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A BSTRACT 

   The linear piezoelectricity theory is applied to investigate the dynamic response of coplanar 
interface cracks between two dissimilar piezoelectric materials subjected to the mechanical and 
electrical impacts. The number of cracks is arbitrary, and the interface cracks are assumed to be 
permeable for electric field. Integral transforms and dislocation density function are employed to 
reduce the problem to Cauchy singular integral equations. Numerical examples are given to show 
the effects of crack relative position and material property parameters on the variations of dynamic 
energy release rate. 
 
1. INTRODUCTION 
 
   Due to the intrinsic coupling characteristics between electric and elastic behaviors, piezoelectric 
materials have been used widely. Studies on electroelastic problem of a piezoelectric material with 
cracks in the framework of the theory of piezoelectricity were initiated by Parton[1] and Deeg[2]. 
Since their pioneering works, the problem of the determination of electroelastic field under different 
boundary conditions has been investigated by a number of researchers.  
   The dynamic response of crack problems in a piezoelectric material under various 
time-dependent loads is of great importance in some practical applications and has recently 
received much attention[3,4]. However, for interface crack problem, most studies are concentrated on 
the case of one mode-III crack with electric impermeable crack surface condition[5]. 
   In fact, for mode-III crack, electric permeable crack surface condition is perhaps more 
appropriate than electric impermeable condition. In this paper, studied is the transient response of 
coplanar interface cracks between two dissimilar piezoelectric materials subjected to anti-plane 
mechanical and electrical impacts. The number of coplanar crack is arbitrary, and crack surfaces are 
assumed to be permeable for electric field. Integral transforms and dislocation density function are 
used to reduce the problem to singular integral equations, which are numerically solved. 
 



2. STATEMENT OF THE PROBLEM 
 
   Consider  mode-III Griffith interface cracks between two bonded transversely isotropic 
piezoelectric materials, with their basal planes perpendicular to the 

n
z axis as shown in Fig. 1. The 

x  coordinates of the k th crack tips are set to be  and  ak bk ( )k n= 1 ~  . The antiplane shear 
impact and the electric displacement impact are imposed on the crack surfaces at . 0=t

Fig.1. Two dissimilar piezoelectric materials with multiple coplanar interface 
cracks under anti-plane mechanical impact and in-plane electrical impact 
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   The governing equations of the dynamic antiplane problem are 
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where  is the two-dimensional Laplace operator. 2∇ ( )tyxw j ,,)(  and ( tyxj ,,)( )φ  are the 
non-zero elastic displacements and electric potentials, respectively. The quantities with the 
subscript  denote the corresponding quantities in the upper and lower materials, respectively. 

, 
( )j

)(44 jc )(11 jε ,  are the elastic, dielectric and piezoelectric constants, respectively. )(15 je
   The boundary conditions for electric permeable interface cracks can be written as 
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)( jzyσ  and  are stresses and electric displacements, respectively. )( jyD ( )x0τ  is known function of 

x , and  of t .  is called dislocation function of the th crack.  ( )tσΨ kwΔ k
 
3. THE DERIVATION AND SOLUTION OF SINGULAR INTEGRAL EQUATION 
 
   Introducing Laplace and Fourier transforms, the solutions of Eqs.1 and 2 are obtained as 
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where the quantities with superscript asterisk denote the corresponding quantities in Laplace 
transform domain, ,   are the unknowns to be solved and )( jA )( jB ( 2,1=j )
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   Substituting Eqs.8 and 9 into the corresponding constitutive relations in Laplace transform 
domain and using Eqs.4 - 7 yields 
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in which *wΔ  is the Fourier transform of . According to the Cramer’s rule, we get *wΔ
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where  is the determinant of the coefficient matrix of equation system 10.  and 

 are, respectively, the corresponding algebra cofactors when applying the Cramer’s rule. 
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   Substituting Eqs.8 and 9 into constitutive relations and using Eqs.11 and 12, we have from Eq.3 
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Substituting ( psw ,*Δ ) ) for  and noting that ( pvw ,*Δ ( )ps,Δ , ( )ps,41Δ  and  are all 
even functions of , we get by by-part integration 
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 is called dislocation density function of the th crack. By setting k

( ) 2kkk abc −= , ( ) 2kkk abd +=  and applying the substitutions 
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Eq.14 can be further converted to the following standard singular integral equation 
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  The single-valued condition of Eq.15 may be expressed as 
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   Eq.15 is standard Cauchy singular integral equation. By using the method described in [6], the 
algebraic equations corresponding to Eqs.15 and 16 are obtained and can be solved numerically. 
The dynamic stress intensity factors (DSIFs) can be defined and deduced as 
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where ( ) ( )pFpR kk ,1, 2 ηηη −= . 
   The DSIFs in the time domain can be obtained by applying the numerical method developed by 
Miller and Guy[7]. Correspondingly, the dynamic energy release rates (DERRs) can be deduced as 
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   Obviously, the imposed electric displacement impact doesn’t contribute to the DSIFs and 
DERRs. And the electric displacements on crack surfaces  consist of two parts. The 
first is the imposed 

),0,()( txD jy

( ) (txD DΨ− 0 ). The second is the one caused by ( ) (tx σ )τ Ψ− 0 , which is omitted 
here and can be easily obtained by using the solution of Eqs.15 and 16. 
 
4. NUMERICAL EXAMPLE AND CONCLUSIONS 
 
   As an example, in this section we examine the DERRs of two cracks in the case of 

( ) ( ) ( )ttx Η−≡Ψ− 00 ττ , and , ba −=1 ab −=1 , aa =2 , bb =2 . Without any loss in generality, in 
all our numerical procedure, we take 
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. As the effects of relative 

crack position on DERRs are investigated, 
the lower material is taken as BaTiO
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Fig.2. Normalized DERRs with normalized
time at x=a and x=b
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Fig.3. Normalized DERRs with normalized
time for different relative crack positions
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Fig.4. Normalized DERRs with normalized 
time for different ratios of elastic constants
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C/Vm103.128 10
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−×=ε  and . As the effects of material property parameters 
are investigated, except for the variation of the material constant pointed out in the corresponding 
figures, all the other material constants of the lower material are respectively set to be equal to that 
of the upper material, i.e. PZT-4. 

33 kg/m107.5 ×=ρ

   Fig. 2 indicates that the DERRs at ax =  are higher than that at . Therefore, under 
electromechanical impact, the cracks tend to propagate at first from inner crack tips for the case of 
two cracks. From Fig. 3, it is easily to know that the DERRs decrease slightly with 

bx =

ca  increasing. 
That is, the larger the distance between the two cracks, the weaker the oscillation is. Besides, the 
relative crack separation has little effects on the normalized time of reaching corresponding static 
value. As shown in Figs. 4-6, the peak values of DERRs generally decrease with the increasing of 

)1(44)2(44 cc  and/or )1(11)2(11 εε . However, the similar phenomena cannot be found for piezoelectric 
constants. 
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Fig.5. Normalized DERRs with normalized
time for different ratios of piezoelectric
constants 

Fig.6. Normalized DERRs with normalized 
time for different ratios of dielectric constants
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