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ABSTRACT

The linear piezoelectricity theory is applied to investigate the dynamic response of coplanar
interface cracks between two dissimilar piezoelectric materials subjected to the mechanical and
electrical impacts. The number of cracks is arbitrary, and the interface cracks are assumed to be
permeable for electric field. Integral transforms and dislocation density function are employed to
reduce the problem to Cauchy singular integral equations. Numerical examples are given to show
the effects of crack relative position and material property parameters on the variations of dynamic
energy release rate.

1. INTRODUCTION

Due to the intrinsic coupling characteristics between electric and elastic behaviors, piezoelectric
materials have been used widely. Studies on electroelastic problem of a piezoelectric material with
cracks in the framework of the theory of piezoelectricity were initiated by Parton!! and Deeg!?.
Since their pioneering works, the problem of the determination of electroelastic field under different
boundary conditions has been investigated by a number of researchers.

The dynamic response of crack problems in a piezoelectric material under various
time-dependent loads is of great importance in some practical applications and has recently
received much attention®®*. However, for interface crack problem, most studies are concentrated on
the case of one mode-111 crack with electric impermeable crack surface condition™.

In fact, for mode-Ill crack, electric permeable crack surface condition is perhaps more
appropriate than electric impermeable condition. In this paper, studied is the transient response of
coplanar interface cracks between two dissimilar piezoelectric materials subjected to anti-plane
mechanical and electrical impacts. The number of coplanar crack is arbitrary, and crack surfaces are
assumed to be permeable for electric field. Integral transforms and dislocation density function are
used to reduce the problem to singular integral equations, which are numerically solved.



2. STATEMENT OF THE PROBLEM

Consider n mode-1l1l Griffith interface cracks between two bonded transversely isotropic
piezoelectric materials, with their basal planes perpendicular to the z axis as shown in Fig. 1. The
x coordinates of the kth crack tips are set to be a, and b, (k=1~n). The antiplane shear

impact and the electric displacement impact are imposed on the crack surfacesat t=0.
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Fig.1. Two dissimilar piezoelectric materials with multiple coplanar interface
cracks under anti-plane mechanical impact and in-plane electrical impact

The governing equations of the dynamic antiplane problem are
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where V? is the two-dimensional Laplace operator. w,(x,y,t) and ¢ (x,y,t) are the

non-zero elastic displacements and electric potentials, respectively. The quantities with the
subscript (j) denote the corresponding quantities in the upper and lower materials, respectively.
Ca(jy» €u(j)» ©1s(j) are the elastic, dielectric and piezoelectric constants, respectively.

The boundary conditions for electric permeable interface cracks can be written as

Oy (K0.) = 70 (1 0.0) =~ (0¥, (1) x<J(a,.b,) ©
Oy (x,0,t) = Lo (x,0,t) —oco< X<+ 4

By (X,0,1) =P, (X,0,1) -0 <X<+00 (5)

D,y (x,0,t) =D, (x,0,t) —o0<X<+0 (6)

Wy (X,0,t) =W, (X,0,t) = Aw(X,t)  —o00o <X <400 (7

where



Aw, (X,t): Wi (X’O't)_w(z) (X,O,t) X € (ak,bk) k=12,---,n

Awlxt)= 1| xgg(ak,bk)

o, and D, are stresses and electric displacements, respectively. z, (x) is known function of
x,and P (t) of t. Aw, is called dislocation function of the k th crack.

3. THE DERIVATION AND SOLUTION OF SINGULAR INTEGRAL EQUATION

Introducing Laplace and Fourier transforms, the solutions of Egs.1 and 2 are obtained as
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where the quantities with superscript asterisk denote the corresponding quantities in Laplace
transform domain, A, B, ( j=12) are the unknowns to be solved and
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Substituting Egs.8 and 9 into the corresponding constitutive relations in Laplace transform
domain and using Eqs.4 - 7 yields
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inwhich Aw’ is the Fourier transform of Aw’. According to the Cramer’s rule, we get

Ay (s)= 24, (s, p)AW (s, p)/A(s, p) (12)
By (S)= A, (s, p)AW (s, p)/A(s, p) (12)

where A(s, p) is the determinant of the coefficient matrix of equation system 10. A,(s, p) and
A (s, p) are, respectively, the corresponding algebra cofactors when applying the Cramer’s rule.
Substituting Eqgs.8 and 9 into constitutive relations and using Egs.11 and 12, we have from Eq.3
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Substituting Aw’(s, p) for Aw’(v, p) and noting that A(s, p), A,(s,p) and A(s, p) are all
even functions of s, we get by by-part integration
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f (v, p):aAWk—(v’p) is called dislocation density function of the k th crack. By setting

¢, =(b, —a,)/2, d, =(b, +a,)/2 and applying the substitutions

v=cn+d,, X=c.+d,
Fk(771 p): fk(ck77+dk’ p)’ To,k(ﬂ):TO(CkUdekf p)

~1k1|(77'§a p):Clel(Ckn"'dk’qg"'dw p)"‘ Ck(1_§kl )7/11/[(Ck77+dk)_(c|§+d|)]

Eq.14 can be further converted to the following standard singular integral equation
j_ln“ F (. p)dn+= j ZQM 7.6, P)F(m p)dn = ~70,(c)¥,"(p) [g] <1 1=12,--,n (15)
The single-valued condition of Eq.15 may be expressed as

Eq.15 is standard Cauchy singular integral equation. By using the method described in [6], the
algebraic equations corresponding to Eqgs.15 and 16 are obtained and can be solved numerically.
The dynamic stress intensity factors (DSIFs) can be defined and deduced as

Illbk (p)= &7 [711 k=12,--,n 17)
Illak p =/Ck 77[711 k=12,---,n (18)

where R, (7, p)=+1-n"F(7,p).
The DSIFs in the time domain can be obtained by applying the numerical method developed by
Miller and Guy!™. Correspondingly, the dynamic energy release rates (DERRs) can be deduced as



Gy, = 0'25K|||bk2(t)/7/11 k=12:-,n (19)
G, =0.25K,, “(t)/yy k=12.n (20)

Obviously, the imposed electric displacement impact doesn’t contribute to the DSIFs and
DERRs. And the electric displacements on crack surfaces D, ;,(x,0,t) consist of two parts. The

first is the imposed — D, (x)¥, (t). The second is the one caused by —z,(x)¥. (t), which is omitted
here and can be easily obtained by using the solution of Egs.15 and 16.

4. NUMERICAL EXAMPLE AND CONCLUSIONS

As an example, in this section we examine the DERRs of two cracks in the case of
—7,(x)¥(t)= -z, H(t),and a, =-b, b =-a, a, =a, b, =b. Without any loss in generality, in
all our numerical procedure, we take
7, =4.2x10° N/m?°. The DERRs are

normalized by 247
2 2 2.29 s
G, = ey, T, / (2C44(1)811(1) + 2645 ) , and 20-
the normalized time is defined as c,t/c Lo 6/, / ....................... =
_ P12 G,/G,
with ¢ =bTa. The upper material is taken 3 ]
0.8 1
as PZT-4 material constants of which are 06 PZT 4/BaTIOq
0.4+ -
Cu =2.56x10"N/m? , e, =12.7C/m* | 02]
£, =64.63x10°C/Vm and T i s &5 1 12
p =7.5x10°kg/m?. As the effects of relative Crate

crack position on DERRs are investigated,
the lower material is taken as BaTiO;
material constants  of  which are
C, =44x10°N/m?* | e, =11.4C/m* ,

Fig.2. Normalized DERRs with normalized
time at x=a and x=Db
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£, =128.3x107°C/Vm and p=5.7x10°kg/m*. As the effects of material property parameters

are investigated, except for the variation of the material constant pointed out in the corresponding
figures, all the other material constants of the lower material are respectively set to be equal to that
of the upper material, i.e. PZT-4.

Fig. 2 indicates that the DERRs at x=a are higher than that at x=b. Therefore, under
electromechanical impact, the cracks tend to propagate at first from inner crack tips for the case of
two cracks. From Fig. 3, it is easily to know that the DERRs decrease slightly with a/c increasing.

That is, the larger the distance between the two cracks, the weaker the oscillation is. Besides, the
relative crack separation has little effects on the normalized time of reaching corresponding static
value. As shown in Figs. 4-6, the peak values of DERRs generally decrease with the increasing of
Cusz) [Casqy ANAIOT &y, /&1,y - HOwever, the similar phenomena cannot be found for piezoelectric

constants.
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