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Abstract

We consider recurrent event data when the duration or gap times between succes-
sive event occurrences are of intrinsic interest. Subject heterogeneity not attributed to
observed covariates is usually handled by random effects which result in an exchange-
able correlation structure for the gap times of a subject. Recently, efforts have been put
into relaxing this restriction to allow non-exchangeable correlation. Here we consider
dynamic models where random effects can vary stochastically over the gap times. We
extend the traditional Gaussian variance components models and evaluate a previously
proposed proportional hazards model through a simulation study and some examples.
Besides, semiparametric estimation of the proportional hazards models is considered.
Both models are easily used. The Gaussian models are easily interpreted in terms of
the variance structure. On the other hand, the proportional hazards models would be
more appropriate in the context of survival analysis, particularly in the interpretation
of the regression parameters. They can be sensitive to the choice of model for random

effects but not to the choice of the baseline hazard function.
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1 Introduction

Equipment or subjects in clinical studies may experience recurrences of certain events. Ex-
amples include repeated failures in equipment (e.g. Follmann and Goldberg, 1988), the
occurrence of tumors in animals or humans (e.g. Gail et al., 1980; Byar, 1980), and cyclic
behavior associated with human digestion, in which case the events correspond to the begin-
ning of cycles (Aalen and Husebye, 1991). Various approaches are used to analyze recurrent
events data including methods based on event intensity, rate and mean functions, times be-
tween events, and times to events. Lawless (1995) provides a review. The current paper
follows the tradition of Gail et al. (1980), Prentice et al. (1981), Follmann and Goldberg
(1988), and Aalen and Husebye (1991) who considered models based on the gaps times, or
times between successive events. Lawless and Fong (1999) discussed models for sequences of
gap times or duration times in a broader context.

Suppose that there are N subjects in a study and subject 7 is observed over the time
interval (0, 7;] and let T;; < Tj5 < --- denote event occurrence times (fori =1, 2, ..., N).
The gap times are given by S;; = T;; — T;;-1 (j = 1,2, ..., n;), with T}, defined to be
0 and n; the number of occurrences of the event for the i** subject during the observation
period. We consider situations in which there is no pronounced trend in the occurrence of
events. In the absence of explanatory variables, renewal processes are sometimes suitable
in which gap times are independent and identically distributed. However, the gap times of
an individual subject are generally found to be dependent. One approach is to model the
dependence of S;; on previous gap times via regression as in Gail et al. (1980) and Prentice
et al. (1981). Another approach is to accommodate the within-subject dependence by the
introduction of unobservable random effects. Aalen and Husebye (1991) and Follmann and
Goldberg (1988) extended the renewal process model by introducing subject-specific random
effects u;, termed “frailty” such that, conditional on u;, the gap times S;; (j =1, 2,...) are
independently distributed. Aalen and Husebye (1991) gave an excellent discussion on such
models and advocate the use of two main approaches, (i) a Gaussian variance components
model for appropriately transformed S;;, and (ii) a proportional hazards frailty model for



The models of Follmann and Goldberg (1988) and Aalen and Husebye (1991) assume
that the random effect for each unit or subject is constant across successive gap times, but
in some situations it might be desirable to allow time-varying random effects. Models with
dynamic (time-evolving) random effects have been studied in repeated measures problems
(e.g. Jones, 1993) and in longitudinal data problems involving counts (e.g. Jorgensen et al.,
1996; Lambert, 1996b, 1996a). Yue and Chan (1997) considered gap times between successive
events, as we do. The purpose of this paper is to consider dynamic random effects models
for gap times between successive repeated events under the following framework. Let z;; be
a vector of covariates and u; = {ui1, wig, ...} be a sequence of random effects of arbitrary
length where wu;; can be regarded as a quantification of the missing covariates associated
with S;;. Denote {u;, ..., uy} by u! and {Si, ..., Si;} by S?. All models considered in

this paper satisfy the conditions

Pr{Sy| S ", wiyj, ul} = Pr{Si|wj, uiy} (1)

Priu;|SI7Y @i, ul™ = Priug|ul™"} (2)

where “Pr” is used to represent a probability density or mass function. Conditions (1) and
(2) specify the state-space models where, conditional on the u;;’s and wx;;’s, the gap times
Sit, Siz, ... are independent. The models considered by Follmann and Goldberg (1988) and
Aalen and Husebye (1991) are special cases with u;; =u; (j =1, 2, ...).

The state-space models considered here differ from many state-space settings, since each
subject possesses an independent stochastic process. There has been extensive research in
the area of general state-space models. For example, Carlin et al. (1992) and Shephard
and Pitt (1997) considered non-linear and non-Gaussian state-space models respectively and
developed estimation procedures using Gibbs sampling techniques. A recent paper by So
(1999) introduced a class of state-space models when the unobservable state variable, i.e. u;;,
can be any Gaussian stochastic processes. Thus long memory processes that have non-finite
state-space form can be handled. A new efficient recursive estimation procedure utilizing
Markov Chain Monte Carlo techniques is also proposed in the paper. Also, the majority of

the literature on state-space models has not dealt with censored observations. Exceptions



are Yue and Chan (1997), Harvey and Fernandes (1989), and Smith and Miller (1986) who
considered conjugate filtering recursions for censored observations (also see Section 3).

We have two specific objectives. The first is to extend the families of models of Follmann
and Goldberg (1988) and Aalen and Husebye (1991), and to consider the pros and cons of
Gaussian versus proportional hazards formulations. It is observed that Gaussian models
are easily used and interpreted in terms of the variance structure, but the proportional
hazards models would sometimes be more appropriate in the context of survival analysis,
particularly in the interpretation of the regression parameters. The second objective is
to examine the dynamic random effects proportional hazards model proposed by Yue and
Chan (1997). An EM-algorithm, similar to the method in Klein (1992), is suggested to
estimate the parameters; this works in both the parametric and semiparametric settings.
The organization of the paper is as follows. We consider the Gaussian variance components
models and the proportional hazards models in Sections 2 and 3, respectively. The proposed
estimation procedure for Yue and Chan’s proportional hazards model (1997) will be discussed
in Section 4. The models will be fitted to some real examples in Section 5 with additional

remarks on the utility of various models given in Section 6.

2 Gaussian Models

Let Y;; = g(Si;) be a known transformation of the gap times. Following (1) and (2), we

consider here the family of models

Yij = pij + wij + €ij, (3)

where p;; may depend on covariates x;; that are assumed to remain constant over gaps, the
e;;’s are mutually independent N (0, 02) variables, and the u;;’s (j =1, 2, ...) follow a first

order autoregressive (AR(1)) process with u;; ~ N (0, w?) and

Wij = Qu;j_1+ €5 J=2,3,... (4)



where |¢| < 1 and the ¢;’s mutually independent A (0, o2) variables. This model is non-

stationary, with

1—¢2U-1D

CO’U(Y;‘j; Y;',jJrs) = (155 ¢2(j71)w2 + 1_7(;52

ol +02I(s=0), s>0

where I(A) is 1 when A is true, and 0 otherwise. The stationary version of the model arises
when w? = 062/(1 — ¢?), giving

Cov(Yyj, Yijys) = °w’ +1(s = 0)o2, 5>0.

e’

This family of models contains some interesting sub-models. In particular, the Gaussian
model of Aalen and Husebye (1991) is obtained when o, = 0 and ¢ — 1; an AR(1) model
for the Yj;’s is obtained when o, = 0; and a renewal process is given by w = 0, o, = 0, in
which case ¢ drops out of the model. We also note that when ¢ = 0, the model depends
only on 02 + w? and o? + o2

Estimation of the parameters of the model specified in (3) and (4) can be handled easily
by computing the conditional mean and variance of Y;; given its past history Sij 1. Recall
that Sii, Sio, ..., Sin, are the n; complete duration times. Also denote St = Ti — T,
as the last censored duration time and Y}, ., = ¢(S7,.,,). With the conditional moments

defined as
E(Yy S =y and Var(Yy| ST =02, (17 — 1), (5)

the observed log-likelihood function can be decomposed as

n; 1o A (Yij — Yijlj—1)”
I = Z {—5log(2ﬂ) -5 [logafy(JIJ — 1)+ oA

+ log |:1 N q) <yi,ni+1 - yi,ni+1ni>:| } (6)
oiy(n; + 1|n;)

where @ is the cumulative distribution function of the standard Normal distribution. By

fixing the parameters, the conditional moments in (5) can be evaluated recursively by the cel-



ebrated linear Kalman filter (Harvey, 1989). Estimates of the parameters and their standard
errors are then easily obtained by maximizing (6) either via the EM algorithm (Demp-
ster et al., 1977) or some derivative-free optimization routine (e.g. the Nelder-Mead Sim-
plex method in SAS/IML). This family of Gaussian models interprets the covariate effects
marginally, since p;; = EF(Y;;) and the association parameters are assumed to be independent

of the covariates. Such assumptions are attractive and realistic for many situations.

3 Multiplicative Hazards Models

A common approach to analyze multivariate survival time data is through the introduction
of unobservable random effects into the proportional or multiplicative hazards model (e.g.
Aalen and Husebye, 1991; Klein, 1992; Clayton, 1994; Xue and Brookmeyer, 1996). A conve-
nient feature of this class of models is the ability to deal with time-varying covariates, which
is a distinct advantage over the Gaussian models in Section 2. In this case, the specification

of (1) is equivalent to specifying the conditional hazard function of S;;, h;;(s), by
hij(s) = vigho(s; a)r(wy(s); B) (7)

where hg(s; a) is a baseline hazard function, r(z(s); ) is a non-negative-valued function of
z(s) that can be time-varying, v;; = exp(u;;) is the random effect associated with S;;, and
«a and [ are the unknown parameters. The frailty model considered by Aalen and Husebye
(1991) is a special case of (7) with v;; =v; (j =1, 2, ...), that is, a constant random effect
for each subject. Note that this class of models does not yield simple marginal interpretation
of the effects of covariates on the S;;’s. Further discussion on this point is given in Section 6.

It has proved difficult to develop computationally tractable dynamic models. One pos-
sibility is to express the random effects as linear combinations of gamma variables as in
Petersen et al. (1996). On letting Ga(a, b) denote a gamma distribution with mean ab™!

and variance ab=?, we may take v;; ~ Ga(w™2, w™?) and

vij = ¢+ (1 — ¢)U;jkj



w?(1-¢)> w?(1-¢)?
1,(;52 9 17(152

order stationary with E(v;;) = 1 and Cov(vij, vij) = $=7"1w=2, though they do not have

where v},, vf, ... are independent Gaf( ) variables. The v;;’s are second
the same distribution. This model has the form of (1) and (2) and includes the Aalen
and Husebye (1991) model as a special case when ¢ = 1. As described in Petersen et al.

(1996), the likelihood function for the data s;i, ..., sin,, S can be expressed in closed

it
form, but it is the sum of many terms and is computationally forbidding. Further work on
computation, perhaps aided by simulation, may enhance the applicability of such models.
We shall take a different approach and examine a family of models proposed by Yue and
Chan (1997). The Yue and Chan (1997) model is based on ideas of Smith and Miller (1986)

and Harvey and Fernandes (1989) in other contexts. It is non-stationary and assumes that

the v;;’s in (7) evolve according to a geometric independent increments model with

vy ~ Ga(w™?, w™?) (8)

Vigr1 = U vin; J=12,... (9)
where 0 < 1) < 1 and the 7;;’s are independent Beta(va;;, (1 — 1)a;;) variables with
a = WP e+ I( < ). (10)

This model, a state-space model of the form (1) and (2), seems awkward but is analytically
tractable since the conditional distributions of S;; given S/™", which are needed to construct
the likelihood function, are easy to compute; they will be described in the next section.
The gamma shared frailty model in Aalen and Husebye (1991) is given by the special case
¢ — 1. Yue and Chan (1997) discussed maximum likelihood estimation and presented some

simulation results.

4 Estimation for the Yue-Chan Model

A merit of the Yue-Chan model, specified by (7), (8) and (9), is the availability of the

likelihood without the need for numerical integration or other approximations. The observed



data likelihood function for recurrent event data with independent right censoring can be

constructed through the usual decomposition rule as

N

Lobs - H {HPT{SZ]|SJ 1}} PT{Szn +1 > Sznl+1|Szm}

i=1

where each individual predictive density is computed, using (7), (8) and (9), by integrat-
ing over v;; in Evij|5jfl[P'r{SZ‘j | vij, S?'}]. Thus the observed data log-likelihood function,

log(Lops) = lops can be written as

N n;
lops = Z {Z[log ho(sij; @) +log r(zi;(sij); B) + log(ai; — 1) — log byj]

i=1 \j=1
n;+1
+ Z a;; — 1)[log(bi; — H (sij, w45(si5); v, B)) — logbij]} (11)
where
=7 WP P H (sin, i (s ); o, B) 4 -+ + H(sig5 w35 (s35), @, B), (12)
a;; is given by (10), and H(s;z(s), o, B) = [ ho(u; a)r(z(u); 8)du is the cumulative hazard

function. The score function and Hessian matrix can be routinely evaluated by differentiating

(11).

A popular choice of the baseline hazard function is the Weibull form with hg(s; o) = cs;

)

¢>0,k>—1and a = (¢, k). Assuming a piecewise constant baseline hazard function with
the number of intervals and the jump points being known, Yue and Chan (1997) computed
the likelihood by using a direct computation method based on individual predictive densities
of the gap times. Common optimization algorithms such as the Downhill Simplex Method
(which does not require first and second derivatives) or the Newton-Raphson Method are
usually effective in obtaining the maximum likelihood estimates from (11).

We shall extend the Yue-Chan model by letting ho(s; o) = ho(s) be an unknown arbitrary
positive function to provide a more flexible semiparametric analysis. An EM algorithm is

proposed to estimate the parameters of interest, namely 3, 1, w?, in this case. Assume that



the v;;’s are observable, based on (1), (2) and (7), so that the complete data likelihood, L.,

is proportional to

N n;+1
Lo = I TTlvartea); $)ho(sis: o)V exp [~vH (sij: g, o, 5)]
i=1 j=1
1 i,j Qj,j—1—
gy P (big-10i) (i) "t oo (13)
1,)—

For convenience, we let d;; = 0 if .S;; is censored and ¢;; = 1 otherwise, r(z; ) = exp(2'f),
and Ay(s;a) = fos ho(u; @)du in the sequel. The complete data log-likelihood, I = log L¢,

can then be expressed as

le =1(8, No) + (¢, w?) (14)
where
N n;+1
ll Z Z {613 IL'Z] B + IOg hO(SZJ, )] — Uij eXp(fL'ijlﬁ)Ao(Sij; O[)} s and
i=1 j=1

3
+
—

N
Iy Z {—logl'(vai;—1) = b j-1vyj + ha;j1log(bij—1) + (Yaz;—1 + 6 — 1) log vy}

=1 1

<.
Il

The E-step is to take conditional expectations of [; and [, given the observed data. This

can be done easily by replacing v;; and log(v;;) by their conditional expectations %j and
F’(aij)—F(aij)logbij
N

and w? are obtained by maximizing the conditional expectation of Iy, with other parameters

, respectively. The M-step involves 2 steps. First, updated estimates of v
held at their current values. To update the estimate of Ay, a profile likelihood approach as
in Klein (1992) is adopted where Ay(s) is estimated nonparametrically by

. 5@)
Ao(S) =
2y Lanerisy) b i exp(ai'f)’

where S(; is the i smallest gap time among all observations S;;, and R(S() is the risk set

just prior to time S(;. Substituting the nonparametric estimate of Ay(t) into the conditional

10



expectation of [; gives a profile partial likelihood

n;+1

Bl) =YY 6,8 —log Y %exp(mk'ﬁ)],

k

=1 =1 keR(Sy)

which is then maximized to estimate the regression parameter 5. The E-step and M-step
are applied repeatedly until convergence.

Standard errors of the estimates for the fully parametric models can be obtained from
the inverse of the observed information matrix, V(= [%] _1), based on the observed
data log-likelihood (11) where 0 = (3,1, w? «)' is the vector of parameters of the model. In
practice, V' can be estimated by 1 by substituting 6 = f, the maximum likelihood estimate
of §. For the semiparametric model, the method proposed by Andersen et al. (1997) can

be adopted here to estimate the standard errors of the estimates by inverting the observed

1
information matrix V; = [%’?wl)] with 0, = (3,1, w?, hy)'.

For assessment of estimation with this model, two sets of simulations are conducted. For
both sets, the baseline hazard is taken from a Weibull distribution, i.e. ho(s; ) = es¥; ¢ > 0,
k> —1 and o = (¢, k)'. Then, with some pre-specified values of (3, c, k,w? 1), we generate

Sily « -+ s Simgs S for subject i as follows (i = 1,...,N).

it
1. Fix the censoring time, 7;, for subject 7.

2. Generate v;; from Ga(w™2, w™?).

3. Generate s;; from its hazard function vy ho(t)r(z1; 5).

4. Set j = 1.

5. Generate n;; from Beta(a;;, (1—1)a;;) where a;; is computed from (10), and evaluate
Vig1 = Y7 0
6. Generate s; ;1 from its hazard function v; j11ho(t)r(z; 415 5).

7. If the current total time span, ?;11 Sik, 18 less than 7;, set 7 = 7 + 1 and go back to

step 5.

11



8. Put n; = j and the last censored duration time s;, ., =7 — E?Zl Sij-

Let M be the number of simulated data sets, 0™ be the maximum likelihood estimate
of #, and ™ be the asymptotic covariance matrix of the estimates with the diagonal
elements replaced by the asymptotic standard errors for the m-th (m = 1,2,... , M) data
set. The efficiency of the estimator is assessed by computing the summary statistics, 5 =
ﬁ Zr]\;f:l Hom). S = ﬁ Zf;{:l S and ¥ is the sample covariance matrix with diagonal
elements replaced by the sample standard deviations.

In the first set of simulations we study estimation in the fully parametric Weibull model.
We assumed no covariates and the same number of subjects (N = 19) and censoring times as
in the set of small bowel motility data considered in Aalen and Husebye (1991). The data set
has around 10 to 20 event recurrences per subject and is further analyzed in the next section.
We generated M = 1,000 samples. The parameter to be estimated is 0 = (c, k,w?, ). Initial
estimates for § was obtained by fitting a gamma frailty model as in Aalen and Husebye (1991)
and 1 was initially taken as 0.5. To avoid boundary value problems and highly correlated

estimates, the set of parameters § was transformed to 0y = (u, &, y, 7) where

1 k+1
— k+110g( jCL ), € =log(k+1), v=logw?® and Tzv—log(%) (15)

U

before estimation was performed. The nonlinear optimization subroutine NLPNMS (Nelder-
Mead Simplex method) under SAS/IML was employed to maximize (11). The 95% coverage,
which is the proportion of the 95% confidence intervals computed using the Normal assump-
tion, i.e. QA,(]m) + 1.96 x standard error(é[(]m)), that includes the hypothesized value of 6y, is
also computed in this case. With obvious notation, 5(], f]U, Y7, and the 95% coverage for
0 were also computed. The values of ¢ and k are taken to be 0.00005 and 1.5 respectively.
These are the approximate estimates obtained from fitting the small bowel motility data
in the next section. The variability of the random effects, w?, is taken at two values: 0.1
and 1.5. In either case, ¢ takes values in {0.1, 0.5, 0.9}. All summary statistics at different
values of the parameters are tabulated in Table 1 for w? = 0.1 and Table 2 for w? = 1.5.

In Table 1 with w? = 0.1, except for 7, there is a fair agreement between the averages

of the estimates and the true values. The same is observed between the standard errors

12



and the corresponding sample estimates. The coverage for 6y agrees well with 0.95. The
finite sample approximation by a Normal distribution for the sampling distribution of Ou
can be reasonably assumed. It is intriguing to see the great discrepancy between the average
standard error of 7 and its small finite sample standard deviation when ¢) = 0.9 (Table 1(c)).
This is due to the flatness of the likelihood when ¢ is close to 1. A much better agreement
can be seen for smaller values of ¢ (e.g. Table 1(a) for ¢» = 0.1). The empirical distribution
of the estimates when ) is close to 1 is studied in the small bowel motility example analyzed

in the next section. In Table 2 with w? = 1.5, similar phenomena are observed.
Insert Tables 1 and 2.

In conclusion, with only a small number of subjects and around 10 to 20 duration times
per subject, the asymptotic approximations behave reasonably well. Standard errors of
the estimates of the baseline parameters (¢, k) tend to be smaller as ¢ gets larger, which
corresponds to a more stable process, or when w? gets smaller, which corresponds to smaller
initial random effects. Interval estimates should be computed by a Normal approximation
for éU, which gives closer to nominal coverage.

In the second simulation study, we considered the performance of the proposed EM algo-
rithm in the semiparametric proportional hazards model. For simplicity, we consider the case
with no censoring; M = 200 data sets, each with N = 100 subjects andn; =5 (i =1,...,N)
successive gap times were generated. The covariate X was simulated from a uniform(0,1)
distribution and assumed constant throughout the observation period (i.e., z;; = x;). The
regression parameter 3 and the discounting parameter ¢) were set at 1.0 and 0.6 respectively.

The parameter w?, which characterizes the heterogeneity of the initial random effects, was

~

set at 0.1,0.2,0.5,1.0. The parameter of interest is § = (3,1,w?). Estimator means 6,
the empirical standard deviations S, and the average asymptotic standard errors s.e. are
tabulated in Table 3.

The proposed method is efficient in the estimation of the parameters in the semiparamet-
ric dynamic random effects model of Yue and Chan (1997), even for moderate sizes of n; and
N. The performance of the regression estimator B is quite satisfactory in all cases. When w?

is small, all estimators are well-behaved, but for large value of w?, small discrepancy between

13



the mean estimates and the true values of the parameters is observed. Similar behavior was
observed in the first set of simulation study. The average asymptotic standard errors of the
estimators B and @/A) agree with the empirical standard deviations reasonably well, but less

well for w?.

Insert Table 3.

5 Examples

We consider two examples to assess the application of the Yue-Chan model. The first ex-
ample, taken from Aalen and Husebye (1991), examines the empirical distribution of the
estimates when random effects are not needed. The second example, taken from Gail et al.
(1980), compares the estimates under different choices of the baseline hazard function: a
Weibull hazard function, a piecewise constant function as used in Yue and Chan (1997) and

an arbitrary, non-negative unknown function.

5.1 The Small Bowel Motility Data

Our small bowel has both absorptive and secretory functions and the muscular activity
(motility) of it is vital for gastrointestinal function in humans. In a study described by
Aalen and Husebye (1991), nineteen healthy individuals treated with a standardized mixed
meal were monitored. An event occurrence is the detection of a certain phase characterizing
a regular motility pattern in a fasting state. First detection of the phase was defined as
the start of the fasting state and duration times for successive detection of the phase were
continuously tracked until the experiment ended at a pre-specified time.

As in the simulation study, we assume a Weibull baseline hazard function, i.e. ho(s) = cs;
c> 0, k> —1. Initial estimates were obtained by fitting a gamma frailty model and ¢ was
initially taken as 0.5. With the same transformation in (15), the log-likelihood was maxi-
mized at —429.13 and maximum likelihood estimates together with their asymptotic standard

errors and correlation coefficients are tabulated in Table 4. The sampling distribution of the

estimates was examined by 500 parametric bootstrap samples. Figure 1 exhibits plots of

14



histograms for various estimates and shows a fairly symmetric empirical distribution for
and 0. The seemingly bi-modal behavior for the estimates of 7 is due to the flatness of the
likelihood as 7 gets small when ¢ is close to 1. Careful examination of the estimates shows
that estimates for 7 smaller than —9 usually have scores greater than —10~2 which keep
increasing asymptotically to 0 as the estimates are pushed smaller. This is depicted in Fig-
ure 2 for a typical iterated estimate —13.31 for 7. Thus the left cluster of the estimates for
7 should actually spread towards —oo and the empirical distributions of 4 and 7 both have
long left tail. Again, as observed in the simulation study, the bi-modal behavior disappears

for small values of .
Insert Table 4.

The log-likelihood ratio statistic for testing the null hypothesis w? = 0 is R = 2.58.
However, since w? = 0 lies on the boundary of the parameter space, R is not distributed
as a simple chi-square distribution. The empirical significance level of R is 0.09, which is
the sample proportion of log-likelihood ratio statistics that are greater than R among 1,000
bootstrapped samples with (c, k,w?) = (0.000044,1.28,0). Thus, we arrive at the same
conclusion as in Aalen and Husebye (1991), that the data do not exhibit strong evidence of
subject heterogeneity. Also, a graphical test (not shown here) of the Weibull model does not
reveal a serious model departure. Consequently, the value of 1) becomes irrelevant. In fact,
the log-likelihood ratio statistic for testing the null hypothesis w? = 0 against the alternative
hypothesis w? > 0 but keeping 1) = 1 (i.e. the gamma frailty model) is only slightly smaller
(= 1.9 x 107*) than R. A renewal process model is therefore adequate for the small bowel

motility data.

Insert Figures 1 and 2.

5.2 The Mammary Tumors Data

In this study, a total of 48 female rats under two treatments were followed until a pre-
specified time and the times to appearance of mammary tumors were recorded. The full

data set is given in Gail et al. (1980). We define z;; = x; = 1 if the i-th rat was on the new

15



treatment and 0 otherwise. This covariate information is incorporated by taking r(x;;; 3) =
eP%i in (7). Three choices of hy(s;a) were used, namely the Weibull baseline function, the
three-step piecewise constant baseline function as described in Yue and Chan (1997), and
an arbitrary but unknown baseline function. Some T;; and T; ;;; are equal which leads to
cases with S;; = 0. For the cases with nonparametric baseline hazard function, the ties were
broken at random while for parametric cases with Weibull and piecewise constant baseline
hazard functions, we added a small positive quantity A to all the observations with S;; = 0.
Three values of A, namely 0.1, 0.3, and 0.5 were assumed to check on the sensitivity of the
estimates. The estimates and the corresponding standard errors of the three models based
on the proposed EM algorithm, and those obtained by Yue and Chan (1997) are tabulated in
Table 5. The parameter estimates of the models with Weibull hazard function are influenced
by A due to the large amount of zero observations in the data set. It is observed that
a smaller value of A leads to a smaller value of k, indicating a more steeply declining
estimated baseline hazard function. However the estimates of the models with piecewise
constant hazard function are nearly identical indicating the parameter estimates are robust
to the values of A. This is because only the first piece is affected, and its interval extends
well beyond A. Except for the estimates for 3, our results are somewhat contrary to that of
Yue and Chan (1997), particularly in the estimation of the baseline hazard functions. The
estimated baseline function of Yue and Chan is increasing while our estimated parametric
baseline functions are all decreasing functions. It is possibly due to the different treatments
for the cases with S;; = 0 between the two approaches. Our estimates of ¢ and w? among
the three models are very consistent. It is also observed that the two sets of estimated
cumulative baseline hazard functions closely agree with each other, particularly at the jump
points s = 13 and 30. The choice of baseline hazard functions does not seem to have a
strong impact on the estimates of w? and 1), but may affect the estimates of 3. However the

significance of the treatment effect remains the same in this example.

Insert Table 5.
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6 Additional Remarks

Random effects models are widely used in survival and event history analysis. They are
perhaps best viewed as a modeling device for incorporating dependence or association among
a set of response times. Gaussian models for appropriately transformed times are fairly easy
to fit and provide simple marginal inference about means, variances, and covariate effects for
observable quantities (i.e. the S;;’s or transforms of them). They also provide a degree of
robustness to distributional assumptions. Proportional hazards models, on the other hand,
do not allow simple marginal interpretations on the covariate effects, and so require us to
interpret the covariate effects conditional on unobservable random effects. They can be
sensitive to the choice of model for the random effects. These issues are well known and
widely discussed (e.g. Clayton, 1994; Pickles and Crouchley, 1994; Petersen et al., 1996) as
are advantages of proportional hazards, specifically, the ease of dealing with time-varying
covariates and the availability of semi-parametric inference methods not requiring hg(s) in
(7) to be modeled parametrically.

Dynamic random effects models seem attractive in some situations involving repeated
times between recurrent events. Gaussian models as in Section 2 are easily used and inter-
preted. In view of the difficulties of marginal interpretation for proportional hazards models,
it seems desirable to keep random effects structure as simple as possible. For (7) we might
therefore prefer to consider models where v;; = v; and z;; is allowed to depend on Sijf1
rather than to employ dynamic random effects v;;. In some applications any of the repeated
gap times S;, Sjo, ... may be censored, and not just the last one. For example, if the S;;’s
represent successive times from startup to failure of equipment as in Follmann and Goldberg
(1988) then much of the time the equipment is shut off before failure occurs. This will not
complicate the computation of the maximum likelihood estimates based on the Yue-Chan

model using the proposed EM-algorithm. We simply replace (10) by
aij = WA 0 4 01+ 0

We conclude with two additional remarks. First, there is a need to study diagnostic

17



procedures for proportional hazards models with random effects (e.g. Shih and Louis, 1996),
which are not well understood relative to methods for Gaussian models. Second, there are
situations where unobserved random effects vary continuously over time so that it is not
feasible to associate a single v;; with a given gap period. As far as we know this problem has
not been studied for repeated events. One possible approach is to extend Fahrmeir’s model

(Fahrmeir, 1994) for discrete survival data to the multivariate case.
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Table 3: Estimation result for 200 datasets with 8 = 1.0 and ¢ = 0.6 and unspecified
baseline hazard function.

| | [ 8 1 ¥ | & |
0 1.0161 | 0.6016 | 0.1024
w2=01]S 0.2290 | 0.0756 | 0.0407
s.e. | 0.2317 | 0.0745 | 0.0667
o 0.9755 | 0.6094 | 0.1800
w=02[S 0.2931 | 0.0582 | 0.0548
s.e. | 0.2496 | 0.0640 | 0.0839
0 0.9639 | 0.6521 | 0.3873
w=05 |8 0.4376 | 0.0506 | 0.0744
se. | 0.3096 | 0.0522 | 0.0944
0 0.9386 | 0.7300 | 0.8567
w=1.0[S 0.5434 | 0.0584 | 0.2806
s.e. | 0.3187 | 0.0499 | 0.3019
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Table 4: Maximum likelihood estimates for the small bowel motility data.

‘ Parameter ‘ Estimate ‘ Asymptotic correlation matrix® ‘
u 4.7525 0.0658 0.0789 -0.2031  0.1760
) 0.8261 0.0991 0.3409  0.2237
¥ -1.9304 0.9084 -0.3668
T -6.2818 52.9457
c 0.000044 | 0.000044 -0.9887 -0.3026  0.2683
k 1.2844 0.2265 0.3409 -0.2165
w? 0.1451 0.1318  0.3815
Y 0.9873 0.6694

# The off-diagonal elements are the asymptotic correlation; the
diagonal elements are the asymptotic standard errors.
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Table 5: Maximum likelihood estimates for the mammary cancer tumors data.

B P w? c k A1 Ao A3

unspecified ho(t) 0 -0.9820 | 0.8246 | 0.2948 - - - - -

se(f) | 0.2390 | 0.0857 | 0.0821 - - - - -

ho(s) = csk 5 -0.7614 | 0.9060 | 0.1027 | 0.0673 | -0.2472 - - -

(A=0.1 se(é) 0.1895 | 0.0976 | 0.0449 | 0.0089 | 0.0451 - - -

ho(s) = csk 5 -0.8218 | 0.8749 | 0.1494 | 0.0588 | -0.1764 - - -

(A =0.3) se(é) 0.2134 | 0.0911 | 0.0588 | 0.0098 | 0.0504 - - -

ho(s) = csk 5 -0.8618 | 0.8563 | 0.1806 | 0.0547 | -0.1364 - - -

(A =0.5) se(é) 0.2365 | 0.0917 | 0.0695 | 0.0109 | 0.0544 - - -
Piecewise constant 5 -0.8701 | 0.7870 | 0.1903 - - 0.0460 | 0.0342 | 0.0318
(A =0.1) se(é) 0.2395 | 0.0845 | 0.0717 - - 0.0093 | 0.0076 | 0.0067
Piecewise constant 5 -0.8731 | 0.8038 | 0.1916 - - 0.0463 | 0.0343 | 0.0318
(A =0.3) se(é) 0.2395 | 0.0850 | 0.0728 - - 0.0093 | 0.0076 | 0.0068
Piecewise constant 5 -0.8696 | 0.8047 | 0.1912 - - 0.0461 | 0.0343 | 0.0318
(A =0.5) se(é) 0.2386 | 0.0848 | 0.0725 - - 0.0092 | 0.0076 | 0.0067
Yue-Chan 5 -0.9510 | 0.5120 | 0.6623 - - 0.0180 | 0.0270 | 0.0380
se(é) 0.2900 | 0.1000 | 0.4238 - - 0.0032 | 0.0045 | 0.0094
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Figure 1: Histograms for estimates
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Figure 2: Plot of scores against 7 for an iterated estimate of —13.31 for 7 in a simulated
data.
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