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Abstract-A semi-analytical method namely fractal finite element method is presented for the 

determination of stress intensity factor for the straight three-dimenisonal plane crack. Using 

the concept of fractal geometry, infinite many of finite elements are generated virtually 

around the crack border. Based on the analytical global displacement function, numerous 

DOFs are transformed to a small set of generalised coordinates in an expeditious way. No 

post-processing and special finite elements are required to develop for extracting the stress 

intensity factors. Examples are given to illustrate the accuracy and efficiency of the present 

method. Very good accuracy (with less than 3% errors) is obtained for the maximum value of 

SIFs for different modes. 
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1. INTRODUCTION 

 

 The stress intensity factor (SIF) is an important parameter in fracture mechanics. It 

has been widely applied on design of pressure vessels, power generation equipment, 

structures, aircraft and bio-medical devices[1]. The numerical methods of determining SIFs 

of three-dimensional crack geometry has been receiving more attention because most cracks 

are three-dimensional in nature and the computer advancements enable the researchers and 

engineers to evaluate the complexity nature of those cracks. Practicing engineers usually 

prefer those user-friendly numerical methods with the least computational memory and 

execution time. The accuracy of about 5% is usually acceptable for most of the engineering 

analysis. 

 The comprehensive reviews about the computational method to obtain SIFs are given 

in [2-4]. Several approaches have been used to determine the SIFs in solids and plates 

including those requiring the post-processing techniques such as the invariant integrals 

techniques [5-7], the rate of energy releasing methods [8-10], the weight function methods[11 

and 12], the alternating method[13]. However, some methods have been suggested that do not 

require post-processing thus more attractive. Such examples include the singular stress 

element[14] for finite element and the special crack tip element[15] for boundary element 

method. 

 In this paper, a computational procedure to determine the SIFs of straight crack 

namely fractal finite element method(FFEM) is presented. The FFEM had been developed 

recently [16,17] for solving two-dimensional cracks. The advantages of the proposed method 

are:  

i) Using the concept of fractal geometry, infinite finite elements are generated virtually 

around the crack border. Hence the effort for data preparation can be minimised. 

ii) Based on the eigenfunction expansion of the displacement fields along the semi-infinite 

straight edge crack [18], the infinite many finite elements that generate virtually by fractal 

geometry around the crack border are transformed by the expeditious manner. Small 

computational time and tiny memory requirement can be achieved  

iii) No special finite elements and post-processing are needed to determine the SIF.  

iv) As the analytical solution is embodied in the transformation, the accuracy of SIF is high. 
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2. GLOBAL DISPLACEMENT INTERPOLATION FUNCTIONS 

 

2.1. Eigenfunction expansions for three-dimensional crack 

 It was Hartranft et al [18] who first conceived the idea of eigenfunction expansion 

and employed it to analyse the three-dimensional infinite crack problem. The resulting 

eigenfuntion series expansion is a very precise global interpolation function for 

displacements near the crack front. In this section, the method of eigenfunction expansion to 

analyse the elastic three-dimensional crack will be discussed. At the end of this section the 

complete form of the displacement series will be derived and presented. Since the primary 

interest in the solution to the crack problem is centred on the disturbances local to the leading 

edge of the crack, cylindrical coordinate system (r, θ, z) is selected to exhibit the singular 

character of the stresses in a natural manner.  

 Consider an infinitely extended elastic solid that contains a crack as a half-plane with 

the z-axis along the crack edge. The sides of the crack coincide with the surfaces θ=±π, 

where 

 .,,0 ∞<<∞−≤≤−∞<≤ zr πθπ  

 By using the linear theory of elasticity, the equations of equilibrium in cylindrical 

coordinates must be solved for the displacement components (ur , vθ , wz): 
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The boundary conditions are written in terms of the stresses, which are related to the 

displacements through the Hooke’s law for an isotropic body: 
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The Lame’s coefficients are denoted by λ and μ. 

To solve equation (1) under the present boundary conditions 

 0=== zr θθθ ττσ   for πθ ±=       (3) 

we follow Hartranft[18] and assume the displacement vector in the product form 

 ,       (4) );,(Uu βθμ β zr n
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where β is the eigenvalues as powers of r and Un (Un, Vn, Wn) are functions of θ and z only. 

By inserting the displacement equation (4) into the set of equilibrium equations (1), three 

simultaneous partial differential equations in three unknown functions Un can be sought.  

 

2
2

2
1

2
2

2

)21()1(

)43(]1))[(1(2)21(

z
U

z
W

n

V
nUn

U

nn

n
n

n

∂
∂

ν
∂

∂
β

∂θ
∂

νββν
∂θ
∂

ν

−− −−−+−

=+−++−+−+−
 

 

z
W

z
V

Vn
VU

n

nn

n
nn

∂θ∂
∂

∂
∂

ν

βν
∂θ
∂

ν
∂θ
∂

νβ

1
2

2
2

2

2
2

2

)12(

]1))[(21()1(2)43(

−− −−

=−+−+−+−++
  (5) 

 2
2

2
1

2
1

2

2
2 )1(2)1(]))[(21(

z
W

z
V

z
U

n
W

Wn nnnn
n ∂

∂
ν

∂θ∂
∂

∂
∂

β
∂θ
∂

βν −−− −−−++−=++−  

Equations(5) may yield a recurrence relation expressing Un in terms of their previous values. 

To solve equations(5), let us consider the first term n=0, the solution takes the form 
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where a0i, b0i   and c0i (i=1,2) are arbitrary functions of z. Without loss in generality, β can be 

determined by applying the boundary conditions (3) and stresses equation (2). One can have 

six conditions to solve for the six unknown functions a0i, b0i and c0i (i=1,2), for a non-trivial 

solution, the determinant of the coefficients of these functions must vanish, and hence β are 

found to be the roots of the characteristic-value equation 

 0)2sin( =πβ  

which has only real roots  
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The negative values of n have been excluded in equation (7) as negative β will result in the 

unacceptable singularities. Hence by adding up the n displacements vector equation (4) the 

complete displacement vector become 
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where Fn (fn , gn , hn)  are functions of θ and z only. For the same incentive, the expressions 

for the stresses in equations (2) may be simplified and they become 
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 Similarly the set of simultaneous partial differential equations (5) are simplified to the 

form of 

 

2
4

2
2

2

2

2

)21(1
2

43
2

1
4

)1(2)21(

z
f

z
hn

gnfnf

nn

n
n

n

∂
∂

ν
∂

∂

∂θ
∂

νν
∂θ
∂

ν

−− −−⎟
⎠
⎞

⎜
⎝
⎛ −−

=⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−+−

, 

 

2
4

2
2

2

2

2

2

)21(

43
2

1
4

)21()1(2

z
g

z
h

fngng

nn

n
n

n

∂
∂

ν
∂θ∂
∂

∂θ
∂

νν
∂θ
∂

ν

−− −−−

=⎟
⎠
⎞

⎜
⎝
⎛ −++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−+−

,   (10) 

 2
4

2
2

2
2

2

2

2

)1(2
24

)21(
z
h

z
g

z
fnhnh nnn

n
n

∂
∂

ν
∂θ∂
∂

∂
∂

∂θ
∂

ν −−− −−−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+− . 

 After solving equation (10) a general set of displacement solutions can be obtained. 

By applying the boundary conditions (3), one can get the relationship between an1 and an2 or 

bn1 and bn2 or cn1 and cn2 in equation(8). Without go into details, the complete global 

transformation function Fn are evaluated up to the eighth term as it had shown to be 

converged[20]. The results are listed out as the following, 
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It is noted that the superscript comma(s) at the coefficient functions denote the derivative(s) 

of coefficient functions with respects to z. After loading and boundary conditions are 

imposed, the coefficient functions can be determined. It should be pointed out that the first 

set of the coefficient functions (a01, b01 and b02) provide the rigid body translations for the 

crack body. The second set of the coefficient functions (a12, b11 and b12) associate with the √r 

expression for the displacements that account for the singularity at the crack front. Therefore 

the relationships between the stress intensity factors (KI, KII and KIII) and the coefficient 

functions are 

 
π2
I

11
K

=b , 
π2
II

12
K

=b  and 
π2
III

12
K

=a     (12) 

The whole problem is reduced to the determination of the second set of coefficient functions. 

 

2.2. Global interpolation function 

 Using eigenfunctions expansion technique and selecting the cylindrical coordinate 

system, the displacements which is close to the crack front have been expressed in a series 

form in equation(11). In order to compile with the global rectangle coordinate system, the 

displacements (ur, vθ, wz) should be transformed to the nodal displacement (u, v, w) i.e., 
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Assume the coefficient functions (an1, bn1 and cn1) are quadratic, such that, 
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)()()(
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where and  are the nodal values of coefficient functions and N)()( , j
ni

j
ni ba )( j

nic j(z) are the 

Lagrangian shape functions. 

 In the case of the same spacing between the nodes of element in z direction, and the 

coefficient functions are evaluate at the nodes of (x,y,z1), (x,y,z2) and (x,y,z3), the coefficient 

functions for ani (z ) becomes, 
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We neglected the first and higher order derivatives, as the inter-element of usual solid finite 

element is C0  continuity. 
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 By substituting equations (11) into (8), the displacements characterized the singular 

stress field can be determined. Again, by making use of equation (15) and then equation (13) 

to transform the cylindrical coordinates to Cartesian coordinates the nodal displacement 

vector d can be expressed in terms of the nodal coefficient vector a, 

          (16) Tad =

where T is the global transformation matrix that associate with the coefficient functions. The 

form of the transformation matrix T can be illustrated by considering their column vectors. 

For the n-th transformation terms, the m-th component of the column vectors Tn of 

transformation matrix T is 

 ( )θFrT mn
n

mn
2/= ,        (17) 

where r is the perpendicular distances from the crack border to the corresponding node of 

element,  is the function which is derived from the displacement functions (11) 

together with equations (13) and (15). 

( )θFmn

 

 

3. FRACTAL TWO LEVEL FINITE ELEMENT FOR 3-D CRACK PROBLEM 

 

 The FFEM is based on the separation of the sub-domain D that contains the 

singularity from the cracked solid by an artificial surface boundary Γo as shown in Figure1. 

Within D the solution is obtained by the FFEM on one hand, and outside D the solution is 

obtained by conventional FEM on the other hand. 

 

3.1. Decomposition of stiffness for three-dimensional elements 

 Consider a m-node three-dimensional element, with an isoparametric form of 

relationship, the shape functions and the displacement functions may be expressed by 

  ,  and  (18) ∑
=

=
m

i
ii xNx

1

),,( ζηξ ∑
=

=
m

i
ii yNy

1

),,( ζηξ ∑
=

=
m

i
ii zNz

1

),,( ζηξ

and 

  ,  and  (19) ∑
=

=
m

i
ii uNu

1

),,( ζηξ ∑
=

=
m

i
ii vNv

1

),,( ζηξ ∑
=

=
m

i
ii wNw

1

),,( ζηξ

where (xi, yi, zi) and (ui,vi,wi) are the nodal coordinates and nodal displacements of an element 

respectively and Ni(ξ,η,ζ) are the shape functions. The associated stiffness matrix [K] is then 

calculated by 
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where λ and μ are Lame’s coefficients and ε is equal to λ(1-ν)/ν. 

 Considering two elements denoted by 1 and 2, which are similar in x and y directions 

but remains the same in z direction such that 

  ,  and . 12
ii xx α= 12

ii yy α= 12
ii zz =

Therefore, by equation (22), one can have 

 .        (24) 1
2

2 ][][ JdetJdet α=

The stiffness matrix [K] of equation (20) for element 2 can be decomposed according to the 

power of α to three sub-matrices [S]0, [S]1 and [S]2 , such that 
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The equation (25) can be used to calculate any element stiffness matrix with similar shape on 

the x-y plane. 

 

3.2. Fractal transformation 
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 Finally the generalized stiffness matrix in domain D can be determined by 

transforming the stiffness matrix of the first layer of mesh as shown in Figure 2 and 

modifying each entry of the stiffness matrix. 

 For the first layer of mesh, let the displacements on the boundary Γo be the masters um 

and the displacements within the boundary Γo be the slaves us. To carry out the 

transformation, the stiffness matrix [K] in equation (21) is first partitioned with respect to the 

master and slaves displacements, 
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where the superscript ‘f’ indicates first layer of mesh. Only the displacements at the slaves 

are transformed. Second level (global) interpolation of displacements can be written as 

follows, 
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After transformation, we have, 
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For the inner layer, each element stiffness matrix within the first layer of D would be 

transformed and assembled to form the global stiffness matrix. Based on the concept of 

fractal mesh generation around the crack tip, infinite number of elements and numerous 

degrees of freedom would be generated. However applying the fast transformation technique, 

infinite many layers of mesh can be transformed and assembled. 

 Utilising equations (16) and (25), the inner k-th layer of element stiffness is 

transforming and assembling, 
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The above equation can be rewritten as 
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Recalling equation (17) that kr  can be written as  for the m-th component of the n-th 

column vector  of the transformation matrix . The column vector  at the k-th layer 

corresponding to the n-th transformation term can be therefore related to that of the first 

layer, 

fk r1−α
k
nT kT k

nT

 f
n

kk
n

n

TT 2)1( −= α  .        (34) 

Similarly, all the sub-matrices  (at m-th and n-th entry) in  (k=0 to ∞, j=0 

to 2) of equation (33) can then be related to the first layer, such that 
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mnE k
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The infinite sum of equation (35) is a geometric series, hence, the infinite series can be 

simplified and expressed as 

 fj
mn

mnj

mnj

k
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mn EE

ψ
ψ
−

=∑
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= 12

 ;     (36)  2/)2( jnm
mnj

++= αψ

The stiffness matrices of infinite layer of inner meshes are then calculated by making use of 

equations(33)  and (36). A program listing of the subroutine of fast transformation procedure 

is shown in Appendix A. 

 

4. NUMERICAL EXAMPLES 

 

 In order to demonstrate the accuracy and the efficiency that can be attained by using 

FFEM, the present section reports the results obtained from the analysis of a few cases for 

which the analytical solution is known. All the Young’s modulus and Poisson’s ratio is 

assumed to be 20000 units and 0.3 respectively. 

 

4.1. Single edge crack tension 

 A cracked plate known as single edge crack in tension is considered in this example. 

It is a two-dimensional pure mode I plane strain problem. A layer of three-dimensional finite 

element meshes for ratio of crack length per width (a/w) of 0.3 used for the analysis is shown 

in Figure 3. Due to symmetry, only half of the specimen is analysed, the total number of 

elements is 15 and the total number of unknowns is 738. Three-dimensional Lagrangian 

elements with full Guassian integration scheme used throughout. The maximum 

computational time is 330 seconds by a PC modelled 486 in 66MHz. In order to model the 

plane strain situation, all the boundary nodal displacements in z-direction are prescribed to 
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zero. The dimensionless stress intensity factors )/(I aπσK  are tabulated in Table 1. Present 

results give very good agreements with less than 2% different with Ref[19] and reproduce the 

‘same’ results as two-dimensional fractal finite element method[20]. 

 

a/w Present Ref[19] FFEM (2-D) 

0.1 1.172 1.184 1.171 

0.2 1.354 1.371 1.355 

0.3 1.643 1.660 1.643 

0.4 2.082 2.104 2.082 

0.5 2.786 2.826 2.787 

0.6 3.966 4.026 3.966 

 Table.1 Dimensionless stress intensity factors for single edge crack tension 

 

4.2. Single edge crack shear 

 A cracked plate subjected to a pair of equal and opposite point loads Q at x-direction 

at the crack faces is considered in this example. It is a pure mode II plane strain problem. The 

dimensionless stress intensity factors )2/(II QaπK  for various orders of transformation 

terms are listed in Table 2. It is shown that the maximum percentage difference of the present 

result when compared with Ref[19] is 3%. Furthermore, two-dimensional [20] and three-

dimensional FFEM give the ‘same’ results.  

 

a/w Present Ref[19] FFEM (2-D) 

0.1 1.302 1.306 1.296 

0.2 1.314 1.327 1.313 

0.3 1.342 1.370 1.342 

0.4 1.414 1.442 1.413 

0.5 1.513 1.559 1.513 

0.6 1.697 1.745 1.696 

 Table.2 Dimensionless stress intensity factors for single edge crack shear 
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4.3. Pure mode I semi-infinite plane crack 

 In most instances, crack is subject to a state of tri-axial stress. In order to demonstrate 

the accuracy and convenience of using present method to calculate three-dimensional cracks, 

the simple crack geometry of semi-infinite plane subject to a point load Py at the Cartesian 

coordinate (-1, 0, 0) is chosen here. The geometry of crack, loading arrangement and the 

coordinates system are shown in Figure 4. It is a pure mode I three-dimensional crack 

problem. The exact solution was found by Sih and Kassir [21] making use of integral 

transformation method. The SIF is expressed as, 
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where Py  =1 is the applied point load at x=-a in the xz plane. 

 As it is not possible to model the infinite domain by the convenient finite element 

method, a cracked cylinder with radius 32units and width 64 units is considered here. A one 

out of eight non-uniform-thickness layer of finite element meshes is shown in Figure 5, there 

are totally 324 elements and corresponding to 3648 nodes. The results obtained by the 

present method together with the exact solution are shown in Figure 6. The maximum value 

of SIF at z=0 equal to 0.2575 and 0.2540 for the present result and the theoretical value 

respectively. Very good agreement is obtained. In addition, the present method is 

programmed by FORTRAN language by using single precision and double precision manner. 

The resulting SIFs agree up to four significant figures that indicate the present scheme is 

numerically stable.  

 

4.4. Mixed modes semi-infinite plane crack 

 By replacing the applied loading Py to Px in the above example, the problem 

considered here becomes a second and third modes mixed problem. The exact solution was 

determined by Sih and Kassir [21], 
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where z0 = z/a. The stress intensity factor determined by the present method together with the 

exact solution are plotted in Figure 7, the maximum value of SIFs for mode II and mode III 
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by the present method is 0.3477 and 0.0597 respectively, whereas the corresponding exact 

values is 0.3436 and 0.0582. Very good accuracy is achieved by the present method. 

 

 

5. CONCLUSION 

 

 Fractal finite element method was presented for the determination of SIFs for the 

straight three-dimenisonal plane crack. The analytical displacement eigenfunction for straight 

semi-infinite plane crack are derived up to the eighth terms. Moreover, the use of fractal 

geometry concept to generate infinite many of finite elements around the crack border was 

introduced. Applying the newly developed fast transformation technique, numerous DOFs 

around the crack border were transformed to a small set of generalised coordinates. And the 

SIFs can be evaluated directly from the generalised coordinates. Thus no post-processing 

techniques are required to extract the SIFs. Four examples on pure mode I, pure mode II and 

mixed modes cracks were given to demonstrate the accuracy and efficiency of the present 

method. Very good accuracy with less than 3% errors is obtained for the maximum value of 

SIFs for different modes. 
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APPENDIX A 

Program listing for fast transformation 

 
      SUBROUTINE FAST(TEMP,IFACT)                                       FAST   1 
C***********************************************************************FAST   2 
C                                                                       FAST   3 
C*** SUBROUTINE FOR FAST TRANSFORMATION OF EACH TERM IN THE TEMP MATRIX FAST   4 
C     IFACT = THE NO. OF SUB-MATRIX RANGED FROM 1 TO 3 OF EQN (25)      FAST   5 
C                                                                       FAST   6 
C***********************************************************************FAST   7 
      IMPLICIT DOUBLE PRECISION(A-H,O-Z)                                FAST   8 
      DIMENSION TEMP(81,81)                                             FAST   9 
      IF(IFACT.EQ.1) L=0                                                FAST  10 
      IF(IFACT.EQ.2) L=2                                                FAST  11 
      IF(IFACT.EQ.3) L=4                                                FAST  12 
      DO 10 J=1,9                                                       FAST  13 
      J1=(J-1)*3                                                        FAST  14 
      J2=(J+5)*3                                                        FAST  15 
      J3=(J+11)*3                                                       FAST  16 
      IF(J.GE.7) THEN                                                   FAST  17 
      J1=(J+11)*3                                                       FAST  18 
      J2=(J+14)*3                                                       FAST  19 
      J3=(J+17)*3                                                       FAST  20 
      ENDIF                                                             FAST  21 
      DO 10 I=1,9                                                       FAST  22 
      I1=(I-1)*3                                                        FAST  23 
      I2=(I+5)*3                                                        FAST  24 
      I3=(I+11)*3                                                       FAST  25 
      IF(I.GE.7) THEN                                                   FAST  26 
      I1=(I+11)*3                                                       FAST  27 
      I2=(I+14)*3                                                       FAST  28 
      I3=(I+17)*3                                                       FAST  29 
      ENDIF                                                             FAST  30 
      R=0.5D0**(FLOAT(I+J+L-2)/2.0D0)                                   FAST  31 
C                                                                       FAST  32 
C*** EVALUATION OF THE GEOMETRIC SERIES                                 FAST  33 
C                                                                       FAST  34 
      F=R/(1.D0-R)                                                      FAST  35 
      DO 10 IDIME=1,3                                                   FAST  36 
      DO 10 JDIME=1,3                                                   FAST  37 
      TEMP(I1+IDIME,J1+JDIME)=F*TEMP(I1+IDIME,J1+JDIME)                 FAST  38 
      TEMP(I1+IDIME,J2+JDIME)=F*TEMP(I1+IDIME,J2+JDIME)                 FAST  39 
      TEMP(I1+IDIME,J3+JDIME)=F*TEMP(I1+IDIME,J3+JDIME)                 FAST  40 
      TEMP(I2+IDIME,J1+JDIME)=F*TEMP(I2+IDIME,J1+JDIME)                 FAST  41 
      TEMP(I2+IDIME,J2+JDIME)=F*TEMP(I2+IDIME,J2+JDIME)                 FAST  42 
      TEMP(I2+IDIME,J3+JDIME)=F*TEMP(I2+IDIME,J3+JDIME)                 FAST  43 
      TEMP(I3+IDIME,J1+JDIME)=F*TEMP(I3+IDIME,J1+JDIME)                 FAST  44 
      TEMP(I3+IDIME,J2+JDIME)=F*TEMP(I3+IDIME,J2+JDIME)                 FAST  45 
   10 TEMP(I3+IDIME,J3+JDIME)=F*TEMP(I3+IDIME,J3+JDIME)                 FAST  46 
      RETURN                                                            FAST  47 
      END                                                               FAST  48 
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FIGURES 

 

Figure 1. Singlular and regular regions 

Figure 2. Construction of fractal mesh 

Figure 3. Mesh Configuration os SECT (a/w = 0.3) 

Figure 4. Semi-infinite straight plane crack (a =1.0) 

Figure 5. A layer of 3-D finite element mesh 

Figure 6. KI of semi-infinite plane crack subject to point loads 

Figure 7. KI and KII of semi-infinite plane crack subject to shear loads 
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Figure 1. Singlular and regular regions 
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Figure 2. Construction of fractal mesh 
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Figure 3. Mesh Configuration os SECT (a/w = 0.3) 
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Figure 4. Semi-infinite straight plane crack (a =1.0) 
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Figure 5. A layer of 3-D finite element mesh 
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Figure 6. KI of semi-infinite plane crack subject to point loads 
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Figure 7. KI and KII of semi-infinite plane crack subject to shear loads 
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