a new stream for each interactive user, who will hold
on to this stream until disconnection. This will work
only if very few users are expected to issue interac-
tive operations. Otherwise, the system may start in a
batch mode, but will degrade to a non-sharing mode as
more and more users split off into their own streams.
In this paper, we describe a new protocol, called Split
and Merge (SAM) which allows the sharing of a video
stream to be transparent to the users, while allowing
true user interactivity. While user interactions are ini-
tially handled by splitting off the interactive user to a
new stream in our protocol, we develop an innovative
way in SAM to merge these individuals back to the
batching streams. The SAM protocol therefore signif-
icantly improves the system resource utilization and
the number of simultaneous users, and more impor-
tantly, allows true VOD services.

SAM may be implemented in various network in-
frastructures, including telephone, cable TV, direct
broadcast satellite, wireless cable, local area networks,
and on the Internet. For this paper, it suffices to say
that we assume a generic network protocol running on
a generic network infrastructure. The network proto-
col must support multicasting operations. In addition,
some buffering, typically located at the access node,
is available to be shared by all users for synchroniza-
tion purposes. The rest of this paper is organized as
follows. Section 2 presents the basic SAM protocol in
detail. Variations of the basic scheme are presented in
Section 3. Numerical results are shown in Section 4.
Finally, we conclude in Section 5.

2 The Split and Merge (SAM) proto-
col

The goal of SAM is to reduce the per-user video
delivery cost, or, alternatively, increase the number of
users who can be served with given system resources,
while providing true VOD services.

Since user interactions typically last a short time
compared to normal play, we divide the video streams
in the system into:

1. Service stream (S stream): such streams are used
to serve the users during normal playback. It is
typically a multicast stream and will serve multi-
ple users simultaneously.

2. Interaction stream (I stream): such streams are
used to satisfy some of the users’ requests for
VCR-like user interactions. An I stream is used
by one user.

The fundamental principles of our proposed SAM
protocol are as follows:

1. SAM fulfills true VOD services, while taking full
advantage of batching. Originally, a number of
users are batched and served by an S stream.
Each of the batched users may initiate user inter-
actions. As soon as a user interaction is admit-
ted, this user will be split out of the original S
stream, and temporarily allocated to an I stream
to perform interaction. Once the user interac-
tion is done, the user will be merged back to an
on-going S stream3. Such split-and-merge opera-
tions are repeated, whenever a user interaction is
initiated, until the original S stream terminates.

2. A user request for VOD service may be blocked
if all S streams are occupied. Once the request
has been. admitted, however, any further user in-
teractions will not be blocked, even if all system
resources are busy, but will be allowed to wait
until the resource is available. During the wait,
a user continues normal playback, and switches
to the user interaction mode as soon as resources
are available.

3. SAM is an adaptive protocol. As demand for a
particular video increases, more S streams will
be generated in the system for that video. As
demand wanes, less S streams will be generated.
Although SAM works in any scenario, it works
most efficiently for popular video.

3For the pause operation, no I stream is required and the
user will be merged to an S stream as soon as the user resumes.

1350
11 b.3.2

1 2 3 4 Stream 1

- -_ --.
“---...Feeds buffer

Synch buffer

f
Retrieves from buffer j -Buffer filled in this direction

Orioinal
1 2 3 4 5 6 s sfieam

Figure 2: Illustration of how the synch buffer synchro-
nizes two streams.

Ineligible
1 2 3 4 5 6 7 S stream

The synch buffer, located at the access nodes, and
shared by all the users, is an important component
of SAM. Each time a user resumes normal play after
a user interaction, he requires a video stream (of the
same video) which may be offset in time from his orig-
inal S stream. For example, if he jumps forward by
seven minutes, he needs a video stream which starts
seven minutes before his original S stream. Since no
such real stream may exist, SAM attempts to create a
virtual one by utilizing one of the on-going S streams
and the synch buffer. First we identify the closest
on-going S stream, i.e., that with the smallest offset
in time from the virtual stream. This real S stream
feeds the synch buffer, and the virtual stream retrieves
from the synch buffer, after the required time offset.
Each user is dynamically allocated a synch buffer of
size up to S B x Rp, where S B is the maximum du-
ration of video which can be stored for a user, and
Rp is the playback rate of the stream. It is a circular
buffer. Each circular buffer has two operation ends:
one for putting in video contents and the other for
taking them out. Fig. 2 illustrates how the synch
buffer synchronizes two streams. Stream 1 (the real
stream) is ahead of stream 2 (the virtual stream cre-
ated). To help explain the operation, we have broken
down the streams into segments4, and labeled them 1,
2, Thus, stream 1 is 2 segments ahead of stream
2. Stream 1 will feed the synch buffer at one end,
and stream 2 will retrieve buffer contents from the
other end. Here, we show the contents of the buffer as
stream 2 starts to retrieve the first segment from the
buffer.

There are a number of videos available in the sys-
tem. Suppose a request for a video, say video i, ar-
rives. If there is already a batch being formed for video

Tarmeted s sbeam 1 2 3 4 5 6 7 8

4Note that these s e g m e n t s a r e ar t i f i c ia l and are used to h e l p
us explain the c o n c e p t . They are j u s t e q u a l s i z e d pieces of the
video

1 2 3 4 5 6 7 : ! Ineligible S stream

Jump forward Play point after
issued at h jump forward

t,,,>SB 4 Play point
played at 12
(12 4,)

Figure 3: Illustration of the operation of jump for-
ward.

i, this request will join the batch and wait for the end
of the batching interval, at which time an S stream
will be initiated to serve the batch; otherwise, the new
request has to form a new batch. It will request an
S stream from the pool of available S streams, and
start a timer of duration Wi, the batching interval. If
no S stream is available, the request will be blocked.
The user may then try again later, or may just decide
not to watch the video. If an S stream is available, it
will be reserved, and after the batching interval Wi,
an S stream will be initiated to serve this user, plus all
other requests for video i which have arrived during
the batching interval. Thus, after a user request is ac-
cepted, the maximum waiting time is Wi. The actual
value of Wi is a system design parameter, correspond-
ing to the maximum tolerable waiting time before a
user reneges from the system. Note that each batch is
initiated on-demand, rather than by periodical broad-
casting, as in staggered VOD.

SAN1 allows users to interact with video programs
via VCR-like functions including play, stop, pause,
resume, fast-forward (FF), rewind (REW), jump-
forward, and jump-backward. The jump operations
allows the user to jump directly to a particular video
location. Although not supported in current VCR ma-
chines, such random access operations, together with
F F and REW, are expected to provide the most desir-
able search mechanism for digital video services. We
will now describe how SAM supports these interactive
operations.

11 b.3.3
1351

2.1 Jump forward and jump backward
In the following, we focus on jump forward. Jump

backward is handled in a similar fashion. First we
determine if there is an eligible S stream. The concept
of an eligible S stream is best explained by a figure. In
Fig. 3, the user accessing video i is being served by the
stream labeled original S stream. At time t o , he issues
a jump forward operation. Suppose the user jumps to
a point in the video which is tl s in the future5. In
Fig. 3, this corresponds to the beginning of segment 6.
This is known as the play point, which is the location
of the video at which the user will resume normal play
after the user interaction. We look at all on-going S
streams for video i and see if there is an eligible one for
this user to merge into. An S stream is eligible if its
corresponding play point (the beginning of segment
6 in this example) is before t o , but not more than
SB before, where SB is the maximum duration of
video which may be stored in the synch buffer. SB is
assumed to be four segments in this example. Thus in
Fig. 3, the second S stream is ineligible because it has
not reached the play point yet, while the last S stream
is ineligible because it is more than SB segments offset
in time from the virtual stream created by the jump,
and the synch buffer is not large enough to synchronize
to it. The stream labeled targeted S stream is eligible.
If there are multiple eligible S streams, the user will
merge with the one whose offset to, with the virtual
stream is the smallest. (This minimizes synch buffer
usage.) Denote the time instant the play point in the
targeted S stream is played by t z . The offset to, is
defined as to, = t o - t z .

Once a targeted S stream has been identified, we
will find an I stream, and split the user from the ex-
isting batch. If no I stream is available, the request
will join a FCFS queue. In the meantime, normal
play continues from the original S stream. During the
wait, the targeted eligible S stream may become in-
eligible, in which case we need to search for another
eligible one. The I stream will be used for normal
play for a duration equal to the time offset to,. In the
meantime, a connection will be made to the targeted
S stream, which will feed the synch buffer. After the
synch buffer has been fed for a period equal to to,,
corresponding to segments 8 and 9 in our example,
the user will start to retrieve the video from the synch
buffer, and release the I stream. In other words, the
user has successfully merged with the S stream. If
there is no eligible S stream to merge into, a new S
stream will be initiated to serve this user. If there is

51f t l is too large, and carries the user beyond the end of the
video, we will jump the user to the end of the video.

1 2 3 4 5 6 7 8 9

Fast forward Play point after
issued at r, fast forward

Original
S stream

Synch buffer

Targeted
S stream 1 0 1 1

Ineligible 1 2 3 4 5 6 7 s stream
Play point
olaved at t2

; Ineligible
I Sstream 1 2 3 4 5 6 7

Figure 4: Illustration of the operation of fast forward.

no available S stream, the request will join a FCFS
queue to wait for the first available S stream. In the
meantime, normal play continues from the original S
stream.

The above assumes that the user was fed by an S
stream directly. Suppose the user is being served by
the synch buffer fed by an S stream, i.e., the user
has issued an interactive operation earlier, how does
the operation of jump forward change? Fortunately,
it does not. Again, we need to identify the play point
after the jump forward operation (beginning of seg-
ment 6 in this example), and the time the jump for-
ward is issued (to in this example). We then try to
merge with an existing S stream. The criteria for se-
lecting this targeted S stream is the same as before.
The only differences are that when we are waiting for
an I or S stream, we will continue normal play from
the buffer, fed by the original S stream, and when we
have successfully merged with the targeted S stream,
the connection to the original S stream is torn down,
and everything in the buffer corresponding to the old
S stream is discarded. In addition, if the jump for-
ward is to a point in the video already in the buffer,
we can avoid the split and merge operation altogether.

The operation of jump backward is similar, except
the eligible S streams will have negative offsets.

2.2 Fast forward and rewind
Again each user is allocated a synch buffer of max-

imum size SB, assumed to be four in this example.
Suppose the user accessing video i is being served
by the stream labeled original S stream in the fig-
ure. At time t o , he issued a fast forward operation.

11 b.3.4
1352

An I stream is requested to serve the user. If one is
available, video will be delivered in fast forward mode;
otherwise, the request for an I stream joins a FCFS
queue. In the meantime, normal play continues. After
a duration d, the user terminates the fast forward op-
eration, and resumes normal play. SAM will attempt
to merge him back to one of the on-going S streams.
Suppose the fast forward operation takes the user to a
point t l beyond the initialization of the fast forward,
i.e , the beginning of segment 6 in our example. We
look at all on-going S streams for video i and see if
there is an eligible one for this user to merge into.
An S stream is eligible if its corresponding play point
(the beginning of segment 6 in this example) is before
t o + d, but not more than S B before. Thus in Fig.
4, the second and the last S streams are ineligible. If
there is no eligible S stream to merge into, a new S
stream will be initiated to serve the user. If there is
no available S stream in the system, the request will
join a FCFS queue to wait for the first available S
stream. In the meantime, normal play continues on
the I stream. If there is at least one eligible S stream,
the user will merge with the eligible S stream whose
offset to, = t o + d - tz is the smallest. The I stream
held by the user will continue to serve the user starting
at the play point in normal play mode. In the mean-
time, the targeted S stream will feed the synch buffer.
After the synch buffer has been fed for a period equal
to to, , corresponding to the segments 9 (last half), 10,
11, and 12 (first half) in our example, the user will
start to retrieve the video from the synch buffer, and
release the I stream. In other words, the user has
successfully merged with the S stream.

As in jump forward, if the user is originally served
by the synch buffer fed by an S stream, the operation
of SAM remains pretty much the same.

The operation of rewind is similar, except the eli-
gible S streams will have negative offsets.

2.3 Pause and resume
Again, each user is allocated a synch buffer of max-

imum size SB, assumed to be four in our discussion.
Suppose the user accessing video i is being served the
original S stream in Fig. 5. As soon as the pause is
issued, the synch buffer is fed by the original S stream.
After the pause operation, the only eligible S streams
that the user may merge into must have started later
than the original stream. Suppose the earliest of these
eligible streams, labeled targeted S stream in the fig-
ure, starts a duration t later. This is the S stream
that the user will try to merge into. We distinguish
between two major cases. Case 1 occurs when t 5 S B ,
and case 2 occurs when t > SB. Case 1 (shown in Fig.

Play point

(a) Case I: I c SB CSC la Case I h

RCS,,"L-

(cart Zh: d > = I)

I 2 3 4 5 0 7 R 9 Original S sueam

I

Figure 5: Illustration of the operation of pause.

5(a)) can be further divided into subcases l a and lb .
In case l a , the pause period d < t . Since d < t 5 S B ,
the synch buffer is not yet full when the user resumes
(in fact, it will contain segments 3 and 4 in this ex-
ample), and he can just retrieve the video from the
synch buffer. In case lb , d 2 t , that is, the corre-
sponding play point (the start of segment 3 in this
example) of the closest eligible stream (the targeted
S stream) will be played before the pause operation
terminates. In the figure, since t corresponds to 3 seg-
ments, the corresponding play point will arrive after
3 segments of the original S stream, namely, segments
3 , 4, and 5, have been stored. The user is merged
(switched) to the new stream, i.e., the synch buffer
will be fed by the targeted S stream starting at the
play point. Case 2 (shown in Fig. 5(b)) can be fur-
ther divided into subcases 2a and 2b. If the buffer is
filled before the pause terminates, we have Case 2. A
new S stream may have to be initiated, depending on
whether the pause terminates before or after an ongo-
ing S stream has reached the play point. As soon as
the buffer is filled, a reservation request is made for a
new S stream, the contents are purged from the synch
buffer, and the user is split from the original S stream.
In case 2a, the pause terminates before an ongoing S
stream has reached the play point, a new S stream
(the one we have reserved earlier) will be initiated to
serve the user; otherwise, we have case 2b. It is possi-
ble that no S streams are available in the system, and
the user will then join a FCFS queue to wait for the

11 b.3.5
1353

Rcrumo
(CAT0 la: d < 1)

1 2 3 4 5 6 7 8 S sucam feeding buffer of original S sueam

- 1

Rcnume

1 2 3 4 Targeled s sum

(CA. 2h: d > = 1)
RCWl"C

I

Pause
mucd at 4, , (CAW Za: d < 1)

1 2 3 4 5 6 7 8 S surm feeding huffcrtrforiginal S sueam

t l d 1 2 3 4 5 6 7 8 9 Original S sueam

C l 1 2 3 4 5 6 TqeW S sueam

Case 2a Case 2h

Figure 6: Illustration of the operation of pause when
the user is operating from the synch buffer.

next available S stream, or to wait until an ongoing
S stream has reached the play point, at which time
he can merge with this ongoing stream. In case 2b,
the corresponding play point (the start of segment 3
in this example) of the closest eligible stream will be
played before the pause operation terminates. In the
figure, since t corresponds to 6 segments, the corre-
sponding play point will arrive after 6 segments of the
original stream have arrived. Since the buffer is of size
4, it can only store four of them, namely, segments 3,
4, 5, and 6. The reserved S stream is released, the
user is merged (switched) to the new stream as soon
as the synch buffer is full, and the synch buffer is now
fed by the new stream, starting at the play point.

In cases l b and 2b, since the user is still in the
pause mode after he is switched to the targeted ongo-
ing S stream, the above procedure has to be repeated,
perhaps multiple times, until he terminates the pause
operation I

The above assumes that the user is fed by an S
stream directly. We now study the situation in which
the user is being served by the synch buffer fed by an
S stream, i.e., the user has issued an interactive op-
eration earlier. Fig. 6 illustrates how SAM handles
pause and resume in this situation. Again, each user

is assumed to be allocated a synch buffer of size four
in this example. Suppose the user accessing video i is
being served by the original S stream in Fig. 5. Note
that this is a virtual S stream, and is fed by an ongo-
ing S stream which has started two segments earlier.
In other words, two segments of the synch buffer have
already been taken up in order to synch to this feeding
S stream, leaving only two segments available. This
is the only difference between how SAM handles the
pause operation when the user is fed directly, or via a
synch buffer. Note that the synch buffer size is now
SB' = SB-td, where t d is the lead time of the feeding
S stream compared to the original S stream. In ad-
dition, t , the time until the nearest eligible ongoing S
stream, is calculated from the original S stream, not
the feeding s stream. Since td is 2 in our example,
SB' = 2. t is 2. The operation is the same as when
the user is fed by a real S stream. The only difference
is the size of the synch buffer shall be SB' instead of
SB. In addition, once a user switched to a new stream
(case l b and case 2b), he can discard the existing con-
tents in the synch buffer, effectively augmenting his
synch buffer to the maximum value of SB again.

3 Variations of the basic scheme

protocol:
The following describes variations of the basic SAM

1. No initial batching delay - As soon as a video
request is received, determine if there are eligible
S streams. If there is, serve this request with an
I stream while feeding synch buffer with the on-
going S stream for an interval equal to the offset.
After the offset, merge into the on-going stream
for this video. Otherwise, initiate a new S stream
to serve this request.

2. Adjustable hatching intervals - Batching interval
may be different for different videos, due to dif-
ferences in popularity. More popular ones should
have shorter hatching interval. In addition, since
popularity may change over time, we can peri-
odically change the hatching interval, based on
observed video request rate in the previous pe-
riod.

3 . A variation of basic batching idea - Instead of iiii-
tiating a timer when the first request in a batch
arrives, we divide time into fixed length intervals,
say every five minutes. If at least one request for
video i arrives during an interval, initiate an S
stream. This has the advantage that, for pop-
ular videos, average wait is equal to half of the

1354
11 b.3.6

batching interval, instead of the batching inter-
val. These will be not much difference for popular
ones.

4. A synch buffer may have one input stream, but
multiple output streams, serving different users
with different time offsets. This saves buffering.

5. We can use a pricing mechanism to control the
amount of user interactivity. The more the user
is willing to pay, the closer he gets to true VOD
service. At the high end, no initial batching de-
lay, and full user interactivity is allowed; then,
initial batching delay, full interactivity. Finally,
for the least cost, initial batching delay, limited
interactivity.

4 Numerical Results
In this section, we present some simulation results.

The results are generated by a C program running on
a HP C160. 24 hours of real time are simulated, re-
quiring on the average 30 minutes of CPU time for
each arrival rate. The following system parameters
are used. There are 30 available videos, each lasting
120 minutes. The probability a particular movie is
accessed] p i , i = 1 , 2 , . . ., 30, is assumed to follow the
Zipf distribution [5]. Therefore, video 1 is the most
popular, followed by video 2, etc. We also assume the
following user activity model. A user starts in the
normal play mode, and will stay there for an expo-
nential amount of time with mean 30 minutes, then
he goes to the interaction mode with probability 0.75,
and he quits with probability 0.25. In the interaction
mode, he is equally likely to issue a jump forward,
jump backward] fast forward, rewind, or pause oper-
ation. Each pause is exponentially distributed with a
mean of 5 minutes. Each fast forwardlrewind is ex-
ponentially distributed with a mean of 0.5 minutes,
i.e., the user will be holding down the fast forward or
rewind button for an average of 0.5 minutes. Fast for-
ward and rewind will take the user to a point in the
video which is offset from the original point by an in-
terval uniformly distributed between 1 and 90 seconds.
Each jump operation lasts one second, and will take
the user to a point in the video which is offset from
the original point by an interval uniformly distributed
between 1 and 1000 seconds. After a user interaction,
the user resumes normal play mode. This is repeated
until the user quits.

The total number of video streams is 515. The
batching interval used is 10 minutes, and the maxi-
mum synch buffer allocated per user varies from one to
ten minutes. Fig. 7 shows how the blocking probabil-
ity changes as the video request rate increases for the

,' SAM(S=415. I=lw,SB=lo(min))

0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Arrival rate (sec)

Figure 7: Blocking probability for the cases of batch-
ing and no batching.

- Max. total SB (S=500. 1=15, 58.2 min)

- - Max. told SB (5415. 1=100, SB=lO mi")

Avg. total SB (S=415,1=100. SB=lOmin) 35 -
r
-30

B
-$ 25
m

0 00

Figure 8: The average amount of synch buffer required
as a function of arrival rates.

35

25

15

Figure 9: Average interaction delay as a function of
arrival rates.

11 b.3.7
1355

cases of batching (SAM) and non-batching (point-to-
point connection for each user). As expected, there is a
large reduction in the blocking probability with SAM'.
The price we pay is the initial batching delay, which
is bounded by 10 minutes, and averages 5 minutes. In
addition, we require a synch buffer and the user may
experience some interaction delay. Fig. 8 shows the
average total synch buffer required in the system as a
function of arrival rate. Note that this translates into
very small per-user synch buffer requirements. For
example, the buffer required is 13.2 seconds per user
when the arrival rate is 0.3 requests per second, for
S= 500, I = 15, and S B = 2 minutes. Fig. 9 shows
the average interaction delay, which is acceptable ex-
cept for a highly loaded situation. (To ensure that the
blocking probability is small, we will not operate the
system a t such high load anyway.) This leads us to
conclude that our proposed SAM protocol is an excel-
lent candidate to be used in VOD systems.

5 Conclusions
VOD is expected to be the most important com-

mercial application of distributed multimediasystems.
It provides an electronic video rental service, which
gives the users the ultimate flexibility in selecting any
video programs, at any time, and in performing any
VCR-like user interactions. However, to be commer-
cially successful, VOD must be priced competitively
compared with existing video rental services. It is es-
timated that approximately half of the video rental
revenues go to the program providers. That means
the other half will go towards the cost of delivering
the video, and for the profits of the service provider.
In existing video rental stores, the major cost of the
delivery is borne by the users, and the only costs in-
curred by the service provider is shelf space. For VOD,
the costs of video delivery include the costs of the
high capacity video server, and the high speed net-
work, both of which are substantial. Our proposed
protocol allows multiple users to share the same video
stream, thereby dramatically increasing the capacity
of the system, and greatly reducing the costs per user.
At the same time, the price to be paid, i.e., batching
delay, interaction delay, etc. are tolerable. This leads
us to conclude that our proposed SAM protocol is an
excellent candidate to be deployed in interactive VOD
systems.

References
K. C. Almeroth and M. H. Ammar. The
use of multicast delivery to provide a scalable
and interactive video-on-demand service. IEEE
Journal On Selected Areas in Communications,
14(6) : 11 10-1 122, August 1996.

Robert 0. Banker et al. Method of providing
video on demand with VCR like functions. In
U.S. Patent 5,357,276, 1994.

Y . H. Chang et al. An open-systems approach to
video on demand. IEEE Communications Maga-
zine, 32(5):68-80, May 1994.

D. Deloddere, W. Verbiest, and H. Verhille. Inter-
active video on demand. IEEE Communications
Magazine, 32(5):82-88, May 1994.

D. Knuth. The art of computer programming, Vol
3: Sorting and searching. Addison-Wesley, 1973.

V. 0. K. Li et al. Performance model of interac-
tive video-on-demand systems. IEEE Journal On
Selected Areas in Communications, 14(6):1099-
1109, August 1996.

V. 0. K. Li and W. J. Liao. Distributed multime-
dia systems. Report No. CSI-96-05-01, Commu-
nication Sciences Institute, University of South-
ern California, May 1996. (Submitted for publi-
cation).

T. D. C. Little and D. Venkatesh. Prospects for
interactive video-on-demand. IEEE Multimedia,
pages 14-24, Spring 1994.

T. S. Perry. The trials and travails of interactive
TV. IEEE Spectrum, pages 22-28, April 1996.

W. D. Sincoskie. System architecture for a large
scale video on demand service. Computer Net-
works and ISDN Systems, 22:155-162, 1991.

J. Sutherland and L. Litteral. Residential video
services. IEEE Communications Magazine, pages
36-41, 1992.

P. S. Yu, J. L. Wolf, and H. Shachnai. Design
and analysis of a look-ahead scheduling scheme to
support pause-resume for video-on-demand appli-
cation. Multimedia Systems, 3(4) : 137-150, 1995.

6Actually, the improvement for popular videos is much more
dramatic than that indicated in the figure, which shows the
reduction in blocking probabilities averaged over all videos, in-
cluding both popular and unpopular ones.

11 b.3.8
1356

