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Transient response of coplanar interfacial cracks between
two dissimilar piezoelectric strips under anti-plane

mechanical and in-plane electrical impacts

R. K. L.Su*, W. J. Feng, J. X. Liu, Z.Z. Zou

Summary The linear piezoelectricity theory is applied to investigate the dynamic
response of two coplanar interface cracks between two dissimilar piezoelectric strips
subjected to the mechanical and electrical impacts. Two kinds of electric boundary
conditions on crack surfaces, i.e. electric impermeable and electric permeable, are
adopted. Laplace and Fourier transforms and dislocation density functions are
employed to reduce the mixed boundary value problem to Cauchy singular integral
equations in Laplace transform domain, which are solved numerically. Numerical
results show the effects of electrical load, geometry criterion of piezoelectric strips,
relative crack position and material property parameter on dynamic stress intensity

factor and/or energy release rate.

Keywords coplanar interface cracks, dissimilar piezoelectric strips, singular integral

equations, dynamic stress intensity factor, dynamic energy release rate

1 Introduction

* Corresponding author: Fax: (852) 2559 5337; Tel: (852) 2859 2648; E-mail: klsu@hkucc.hku.hk



Due to the intrinsic coupling characteristics between electric and elastic behaviors,
piezoelectric materials have been used widely in technology such as transducers,
actuators, sensors, etc. Studies on electroelastic problems of a piezoelectric material
with cracks in the framework of the theory of piezoelectricity were initiated by Parton
[1] and Deeg [2]. Since their pioneering works, the problem of the determination of
electroelastic field under different boundary conditions was investigated by a number
of researchers and has become the topic of intensive research in recent years.

The dynamic response problem of mechanical and electrical behaviors in a
piezoelectric material under various time-dependent loads is of great importance in
some practical applications such as in the detection of ultrasonic waves and has
recently received much attention. Great progress in this area has been made, for
example, fundamental solutions and general solutions of dynamic piezoelectricity
equations for piezoelectric materials were solved in Khutoryansky and Sosa [3] and
Ding et al. [4], respectively. The dynamic fracture of piezoelectric materials has been
investigated in the quasielectrostatic approximation by Dascalu and Maugin [5], who
obtained asymptotic expressions for crack-tip field by using a complex-variable
approach and, in particular, determined the crack-tip trajectory by numerically solving
a resulting differential equation for a mode-Il1l crack of finite length extending
symmetrically along the crack line. Li and Mataga [6], [7] studied a pair of
concentrated longitudinal shear loads that suddenly act on the crack surfaces and
move at constant velocity along the crack surface far away from the crack tip, and

derived the dependence of the field intensity factors and the energy release rate on the



moving velocity for an electrode crack and a vacuum crack, respectively. For a
piezoelectric medium or a piezoelectric strip containing an impermeable finite crack
or two coplanar cracks subjected to impact loads, numerical stress intensity factors
have been determined by the numerical solution of a Fredholm integral equation [8]-
[11]. Wang and Yu [12] studied the mode-111 problem of a crack in piezoelectric strip
subjected to the mechanical and electrical impacts by solving numerically resulting
Cauchy integral equations. Wang et al. [13] investigated the multiple impermeable
crack problem for multilayered piezoelectric materials, and gave some numerical
results under purely mechanical or electrical load, and Kwon and Lee [14] analyzed
the transient response of a rectangular piezoelectric body with a center crack.
Recently, Li [15] and Li and Fan [16] investigated the transient response of a
piezoelectric material with a semi-infinite impermeable mode-I1l crack under impact
loads and the problem of a through permeable crack situated in the mid-plane of a
piezoelectric strip under anti-plane impact loads, respectively. For scattering of
incident waves from the crack, Shindo et al. [17], and Narita and Shindo [18]
investigated, respectively, the scattering of Love waves by an edge crack in
piezoelectric layered media, and the dynamic response of a cracked dielectric medium
in a uniform electric field. Wang and Yu [19] analyzed the scattering of SH waves by
an arc-shaped crack between a cylindrical piezoelectric inclusion and matrix, and
obtained the corresponding scattered far field pattern and scattered cross section.

In this paper, we study the transient response of two coplanar interface cracks

between two dissimilar piezoelectric strips subjected to anti-plane mechanical and



electrical impacts under two different crack surface conditions. In the first case, the
cracks are impermeable for electric fields with the surface condition as [20]

D, =D, =0, (1)
and in the second case, the cracks are permeable for electric fields with the surface
condition as [1]

Dy =D,, ¢"=¢". )
where D, is the electric displacement in the direction normal to the crack surface, and
¢ denotes the electric potential. Integral transforms and dislocation density functions
are used to reduce the problem to singular integral equations that can be solved

numerically.
2. Basic equations

Consider two mode-111 Griffith cracks of the same length along the interface between
two bonded transversely isotropic piezoelectric strips occupying 0<y<h, and
—h, <y <0, respectively, with their basal planes perpendicular to the z axis, as
shown in Fig. 1. The cracks are located along the x axis from —b to —a and from a
to b. The antiplane shear impact and the electric displacement impact are imposed on
the crack surfaces at t =0. In this case, only the out-of-plane elastic displacements
and the in-plane electric field are non-zero, that is

Uy =Uyey =00 Uy =W (6 yit), =12, 3

Eqy = Ep(x¥.t), Eyp =E,(xvt), Eyy =0, j=12, (4)



where the quantities with the subscript (J) j =12 denote the corresponding

quantities in the upper and lower strips, respectively. (ux,uy,uz) and (EX,Ey, EZ) are

the components of the displacement and the electric field vectors, respectively, and

E, (i=x,y,z) are related to the electric potential ¢ as E, =—¢, . The constitutive

relations are as follows:

O oy(iy = Caagjy OWj) /OY + 15y Oy Oy » T=12, )
Dy () = €is(sy) OWj) /Y = Engy) Oy /Oy T=12, (6)
where ¢, and ¢, denote the electric potentials in the upper and lower strips,

respectively, o, ., and D, ., are the corresponding stress and electric displacements,

zy(i) y(i)

respectively, and c,,;,, &), €(; are the elastic, the dielectric and the piezoelectric

15(0)

constants, respectively. The governing equations of dynamic antiplane piezoelectricity

are
V2 V24 . = o'Wy 12 .
Caan)V Wiy + 815y V5 PO Ty J=4e, (7)
2 2 .
BisyV Wiy —&nyV 9y =0, =12, (8)

where V2 is the two-dimensional Laplace operator, i.e. V? = 62/ox* + 6%/oy? .

The boundary conditions for the impermeable case are

Oy (X0,) = 0, (X0,1) = —7,H(t), a<|X<b, 9)
D,y (X.0,t) = D, (x,0,t) = =D H(t), a<|x<b, (10)
Wy, (%,0,1) = W, (X,0,1) o<|x<a, [x>b, (11)
By (X,0,1) = g, (X,0,1) o<|x<a, [x>b, (12)
Oya (X0,1) =0, (X0,t), —o0<X< o0, (13)
D,y (X,0,t) =D, (x,0,t), —o00<X<+o0, (14)



O'zy(l)(x,hl,t)zo, —0< X< +0, (15)

Oy (X,—hy 1) =0, —00 <X < +00, (16)
Dy(l)(X,hl,t)ZO, —OO<X<+OO, (17)
D, (X=h,,t) =0, —o0<x<+w0, (18)

where H (t) denotes the Heaviside unit step function. For the electric permeable case

the boundary conditions become

Oy (X0,1) = 0,5 (X,0,1) = -7 H (t), a< |X| <b, (19)
Wy, (%,0,1) = W, (X,0,1) o<|x<a, [x>b, (20)
Oyn (X0,1) =0, (X0,t), —o00<X< o0, (21)
Py (X,0,1) = B, (X,0,1), —00 < X < +00, (22)
D, (X,0,t) =D, (x,0,t), —o00<X<+o0, (23)
Oy (X,h,1)=0, — 0 < X <40, (24)
Oy (X=hy,, ) =0, —o0<X<+o0, (25)
D,y (X, h,t) =0, —00 < X <400, (26)
D, (X,=h,,t)=0, —oo<x<+o0, (27)

and the electric displacements on the crack surfaces D, ; (x,0,t) consist of two parts,

y(i

the imposed — D, H (t) and the unknown caused by —z,H (t).

Introduce Laplace transform as follows:

W) (% v, p)= [ we (x, v, t)exp(- ptdt, (28)
by (% y.p)= [ 4, (x, y.t)exp(- pt)dt, (29)
W (%, y,t) = Zim.JBr we)” (%, y, p)exp(pt)dp, (30)
B (%, y,t) = % [, #0) (v, p)exp(pt)dp, (31)



in which Br denotes the Bromwich path of integration. Noting that both w;, and ¢,
are even functions with respect to variable x, the Fourier cosine transforms are
applied to give the solutions as

W) (x,y,p)= _[ [Am (s, p)exp( a(J)y)+ B(;)(s, p)exp(amy)]cos (sx)ds, j =12,

(32)

b (xy,p)= SR w;, (x,y, p)
E .
1) j=12, (33)

+§ J; e, P)exp(=sy)+ D 5. pexplsy)Jcos(sx s

where A , and D, are the unknowns to be solved and

J)
44(1)
ag = [s"+——, G = ]/ Caa(sy = Caaiy + Eus(j) /‘911(1) (34)
CT(]) ,0(,)

We proceed with the impermeable case. In Laplace transform domain, defining

dislocation functions as

AW (x, p) = Wy, (.0, p)—wy, (x,0,p), a<|x<b, (35)
’ 0, 0<|x<a, b<[x<o,
* ¢(1)*(X10’ p)_ ¢(2)*(X’0' p), a< |X| <b,
A = 36
o) {o, 0<[<a b<l<w, (30)

we obtain from Egs. (11) and (12)

Wy, (%0, p) =Wy, (X,0,p) =AW (X, p), —o0<X<+m, (37)
boy (X0, P) = ¢y (x0,p) =Ag™ (X, P),  —o0 <X <+oo, (38)
Substituting Egs. (32) and (33) into Egs. (5) and (6) and using Egs. (13)-(18), (37) and

(38), we have



a, a; a3 A 5 g a5y A(l)
Ay dyp By Ay Ay Ay Ay Ay B(l)

p Qyp 8y 8y 8 Ay Ay Ay D(l) (39)
A5 @8g5 853 85 g 85y 85y Asg A(z) ,
gy Qe g3 gy A5 Qg gy g B(Z)
A A Q3 8y 8 8 Ay Ap C(2) W* S, )

(s.p
Qg Qg QAgg Qdg g g Ay Qg D(2) ¢ (S’ p)

which are given in Appendix A, are knowns related to s and p, and Aw’

0
0
8y 8y 8y Ay Ay A 8y Ay || Cp 0
0
0
0

>

>

where a;;,

and A_¢*are Fourier cosine transforms of Aw”™ and A¢g”, respectively. According to

the Cramer’s rule, we get

Ay (5,p) = Ay (s, p)aw’(s, 22: s;n(s, P)AG"(s, p) (40)
8, (5, p)= 2zl p)Aw’ (s, zz: ﬁfz(s, p)AG (5. p) 1)
C, (s, p) = s PIAWEs Zg: ?;3(5’ p)AG (s.p) “2)
Dy (s, p) = Sz(s PIAW (s zz: ﬁ;m(s, p)AG (5. p) 43)

where A(s, p) is the determinant of the coefficient matrix of equation system (39),

and A,,(s,p), An(s,p), Ass(sip), Asls,p) . Ag(s p), Ag(s,p), Agl(s, p) and

A84(s, IO) are respectively the corresponding algebra cofactors when applying the

Cramer’s rule.
3. Singular integral equations and solutions

Substituting Egs. (32) and (33) into Egs. (5) and (6) in Laplace transform domain and

using Egs. (9), (10), (40) to (43), we have



&, (x0,p)= EL” P (s, p)AW (s, ZEJF P (5. PAG (s, IO)cos(sx)ds =0, (44

v

. 2 (= Pyy(s, p)AW (s, p)+ Py, (s, p)Ag (s, p) D
D 0,p)=— 21 2 ds = ——2 | 45
, (x0,p)== AG D) cos(sx)ds ==~ (45)
where
a. A, +a, A, +a.A,+a ,A .
P- — i1—71 i2—72 i3—/73 i4 74’ =1,2 ’ 46
2 A5 p) (i=12) (46)
a. Ay +a,Ay +3.A 0 +2,A .
P- — i1—81 i2—/82 i3—/83 i4 84, :1’2 ) 47
: A5 p) (i=12) (47)

Substituting Aw(s, p), Ag” (s, p) for Aw’ (v, p), A¢"(v, p), and using Egs. (35) and

(36), we can obtain the following singular integral equations in Laplace transform

domain by by-part integration.

L vyllx f(v, p) dv+ V712X g(v, p)dv
- (48)

To

+;L [Qu (v, x, p)f (v, p)+ Qulv.x plov. pldv=—-2,  a<x<b

L Ta_ gy, p)dv+— J'yzz (v, p)dv
V—X (49)

= = ['[Qu v, %, )T (v, )+ Qs v, . PV, ) = —%, a<x<b,

where f(v, p)szWd—\(/V’p) and g(v, p):quﬁd—\(/v,p) are called dislocation density

functions, and y; and Q; (v, X, p) are, for conciseness, all given in Appendix B.

Introducing two nondimensional variables » and ¢

b-a b+a b-a b+a
y=2-a,  b+a x=2-a_,b+a 50
y 1T 2 T (50)

Egs. (48) and (49) become



J‘_l Yu F771 d77+ J’ Y12 G(U,p)dﬂ
n-g -G

(51)
+;L[Qn(77,g, p)F(n, p)+ Qu (7., )G (7. p)n = —%0, o <1,
J’_l Ya F77, d77+ J' V22 G(771 p)d77
n—-¢ 2)

+— [ Bl pF G p)+ Qs pG(n. D =22, gl <1
" p

where F (7, p),G(7 p) and Q, (1,5, p) are also given in Appendix B.
Recalling that F(n, p) and G(n, p) represent the derivatives of the displacement
and electric potential differences with respect to v, the single-valued conditions of
Egs. (51) and (52) may be expressed as [21]
1

[,F(r.pYn=0, (53)
1

[,G(7, p)n=0. (54)

So far, the Cauchy singular integral Egs. (51) and (52) and the single-valued
conditions (53) and (54) have been derived. The general theory of singular integral
equations shows that F(z, p) and G(7, p) have —1/2 singularity at +1 [22]. Letting

Fr.p)= F2P)

, (55)
1-7n?
67, p)=12P), (56)
1-n
and expanding R(7, p), V(, p) in forms of Chebyshev polynomials
R(7.p)=2-C. ()T (1) 67)
V(7.p)= Y. D,(p)T, () (59)

N
o

10



a system of linear algebraic equations can be obtained by using Gauss-Chebyshev

formula [23]:
i( Vi +Qll(77 gl)j R(ﬂjl p)_’_i[ 712 +612(77-,gi)jV(77j’ p):_T_O’ (59)
=\ 7, ¢ a N =\ n,-¢ : N p
i( Vo +Q21( )]R(ﬂj:p)+i( V22 +622(77_’gi)JV(77j’p):_&, (60)
j=1 77] i N j=1 77] 5 : N p
iR(”_J'p) 0 (61)
= N
NV
Z ( )= (62)
in which
n;=cos[(2j-1)z/2N], j=12,-,N, (63)
¢, =cos(iz/N), i=12,--,N-1, (64)

and N is the number of the discrete points of R(7, p) and V(#, p) between —1 and
+1.
The dynamic stress intensity factor (DSIF) and the dynamic electric displacement

intensity factor (DEDIF) in Laplace transform domain are defined as

Ky, (p)= lim \/2z(x~b)e,,"(x.0, ), (65)
Koy (bs)= lim \27(x~b)D,"(x0, p), (66)
Ky (p)=-lim 2z(a - x)or,,"(x.0, p), (67)
Ko (b,5)=—1lim\2z(a-x)D, (x,0, p), (68)

X—a

By the property of Chebyshev polynomials [23]

}_1@—ﬂﬁwﬁ} [g —ﬁ/—gl
ﬂLl n—¢ A= —1) (g7 1)

we obtain

s[> 1, (69)

11



b-a

Kinw (P)= === 7 ruRQ p)+ 7.V 1, p)] (70)
Koo ()=~ 25 2 7l7aR )+ 7. 0 p)] @
K (p) =2 2R EL )47V (1 p)] 72
Kow (p) =252 #lraRE1 P+ 72V (L) 73

The Laplace inverse transformations of Eqgs. (70) to (73) are carried out by the
numerical method developed by Miller and Guy [24]. In this paper, numerical results
were given within a range of 0 < ¢, ,t/((o—a)/2)<40.

For the impermeable case, as the electrical impact is loaded, the dynamic stress
intensity factor will not play the same role as in the purely elastic case. Therefore, we
introduce the dynamic energy release rate (DERR) G as Pak [20] did. According to
Egs. (65), (66), (70) and (71), as x > b*, o, (x,0,t), D,(x0,t) and Aw(x,0,t),

A¢(x,0,t) can be respectively approximated as

Oy (X’O’t) 1 {Klllb (t)} .
=— , =12, 74
{Dxxao} 20 0) | KeolD) v
{AW(X*O’t)} _ 2(b—x 1 { Voo T 712:|{Klllb (t)}’ j=12. (75)
A¢(X’O’t) T Yo~ Yu¥al=7a  Yu ) Ko (t)
Substituting Egs. (74) and (75) into the equation of
b+d, 1 T
Gyd, = [ E[azy (x.0,t), D, (x,0,t)[Aw(x —d, ,0,t), Ag(x—d,,0,t)]" dx (76)
yields
1
G, = [722K|||b2(t)_(712 +721)K|||b(t)KDb(t)+7/11KDb2(t)]' (77)
4(711722 - 712721)

Similarly, the dynamic energy release rate as x — a~ can also be obtained as follows

12



1
G, = [722K|||a2(t)_(712 +721)K|||a(t)KDa(t)+ 711KDa2(t)]' (78)
4(711722 - 712721)

For electric permeable case, the singular integral equation and the single-valued

condition can be derived by a similar method as

j T f(v, p)dv+1IbQ11(v,x, p)f(v, p)dv:—T—o. a<x<b. (79)
ay—x 7z da p
I: f(v,p)dv=0, (80)

and by means of the solution of Egs. (79) and (80), the electric displacement

D, (x,0, p) on crack surfaces can be obtained as

“(x0,p)= j oy, v+ = ['Qu (v x, p)f (v, pliv -2, a<x<b. (81)
ay—X T *a p

The DSIF in Laplace domain and the DERR are

Klllb*(p): - ”(b_ a)/2711R(1’ p)1 (82)

Kma*(p): ”(b _a)/2711R(_1’ p)' (83)
_Ku'(®)

G = Ay ’ 89
_ Kmaz(t)

Ge = 4y, . (8%)

The analysis of the electrical permeable case shows that the imposed electric
displacement impact doesn’t contribute to the DSIF and the DERR. Therefore, the
DERR and the DSIF are equivalent to the fracture parameters of electric permeable
boundary case. In the absence of the mechanical impact, in other words, the material
is in effect seamless as far as the electric field is concerned and the field will not be

perturbed by the presence of the interface cracks [25].

13



4. Results and discussion

In this section, the DSIF and/or the DERR for various electromechanical impact loads
and different geometry and property parameters with normalized time ¢, ,t/c, where
c= %a’ are respectively calculated. The numerical results of DSIF is normalized by
z,(c)"* and DERR is normalized by G,, where G, is defined as [20]

Gy = 7110’ [ (2Cuuy sy + 28150 ) (86)

which denotes the energy release rate for the unbounded piezoelectric material
subjected to static shear — z,,. The loading combination parameter A is determined as

A = Dyt /(7080 ), (87)

which is used to reflect the relation between the shear impact —z,H(t) and the
electrical impact — DOH(t). The upper strip is taken as PZT-4 material constants of
which are c,, =2.56x10"N/m? , e, =12.7C/m? , ¢, =64.63x107°C/Vm and
p=15x10°kg/m*® . As the effects of electric load and geometry of crack
configuration on dynamic response are investigated, the lower strip is taken as BaTiO3
material constants of which are c, =4.4x10°N/m* , e, =11.4C/m?* |,
£, =128.3x107°C/Vm and p=5.7x10°kg/m®. And as the effects of material
property parameters are investigated, except for the variation of the material constant
pointed out in the corresponding figures, all the other material constants of the lower
strip are respectively set to be equal to that of the upper strip, i.e. PZT-4. Without any
loss in generality, in all our numerical procedure, we take 7, = 4.2x10° N/m?, and

determine D, by A through Eq. (87).

14



The normalized DSIF and DERR in the case of electric impermeable interface
cracks subjected to the shear impact are presented in Figs. 2(a) and (b), respectively.
For this loading case, the DEDIF at the crack tip, i.e. x=a or x =b is equal to zero.
Therefore, the DSIF and DERR as indicators for possible crack initiation and growth
play the same role in the case where only the shear impact is imposed. Figs. 2(a) and
(b) indicate that both the DSIF and the DERR at x = a are higher than that at x=D.
And it is found that for given crack configuration and material pair, this is a common
phenomenon for the coplanar interface cracks.

To illustrate the influence of the dynamic electric load on the interface crack
extension force, the normalized DSIF and DERR at x = a verse normalized time as a
function of A for PZT-4/BaTiO3 are plotted in Figs. 3(a) and (b), respectively. As
shown in Fig.3 (a), at the beginning of the impact process, the higher value of A leads
to lower value of DSIF, then the higher value of A4 leads to higher value of DSIF.
After three times of oscillating, the value of DSIF finally varies little as a function of
A for the given geometry parameters and material constants. Fig. 3(b) shows A has
different effects on DERR. In particular, at t =0, the DERR is negative in the
presence of electric field, and the DERR for a fixed value A equals to that for — 1.
Because the electric fields have contributed to the DERR as the impermeable case is
considered, the DERR is more appropriate to be taken as fracture parameter than the
DSIF in the view of fracture mechanics. All these results also imply that, on one hand,
the electrical load promotes or retards crack growth depending on both the magnitude

and the direction of electrical load. On the other hand, the negative electric impact is

15



more liable to promote the crack initiation and growth. In addition, numerical results
show that for given geometry of crack configuration and combination of material
parameters, the DEDIFs at the crack tips are proportional to 4, and do not vary with
time.

Figs. 4-6 show the effects of the sizes of piezoelectric strips on the DERR of both
electric impermeable and electric permeable interface cracks. From these figures, it
can be clearly seen that for the given material pair, PZT-4/BaTiOs, there are no
distinct differences for the two kinds of electric boundaries in the absence of electric
impact. However, the peak value corresponding to electric permeable interface cracks
is higher than that corresponding to electric impermeable case. For two equal
thickness’ piezoelectric strips, as shown in Figs. 4(a) and (b), with the value of H,/c
increasing, both the number of resonance peak of DERR and the corresponding main
peak value decrease, thus, the oscillation will become weaker. It should be noted that
as H,/c — oo, the results obtained are in fact that of two coplanar cracks between two
dissimilar half-infinite piezoelectric materials. For a fixed value of H,/c, Figs. 5(a)
and (b) indicate that the oscillation also becomes weaker with the ratio of strip’s
thickness increasing. And as the ratio tends to infinity, the corresponding results
reflect the dynamic properties of interface cracks between a half-infinite piezoelectric
material and its bonded strip. From Fig. 6, we can easily know that the peak value of
DERR decreases with the value of a/c increasing. That is, the larger the distance

between the two cracks, the weaker the oscillation is. Moreover, the relative crack
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separation has little effect on normalized time of reaching the corresponding static
value.

As shown in Figs. 7-10, material constants have significant influences on DERR
for both electric impermeable and electric permeable cases. In general, the peak value
of DERR for electric permeable interface cracks is much higher than that for electric
impermeable cracks, and the effects of piezoelectric constant and dielectric constant
on DERR for electric permeable interface cracks have different properties to that for
electric impermeable cracks.

5. Conclusions

In this article, the transient response of two coplanar interface cracks between two
dissimilar piezoelectric strips under dynamic electromechanical loads is investigated.
Two kinds of electric boundary conditions are adopted. Laplace and Fourier
transforms and dislocation density functions are used to reduce the mixed boundary
value problem to a system of Cauchy singular equations. The DSIF and DERR are
calculated and discussed. From the numerical results presented in this paper, the
following conclusions may be drawn.

For both electric impermeable and electric permeable boundary conditions, the
DERR and DSIF at the inner crack tip are always larger than the DERR and DSIF at
the outer tip. In other words, under electromechanical impact, the coplanar cracks tend
to propagate at first from inner crack tips. For both electric impermeable cracks when
only shear impact is applied and the electric permeable interface cracks, the DERR

and DSIF are equivalent in view of fracture mechanics. However, for electric
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impermeable crack under mechanical and electrical impacts, the DERR as the fracture
parameter can reflect more accurate properties than the DSIF, and properly adjusting
electric load can retard the crack initiation and growth. For both electric impermeable
and permeable cases, geometry criterion of piezoelectric strips, relative crack
separation and material constants, all have great and different influences on the
DERR. And the effects of material constants especially piezoelectric and dielectric
constants are more sensitive than that of crack configuration to the two kinds of
electric boundary conditions. In addition, the transient responses of interface cracks
both between two half-infinite piezoelectric materials and between a half-infinite
piezoelectric material and its bonded strip are the particular cases of the problem

studied in this paper.
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Appendix A

Ay =8y = Chuu@ayr Q3 =~y = €503
815 = 815 = Cyy)(2)» g7 =~y = €453

Ay =8y =8y =8, =0, 8, =-3, = EpS, Ay =~y = &S

~

A3 = —Cupq exp(— Ay hl)' A3 =Cup@q eXp(a(l) hl)
Ag3 = _e15(1)59Xp(_ Shl)' Ay = €y5(p)S eXp(Sh1)1 Qg =8y =8y = Ay = 0
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Ay = —Cu eXp(a(Z) hz)’ Ay = Cun exp(— a(Z)hz)

Ay = _elS(Z)SEXp(ShZ)’ A = e15(2)59Xp(_ Shz)’ Qus = Q5 =8y = Q5 = 0

Agz = &3S exp(— Shl)’

A, = —&35exp(sh, )

Qg7 = E11(2)S exp(sh, ), ag = IO exp(-sh,)

Az =8y =85 = —Ayg

Ag; = gy = Ey50 / €1y 1 Ags

Appendix B

=1, Az;; =ay

~ 2 2~ 2
Caw®is2) €11y T Cas2)€is50) €112)

=a86 =—e

:a77:a78:O

15(2) /511(2) » gz

=g, =8y =8 =1

~ Caa)Cas €110y €11(2) (511(1) + &1y )

Vi =
7
-~ 2 ~ 2

 CuCis)€ua) €1 1 Cue 5w fun) )

Vi =7 =Va
V4
— ~ 2 2

B (C44(1) * Cuz) )511(1) €11(2)

Vo =

v

2 2 2 2
Y =€ fuay TEi50 €2

- 2‘315(1) €152) €110 €11(2)

Qulvx p)= 2+ [ _sznsspp
Qulv,x p) =7 e _szlzsspp
Q. (v, x, p)= Ut x +L+w _silsspp
Qua V%, P) = Vyfx o _sFA)Zszpp

- (C44(1) * Cur) )511(1) €102 (511(1) *+ &14(9) )

;/llJ[sms v —x)+sins(v+x)[ds

— 7y, [[sins(v—x)+sins(v+x)lds

~ ¥4, |[sins(v—x)+sins(v+x)Jds

J
—721j5'“5 v —Xx)+sins(v+ x)]ds
J
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b-a b+a
F(n,p)= f(—n+;,pj

b-a b+a
G(7, p)=9(—f7+L,pj

~ b-a b-a b+a b-a b+a .
Q;(7.6.p)= Qij( S Nty St ,pj (i,j=12)
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Fig. 1. Two dissimilar piezoelectric strips with two coplanar interface
cracks under anti-plane mechanical impact and electrical impact
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Fig. 2. Normalized dynamic stress intensity factors and energy release
rates at x=a and x=b with normalized time for electric impermeable
interface cracks under shear impact, PZT-4/BaTiOs, a/c=1, hy/h;=1,
h1/C=5
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Fig. 3. Normalized dynamic stress intensity factors and energy release
rates for various load combination parameters with normalized time
for electric impermeable interface cracks, PZT-4/BaTiOs;, a/c=1,
hz/hj_:l, h1/C:5
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Fig. 4. Normalized dynamic energy release rates for various width’s
piezoelectric strips as hy/hy=1 with normalized time under shear
impact, PZT-4/BaTiOs, a/c=1: (a) electric impermeable cracks; (b)
electric permeable cracks
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Fig. 5. Normalized dynamic energy release rates for various ratios of
ho/hy as hi/c=5 with normalized time under shear impact,
PZT-4/BaTiO3, a/c=1: (a) electric impermeable cracks; (b) electric
permeable cracks
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