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ALLEN LEUNG and FRANCIS LOPEZ-REAL 

 

THEOREM JUSTIFICATION AND ACQUISITION IN DYNAMIC 

GEOMETRY: A CASE OF PROOF BY CONTRADICTION 

 

 

ABSTRACT.   Theorem acquisition and deductive proof have always been core elements in the 

study and teaching of Euclidean geometry. The introduction of dynamic geometry environments, 

DGE (e.g. Cabri-Géomètre, Geometer's Sketchpad), into classrooms in the past decade has posed 

a challenge to this praxis. Students can experiment through different dragging modalities on 

geometrical objects that they construct, and consequently infer properties (generalities, theorems) 

about the geometrical artifacts. Because of the inductive nature of the DGE, the experimental-

theoretical gap that exists in the acquisition and justification of geometrical knowledge becomes 

an important pedagogical and epistemological concern. In this paper, we will describe and study a 

‘Cabri proof by contradiction’ of a theorem on cyclic quadrilaterals given by a pair of 16 year-old 

students in a Hong Kong secondary school. We will discuss how their construction motivates a 

visual-cognitive scheme on ‘seeing’ proof in DGE, and how this scheme could fit into the 

theoretical construct of cognitive unity of theorems proposed by Boero, Garuti and Mariotti 

(1996). The issue of a cognitive duality and its relation to visualization will be raised and 

discussed. Finally, we propose a possible perspective to bridge the experimental-theoretical gap 

in DGE by introducing the idea of a dynamic template as a visualizer to geometrical theorem 

justification and acquisition. 

 

KEY WORDS:  dynamic geometry, proof, justification, visualization. 
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INTRODUCTION 

 Theorem acquisition and proof have traditionally been at the heart of the study and 

teaching of Euclidean geometry. In our mathematical culture, Euclidean geometry has 

been regarded as a formal system and proofs in it are deductive in nature. A geometrical 

theorem or statement is justified by deducing it from known theorems and axioms in 

manners that are consistent with a formal axiomatic system. This has given rise to a 

tradition in which the teaching of Euclidean geometry is largely about teaching deductive 

reasoning by means of proving theorems. However, the introduction of dynamic 

geometry environments, DGE (e.g. Cabri-Géomètre, Geometer's Sketchpad), into the 

classrooms in the past decade has posed a challenge to this praxis (see, for example, 

Chazan, 1993; Hölzl, 1996; Noss & Hoyles, 1996; King & Schattschneider, 1997; 

Mariotti & Bartolini Bussi, 1998). In a dynamic geometry environment, teacher and 

students can experiment through different dragging modalities on geometrical objects that 

they have constructed, and consequently infer properties (generalities, theorems) about 

the geometrical artifacts. The ideal synthetic view of Euclidean geometry is approximated 

by a computer model that might consequently give rise to a different geometry and 

suggest new styles of reasoning: 

 

“…dynamic geometry should not be treated as if it is merely a new interface to Euclidean 

construction. Line segments that stretch and points that move relative to each other are 

not trivially the same objects that one treats in the familiar synthetic geometry, and this 

suggests new styles of reasoning.” (Goldenberg 1995, p.220) 
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On the one hand, this possible new geometry is shaped by anomalies due to 

‘computational transposition’ (Balacheff 1993) from abstract idealism to concrete 

computational graphic images, while on the other hand it has evolved from pedagogical 

rationales.   

  

“Cabri’s drag-mode may be axiomatically neutral but certainly not heuristically neutral. 

Thus, dragging suggest new styles of consideration and reasoning which are in a way 

characteristic of Cabri geometry…..not in an axiomatic sense but in a didactic one.” 

(Hölzl, 1996, p.177) 

 

Drag-mode in dynamic geometry seems to be a kernel that is potent with rich didactic 

possibilities. Studies have been conducted to investigate the effect of different dragging 

behaviours of students. Hölzl observed that some students favored a “drag & link” 

strategy and did not “simply want to fix a solution but to create new knowledge” (Hölzl, 

1996, p.182). Arzarello, Micheletti, Olivero and Robutti (1998) analysed the types of 

dragging strategy (wandering dragging, dragging test, lieu meut dragging) that students 

employed in arriving at correspondingly different conjectural statements for an open 

geometrical problem.  Leung and Lopez-Real (2000) analysed students’ Cabri solutions 

to a geometrical construction problem and proposed a dragging scheme that could have 

guided them through their Cabri exploration. This dragging scheme seemed to open up a 

‘zone of proximal solutions’ (to paraphrase Vygotsky, 1978) between the students and 

the Cabri environment in which insight and understanding could be developed via open 

investigation and experimentation (Leung & Lopez-Real, 2000, p.150). Arzarello (2000) 
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further commented on students’ dragging ‘tempos’ (slow-fast) that seems to reflect a 

synchronization between visual perception and cognition, and hence suggested that “a 

conscious use of dragging…..can support the subject in the processes of generating 

generalities.” (Arzarello, 2000, p.29)  

 

When this empirical and inductive dimension is to be added to a pedagogical structure 

that is traditionally rooted in deductive logic, careful examination is needed on how to 

combine these two seemingly opposite perspectives: that is, to deal with acquisition and 

justification (proof) of geometrical knowledge in a pedagogical situation embedded in a 

DGE. The passage from ‘intuitive’ geometry to ‘theoretical’ geometry in the evolution of 

a justification in a proof is neither simple nor spontaneous. The possibility of modifying 

the system of relations among statements in geometrical knowledge mediated by DGE is 

entertained by educational researchers (see for example, Mariotti, 1997).  Hoyles and 

Healy (1999) investigated how visual reasoning using Cabri, in particular through robust 

and soft construction, can motivate students to explain their empirical conjectures using 

formal proof. Their findings indicated that there is a disparity in students’ perceptions 

between Cabri constructions and Euclidean formal proofs.  

 

“… Cabri-Géomètre helps students in defining and identifying geometrical properties and 

the dependencies between them, but not in proving them…after starting on the writing of 

the proof, the computer interactions were suspended” (Healy, 2000, p.114).  
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A connection seems to be missing to bridge the empirical and the theoretical cognitive 

domains. This breach may be due to the traditional teaching emphasis on accepting 

something is true (T) only if it can be proved (P) (i.e. P⇒  T). Students might see the 

proof of a theorem (hence accepting the truth of it) as independent from exploratory 

activities in which the content of the theorem can be experimentally verified. However, 

deVilliers has argued that “in actual mathematical research, the forward implication (T⇒  

P), ……..often plays a far greater role [in conjecturing and proving] in motivating and 

guiding our action” (de Villiers, 1997, p.20). It is the conviction that something is true 

that drives us to seek a proof. In DGE, we can easily be convinced of:  

 

“the general validity of a conjecture by seeing its truth displayed while objects undergo 

continuous transformation across the screen [but] this provides no personally satisfactory 

explanation of why it may be true. … There is no insight or understanding into how it is 

the consequence of other familiar results”  (de Villiers, 1997, p.22).  

 

Boero, Garuti, Lemut and Mariotti (Garuti et al, 1996; Boero et al, 1996; Mariotti et al, 

1997; Garuti et al, 1998; Boero et al, 1999) conducted a body of research into students’ 

behaviour in the linkage between the process of producing conjectures (or generating 

conditionality of statements) and the process of proving theorems.  In particular, Boero et 

al proposed a hypothesis on conjecture production as follows: 

 

“the conditionality of the statement can (authors’ emphasis) be the product of a dynamic 

exploration of the problem situation during which the identification of a special regularity 
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leads to a temporal section of the exploration process, that will be subsequently detached 

from it and then “crystallize” from a logic point of view (“if….., then…..”)” (Boero et al, 

1996, p.121). 

 

The transformation from detachment to crystallization seems to be a critical process that 

could bridge the intuitive-formal epistemological gap.  Harel used the term 

“transformational proof scheme” to describe such a process when “students’ justifications 

attend to the generality aspects of a conjecture and involve mental operations that are 

goal oriented and intended-anticipatory” (Harel, 1996, p.62). A theoretical construct 

called the cognitive unity of theorems was proposed (Garuti et al, 1996; Mariotti et al, 

1997) as an attempt to fill the cognitive gap between empirical postulation and formal 

reasoning. It is expressed in the following terms: 

 

"during the production of the conjecture, the student progressively works out his/her 

statement through an intensive argumentative activity functionally intermingled with the 

justification of the plausibility of his/her choices. During the subsequent statement-

proving stage, the student links up with this process in a coherent way, organizing some 

of the previously produced arguments according to a logical chain." (Garuti et al, 1998, 

p.345) 

 

In DGE, intensive argumentative activities involve intelligent interaction between 

students and a virtual microworld. Instead of visual activities in DGE that focus mainly 

on empirical verification (evidence), we should seek to design structured activities that 
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may lead to formation of conjectures and have the potential to bring about insight and 

understanding. These structured conjecture-forming activities in DGE should generate an 

argumentative reasoning process, like that of Simon's (1996) "transformational 

reasoning". 

 

"Transformational reasoning is the mental or physical enactment of an operation or set of 

operations on an object or set of objects that allows one to envision the transformations 

that these objects undergo and the set of results of these operations. Central to 

transformational reasoning is the ability to consider, not a static state, but a dynamic 

process by which a new state or a continuum of states are generated."  (Simon, 1996, 

p.201) 

 

He goes on to suggest that: 

 

"…..transformational reasoning is a natural inclination of the human learner who seeks to 

understand and to validate mathematical ideas. [It] involves envisioning the 

transformation of a mathematical situation and the results of that transformation. The 

affective consequence of transformational reasoning is often a sense of understanding 

how it works." (Simon, 1996, p.207) 

 

DGE fits naturally with transformational reasoning because in it a figural continuum of 

geometrical states can be visually generated.  This genre of reasoning mediates (or is a 

hybrid) between inductive and deductive reasoning and  “may not only produce a 
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different way of thinking about mathematical situations, it may also involve a different 

set of questions” (Simon, 1996, p.203). Furthermore, mathematical understanding may be 

achieved through a “realization of the appropriateness” (Simon, 1996, p.203) of a 

dynamic argumentative process (conducted through transformational reasoning) situated 

in a particular geometrical context.  In DGE, the objects upon which transformational 

reasoning acts usually possess a dual nature. On the one hand they are spatial figures 

(drawings) depicted on the computer screen while on the other hand, when properly 

constructed, they represent ideal geometrical concepts that are formally constrained under 

an axiomatic system. This duality was the essence of Fischbien’s theory of figural 

concepts: 

 

“In this symbiosis between concept and figure, as it is revealed in geometrical entities, it 

is the image component which stimulates new directions of thought, but there are the 

logical, conceptual constraints which control the formal rigour of the process.” 

(Fischbein, 1993, p.139) 

 

Hence figural concepts are holistic cognitive structures that embrace the simultaneous 

interpretation of sensorial images (figural properties) and abstract symbolic constraints 

(conceptual properties) of geometrical entities. They “constitute only the ideal limit of a 

process of fusion and integration between the logical and the figural facets” (Fischbein, 

1993, p.150).  
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In summary, we outline a possible framework on theorem acquisition and justification in 

DGE: 

 

Theorem acquisition and justification in DGE is a schematic cognitive-visual dual 

process potent with structured conjecture-forming activities, in which dynamic visual 

explorations through different dragging modalities are applied on geometrical entities. 

These activities stimulate argumentative/transformational reasoning, which enables the 

process to converge towards integrated figural concepts that could bring about formal 

mathematical proofs, hence producing a cognitive unity in acquiring and proving 

geometrical theorems. 

 

The focus of the above framework is on the epistemic (i.e. knowledge producing) process 

that brings about the security of an ‘integrated knowledge’, rather than the formulation of 

a ‘rational proof’. Rodd (2000) distinguishes justification (formal proof) and warrant as 

“rationale for a belief” and “that which secures knowledge” respectively. She argued 

philosophically that “proof does not always warrant, and a warrant may be other than a 

proof”. In particular, she discussed the issue of visualization as a mathematical warrant in 

the context of DGE. In this sense, our framework on theorem acquisition and justification 

in DGE is about a warrant on geometrical theorems. This warrant embodies what Rota 

called “the exchangeability of theorem and proof” (Rota, 1997, p.190).  In brief, this 

refers to a common phenomenon in research mathematics, in which during the process of 

developing a proof for a particular theorem, new significant mathematical possibilities 
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often arise, which sometimes even overshadow the original intended theorem.  Rota 

proposed that: 

 

“a rigorous version of the notion of possibility be added to the formal baggage of 

metamathematics….A realistic look at the development of mathematics shows that the 

reasons for a theorem are found only after digging deep and focusing upon the 

possibilities of the theorem.” (Rota, 1997, p.191) 

 

Hanna & Jahnke (1993) also called for a shift to a pragmatic view of proof in which 

meaning, new aspects of the theorems proved, and potentiality for future applications are 

emphasied rather than merely the logical deduction of a formal proof.  In the light of this 

open approach to mathematics, the visual dynamic nature of DGE makes DGE an ideal 

laboratory to explore the richness of geometrical knowledge, in particular, the nature of 

geometrical theorems.  

  

In this paper, we will first describe and analyse a case of “Cabri proof by contradiction” 

of a theorem on cyclic quadrilaterals given by a pair of 16 year-old students in a Hong 

Kong secondary school. We will then discuss how their construction motivated us to 

begin to put together a scheme for “seeing” proof by contradiction in DGE, and to discuss 

how this scheme could fit into our framework. The issue of a cognitive duality and its 

relation to visualization will be discussed, and we will propose a possible perspective to 

bridge the experimental-theoretical gap in DGE by introducing the idea of a dynamic 
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template as a visualizer to geometrical theorem justification and acquisition. Finally, we 

will point out two directions of research implied by our proposed scheme. 

 

 

A CASE STUDY 

Background 

Hilda and Jane were Form 4 (Grade 10) students in a band one secondary school in Hong 

Kong. (Hong Kong’s secondary schools are streamed according to students’ ability. A 

band one school is for the most able students.) They were introduced to deductive proof 

in Euclidean geometry in Form 3 and became quite proficient at it. Hilda and Jane’s Form 

4 mathematics teacher acquainted them with the Cabri computer environment and since 

then, they were treating it as part of their mathematics toolkit, using it to explore 

mathematics whenever they felt the need. We were researching students’ problem solving 

strategies with and without the use of computers, and decided to run regular after-school 

problem-solving workshops for Form 3 and Form 4 students on a voluntary basis in Hilda 

and Jane’s school. In the workshops, Cabri was introduced to students for the benefit of 

those who were not familiar with it, and subsequently students were asked to use it to 

solve some geometrical problems. Hilda and Jane joined the workshops, and they always 

worked together as a pair.  

 

One of the most difficult problems that was set in the workshops was the following: 
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Let ABCD be a quadrilateral such that each pair of interior opposite angles adds up 

to 180°. Find a way to prove that ABCD must be a cyclic quadrilateral.  

 

This is the converse of a theorem with which students were familiar and which they had 

already proved in their normal coursework. They were also familiar with this converse 

statement, although no proof had been given in the textbook or by their teacher. The 

‘traditional’ proof of this converse is by contradiction and it is for this reason that it is 

omitted in the textbook. In any case, it is important to note that the students had never 

experienced this type of proof.  

 

Hilda and Jane’s Proof 

Hilda and Jane worked on the problem using Cabri and the diagram for their solution is 

shown in Figure 1 along with their written proof. 

Figure 1 

Hilda and Jane's Cabri proof 

 

PROOF: 

Assume that for a quadrilateral with each pair of interior opposite 

angles adding up to 180°, the four vertices can be on different 

circles. 

From the diagram we see that it has a contradiction as the sum of 

the opposite angles of the blue quadrilateral (EBFD) is 360°, 

which is impossible.  

Therefore, for a quadrilateral with each pair of interior opposite 

angles adding up to 180°, the four vertices must be on the same 

circle. 
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The Interview 

We interviewed Hilda and Jane after the workshops. The following is an excerpt from the 

interview. (H is Hilda, J is Jane, I1 and I2 were the interviewers.) 

 

1.  I1: Did you start with the quadrilateral or did you start with a circle? 

2.  J: To start we draw a quadrilateral. 

3. I1: So this quadrilateral is such that this angle plus this one makes 180, right? I 

can see you got ‘a’ marked here and (180 – a) here. 

4.  J: We assumed that the sum is 180. 

5. I1: When you say you assumed, in fact you drew any quad and then you just said 

we’ll assume this is 180-a. OK. What did you do then? 

6. H: Angle at centre is twice angle at circumference. We used this property to say 

that this angle is 2a and this one is 360-2a. 

7. I1: So before you did that presumably you first of all drew a circle through 3 of 

the points and then you did the same for these 3 points. 

8.  H: Yes. 

9.  I1: So then you marked these 2 centres. What did you say after that? 

10. H: Because the angle sum of a quadrilateral is 360 and these two (referring to 

∠ E and ∠ F) already add up to 360 so this is not possible. 

11. I2: So this is impossible. But do you think you have proved this? 

12. H: Not yet. 

13. I2: Why not yet? 
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14. H: Mmm…. When this point and the whole circle is moved to … then it is not a 

quadrilateral …. This one for example, if we move it up to here. 

15. I1: Actually I’m interested in the assumptions that you’re making. Because you 

started off by saying let’s assume that this angle and this one make 180, and you 

didn’t actually draw it like that. You drew any quadrilateral and you just marked 

these two adding up to 180. 

16. J: If I draw a quadrilateral with these two angles is 180, then if I draw a circle it 

goes through the 4 points. 

17. I1: Exactly. So this was a problem right? Is that what you did to begin with? Did 

you try to draw a quadrilateral that did have the opposite angles supplementary? 

18. J: No. We learned that theorem before. We knew already that it would give one 

circle so we didn’t think about drawing it. 

 

From Hilda and Jane’s written proof, the interview and our observation notes of their 

interaction with Cabri, we attempt to reconstruct the process they 

went through to reach their conclusion. For what follows, H & J 

stands for Hilda and Jane. 

 

Analysis of Hilda and Jane’s Proof 

H & J started their process of seeking a proof by insisting that any 

quadrilateral ABCD constructed in Cabri must satisfy the 

condition that each pair of opposite angles add up to o180 . They 

forced this assumption (presupposition) onto the Cabri world by 

Figure 2 

A wrongly labelled Cabri 

quadrilateral ABCD was 

drawn intentionally to 

force a visual perception 

that opposite angles add 

up to 180°. 
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marking the angles arbitrarily in a symbolic fashion (Figure 2). In other words, they 

deliberately drew a ‘wrong’ picture in Cabri and assumed that it is correct (lines 4, 5, 15).  

This tag-on labelling kept reminding them of the extra meaning that they gave to 

quadrilateral ABCD. In fact, this is simply equivalent to drawing a ‘sketch’ in paper-and-

pencil geometry. We should note that their use of the word ‘assume’ in this context is 

therefore quite different to the use in their written proof. In the first line of the written 

proof, the stated assumption is precisely the kind of statement needed to initiate a proof 

by contradiction in the traditional sense; that is, as a starting point from which to 

investigate the consequences of the assumption. Returning to their labelling in the Cabri 

diagram, H & J thus conjured up a biased Cabri world that existed as a kind of hybrid 

between their visual cognition and the actual Cabri environment
1
. 

              

H & J’s goal was to prove that such a quadrilateral ABCD must be cyclic. This goal 

motivated them to start to construct circles that would pass through the vertices of 

ABCD.  H & J knew from prior knowledge that a unique circle could be drawn through 

any three given points. They chose to construct circles C1 

(passing through A, B, D) with centre E and C2 (passing 

through B, D, C) with centre F, not expecting that circles 

C1 and C2 would coincide (lines 1-2, 7-9, see Figure 3). As 

a consequence of their forced presupposition, they 

observed, using a property of the circle that they were 

                                                           
1
 It is interesting to note that in a questionnaire on the advantages and disadvantages of using 

computer software in geometry, H commented that one of the disadvantages of DGE is that it 

‘cannot draw a wrong picture’.  

Figure 3 

Construction of circles C1 

and C2. 
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familiar with, that ∠ DEB = 2a and a2360  DFB −=∠
o  (line 6). As before, they labelled 

these two angles symbolically (see Figure 4). In doing so, H & J literally ‘saw’ that the 

sum of a pair of opposite interior angles in the (convex) quadrilateral EBFD equals o360  

(line 10). This, of course, contradicted the Euclidean property 

of a quadrilateral concerning the sum of its interior angles. H 

& J's forced presupposition resulted in an ‘impossible 

Euclidean quadrilateral’ EBFD. We call this  quadrilateral 

EBFD a pseudo-quadrilateral in H & J 's biased Cabri world. 

At this point, H & J concluded that if their forced 

presupposition were to result in a true Euclidean configuration, 

then A, B, C and D must lie on the same circle because otherwise, an impossibility would 

occur (see their written proof). However, when they were asked to revive their experience 

in reaching this conclusion during the interview, they were not completely convinced that 

they had proved what they wanted (lines 11-14). We try to 

speculate about their worries and delve further into their 

biased Cabri world. 

 

When C is being dragged sufficiently far inside the circle 

C1, the angle values 2a and a2360 −
o  correspond to the 

exterior angles (instead of interior angles as depicted in 

Figure 4) ∠ DEB and ∠ DFB respectively (see Figure 5). During the session when H & J 

were trying to come up with a Cabri proof, we recall that this scenario made them 

uncomfortable due to the sudden “flip” of the quadrilateral EBFD. This flip resulted in 

Figure 5 

The "flipping" of quadrilateral 

EBFD. 

Figure 4 

Construction of an 

"impossible" 

quadrilateral EBFD. 
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the interior angles ∠ DEB and ∠ DFB, that give rise to the contradiction, becoming 

exterior angles, and the original convex quadrilateral EBFD became a re-entrant 

quadrilateral. It would not be difficult for H & J to figure out that the contradiction still 

holds in this case since: 

  

interior ∠ DEB  +  interior ∠ DFB = ( a2360 −
o ) + 2a =   o360 . 

 

However, they did not consider this in their written proof. We speculate that this 

‘flipping’ produced some kind of visual uncertainty (or even a conflict) for H & J, which 

prevented them being fully convinced of their conclusion. This could have disturbed H & 

J and led them to doubt the validity of their construction. If they had put the two 

situations depicted in Figure 4 and Figure 5 together, and commented on the 

contradictions that these configurations entailed, they would have produced a complete 

formal proof by contradiction of the theorem. 

 

Conjecture-forming Activities 

Even though their written proof was not a complete one, H & J’s construction essentially 

captured the “validity” of the theorem. In retrospect, they did not really need the Cabri 

environment to arrive at the proof that they had produced. However, the Cabri world did 

inspire them to construct the pseudo-quadrilateral EBFD that acted as a visual guide, 

helping them to structure their geometrical reasoning. We could hence regard DGE as a 

catalytic agent that visually promotes transformational reasoning. This would motivate 

argumentative (conjecture-forming) dragging activities that foster insight and 
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understanding. In the following, we will suggest how such dragging activities could have 

taken place in H & J's situation. 

 

Figure 5 was not the only scenario that contributed to H & J’s uncertainty. H mentioned 

in the interview (Line 14) that when C is dragged to different positions, ABCD is no 

longer a quadrilateral and this prevented her being confident about her proof. However, it 

is exactly this aberration that could open up the situation from a specific consideration to 

a more general scenario.  

 

In Figure 6, we shade the pseudo-quadrilateral EBFD and hide the marked angles to 

make the diagrams more suggestive in the following discussion. In Case 1, quadrilateral 

ABCD is not convex whereas in Case 2 and Case 3, we cannot form a quadrilateral with 

A, B, C, D in this order. These cases contributed further to the visual conflict (a type of 

cognitive conflict) that H & J experienced and that hindered them from finalizing their 

proof. The situation in Case 1 could easily be dealt with since upon careful calculation, 

Case 1 Case 2 Case 3 

Figure 6 

The above cases show how the shape of the pseudo-quadrilateral EBFD changes as C is being 

dragged to different positions. 
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the contradiction ∠ DEB = 2a and a2360 DFB −=∠
o  continues to hold. Moreover, 

visually it seems obvious that A, B, C and D cannot lie on the same circle since a circle is 

a convex object while the quadrilateral ABCD here is not. Case 2 and Case 3 posit a new 

configuration for A, B, C and D which is the result of folding a convex quadrilateral 

ABCD along the diagonal BD. If we insist that the pseudo-quadrilateral EBFD possesses 

the same contradiction (i.e. ∠ DEB + ∠ DFB = o360 ) as before in these two cases, then 

the forced presupposition (assumption) for the biased Cabri world needs to be changed to 

∠DAB = ∠DCB instead of ∠DAB + ∠DCB = o180 . In fact, this new configuration is 

actually validating another familiar Euclidean theorem concerning concyclic points. 

Therefore, even in Case 2 and Case 3, we are essentially still in H & J’s biased Cabri 

world though the two forced presuppositions seem to be different on the surface. This 

dragging episode thus opens up intensive arguments on the plausible geometrical 

meanings that different positions of the dragged point C might entail. In particular, Case 

2 and Case 3 together seem to suggest a different theorem (conjecture). Furthermore, the  

pseudo- quadrilateral EBFD plays an important role in organizing the cognitive-visual 

process that would eventually lead to the acquisition and justification of an integrated 

theorem. EBFD is a visual object that measures the degree of anomaly of the biased Cabri 

world with respect to the different positions of  the vertices A, B, C and D. There are 

positions where the pseudo quadrilateral EBFD vanishes when a vertex of ABCD is 

being dragged. Figure 7 depicts a sequence of snapshots in a dragging episode when C is 

being dragged until EBFD vanishes. The last picture in the sequence shows that when C 

lies on the circumcircle C1 of A, B, and D, then E and F coincide. Furthermore, at this 

instance, o360 = DFB  + DEB ∠∠  (which has been a contradiction arising from the 
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pseudo- quadrilateral EBFD) is now a valid Euclidean statement. In fact, this condition 

holds only when C lies on C1. That is, when A, B, C and D are concyclic. We call C1 a 

locus of validity associated with the pseudo-quadrilateral EBFD. By this we mean the 

path that C traces out when it is being dragged intentionally to keep EBFD vanished, that 

is, maintaining the final configuration illustrated in Figure 7. This locus confines the 

types of configuration that A, B, C and D can assume under which the forced 

presupposition is valid.  

 

It seems reasonable (in the sense of Simon's transformational reasoning) to conclude 

from the above dynamic visual process that if pairs of opposite interior angles of a 

quadrilateral add up to o180 , then the quadrilateral is cyclic. The drag-until-vanish 

activity described above is an example of an intensive argumentative activity in DGE, in 

which a dual process of conjecture-forming and justification seems to take place.   

 

 

 

 

Figure 7 

Figure 7 depicts a sequence of snapshots in a dragging episode when C is being dragged until the 

pseudo-quadrilateral EBFD vanishes.  
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A SCHEME OF DYNAMIC THEOREM JUSTIFICATION AND ACQUISITION 

 

In the above analysis, we saw that the content of a formal proof by contradiction was 

essentially captured in an episode of ‘moving pictures’ in the Cabri world, driven by H & 

J. To what extent do we accept this dynamic construction as a kind of ‘picture proof’? 

Does this episode of ‘moving pictures’ constitute a figural concept that is a hybrid 

between inductive and deductive thinking? After experiencing a strategic dragging 

episode, how possible is it that the structure of a formal proof can emerge from the 

dynamic variation of some inter-dependent constructions in the Cabri world? The 

pseudo-quadrilateral in the biased Cabri world that H & J constructed seems to be the key 

artifact that gave the insight to H & J to form their Reductio ad Absurdum proof. We also 

saw how the dynamic variation of this pseudo-quadrilateral via dragging captured those 

locations where the imposed condition is Euclidean valid, and in turn suggested the 

geometrical theorem that was aimed to be proved. Thus the dual role that this pseudo- 

quadrilateral plays might bring about the cognitive unity of a theorem bridging the 

empirical-theoretical gap between inductive acquisition and formal justification (in 

particular, proof by contradiction) of a geometrical statement in DGE. We try to 

schematize the cognitive-visual process that composes this cognitive unity of a theorem 

in which a proof by contradiction could be ‘visualized’. We will put in parentheses the 

ideas and Cabri objects, that Hilda and Jane used, corresponding to the constructs in our 

scheme. 
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Suppose A is some type of geometrical configuration, e.g. a quadrilateral, in DGE. We 

begin by assuming that A (the quadrilateral ABCD) satisfies a certain condition C(A) 

(interior opposite angles are supplementary) and impose it on all geometrical 

configurations of type A in DGE. This forced presupposition evokes a kind of ‘mental 

labelling’ (the arbitrary labelling of ∠ DAB=2a and ∠ DCB=180-2a) in our minds which 

acts on DGE. The forced presupposition makes an object of type A in DGE biased with 

extra meaning. This biased DGE exists as a kind of hybrid state between the visual-true 

DGE (a virtual representation of the Euclidean world) and a pseudo-true interpretation, 

C(A), insisted on by us.  Depending on our disposition, an object depending on A can be 

constructed which inherits a local (i.e. depending on the location of the object) property 

that is not necessarily consistent with the Euclidean world because of C(A), hence 

resulting in a (local) contradiction. We call such an object associated with A in the biased 

DGE a pseudo object and denote it by O(A) (the quadrilateral EBFD). When part of A 

(the point C) is being dragged to different positions, O(A) might vanish (or degenerate, 

i.e., a plane figure to a line, a line to a point). The path or locus on which this happens 

gives a constraint under which the forced presupposition C(A) is Euclidean valid, i.e., 

where the biased microworld is being realized in the Euclidean world. We call this path 

the locus of validity of C(A) associated with O(A) (the circle C1). On the one hand, the 

locus of validity restricts A to certain special configurations resulting in A possessing a 

certain property which either we are trying to verify (prove) or are consequently led to 

discover (making conjecture). On the other hand, the essence of a formal proof by 

contradiction is encapsulated in the pseudo object O(A) and the locus of validity of C(A) 

associated with O(A) which convince us of the validity of a geometrical theorem. In 
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either case, these artifacts are potent with insight and understanding that could lead to 

both formulation of formal proofs and acquisition of theorems, and hence serve as visual 

tools for argumentative activities in the cognitive unity of a theorem (Figure 8). 

 

DISCUSSION 

 

Duality and Visualization 

We suggest from our analysis that an important feature in the above cognitive scheme is 

the critical dependence on the interaction between the person engaging in the 

mathematical task and DGE. In particular, the role of visualization is pivotal in the 

development of epistemic behaviour during the process that we described in the scheme. 

The construction of a pseudo object relies on the person’s visual interpretation of 

configurations in the biased microworld. The determination of the locus of validity is the  

 

result of episodes of intelligent dragging. In the person’s cognitive realm, there can exist 

a duality in interpreting the dynamic visual information simulated by the drag-mode. 

During any dragging episode, the boundary between exploring new geometrical 

situations and justifying a theorem is a blurred one. A pseudo object and its locus of 

validity could be instrumental in making a conjecture and proving the conjecture at the 

same time. The holistic nature of the dynamic visual representation in DGE allows 

variation in meaning when a DGE entity is observed (via dragging) from different points 

of view. Hence the dragging modality can be interpreted as a kind of “random access” to 

different cognitive modes (making conjecture, formulating proof) in the mind of the 

person who is interacting with DGE. This duality in interpretation in DGE is somewhat 

similar to Sfard’s (1991) discussion on the dual nature of mathematical conceptions, that 

is, the complementary unity between operational (process, algorithm) conception and 

structural (abstract object) conception of a mathematical entity. It facilitates the 

acquisition of deeper insight into the task at hand that could lead to further generalization.  
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A schematic flow on how the cognitive unity of a theorem could be broken down into different 

stages of argumentative activities in the context of seeking a proof by contradiction. 

Figure 8 

A, a type of geometrical 

configuration in DGE 

Impose condition C(A) 

on A 

A biased DGE loaded 

with a forced 

presupposition C(A) 

Construction of a pseudo 

object O(A) that inherits 

internal inconsistency 

Initial Argumentative Stage 

 

Construction of a biased 

dynamic geometry microworld 

Observation guided by 

geometrical intuition 

Second Argumentative Stage 

 

Construction of a pseudo object 

Discovery of a locus of 

validity associated with 

O(A) 

Employ the drag-until-

vanish strategy on O(A) 

Third Argumentative Stage 

 

Discovery of a locus of validity 

 

Final Argumentative Stage 

 

Make conjecture and/or organize 

a proof by contradiction 

 

Argumentative Stages of a  Proof by Contradiction in DGE 
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This kind of interaction between a person and DGE thus creates a web of meaning in 

which “the learners can draw upon and reconstruct (authors’ emphasis) for support – in  

ways that they choose as appropriate for their struggle to construct meaning for some 

mathematics.” (Noss & Hoyles, 1996, p.108)  

 

In light of the duality discussed above, instead of asking whether one can prove a 

geometrical theorem in DGE, perhaps the question should be how much content value of 

a traditional formal proof is being carried by the microworld in a particular construction-

dragging episode. By content we mean here the potentiality of the emergence (this 

happens in the person’s mind) of a formal proof structure. Appropriate and suggestive 

visual effects increase the magnitude of content value. For example, the drag-until-vanish 

Reductio ad Absurdum visualization procedure described in the scheme played an 

important role in realizing a proof. In this sense, the sequence of snapshots depicted in 

Figure 7 represents a potentiality that has a “high” content value. We might want to call 

such a visualization procedure a potential proof if our mind-set is on theorem 

justification. A traditional symbolic logical proof could then be an interpretation of such a 

visual potential proof. This opens up the question of equivalence between a visual 

potential proof in DGE and a formal Euclidean proof. To what extent do we accept a 

visual potential proof as a ‘proof’ in the traditional sense of the word? Is there a kind of 

visual logic system for DGE that is structurally isomorphic with a formal logical system 

on which the concept of a proof can be based? These are questions that deserve further 

investigation. Rather than addressing this problem of equivalence, let us recall the 

concept of visual theorems proposed by Davis: 
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“Briefly, a visual theorem is the graphical or visual output from a computer program – 

usually one of a family of such outputs – which the eye organizes into a coherent, 

identifiable whole and which is able to inspire mathematical questions of a traditional 

nature or which contributes in some way to our understanding or enrichment of some 

mathematical or real world situation.” (Davis, 1993, p.333) 

 

“It [visual theorem] is the passage from the mathematical iteration to the perceived figure 

grasped and intuited in all its stateable and unstateable visual complexities.” (Davis, 

1993, p.339) 

 

This idea of visual theorem agrees quite nicely with our visualization scheme in DGE that 

plays the role of argumentative activity in the theory of cognitive unity of a theorem. 

Using Resnick’s (1998) idea of abstract mathematical objects as positions in patterns and 

templates as concrete representations of patterns, we can think of our visualization 

scheme as a dynamic template and the computer environment as a vehicle that carries it. 

A special position resulting from a dragging episode when this dynamic template is 

activated represents an abstract geometrical object (a figural concept) and possibly a 

theorem associated with it. With this interpretation we can then think of constructions 

(e.g. a pseudo object) and their associated dragging modalities as means to discover these 

positions. For example, in the case studied above, points on a locus of validity (circle in 

this case) are positions in which a forced presupposition on a quadrilateral is Euclidean 

valid. These positions specify the general pattern of a quadrilateral into those locations 

we call cyclic quadrilaterals (a mathematical object) and at the same time, verifying a 
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theorem about such quadrilaterals. We could think of proof as meta-pattern finding 

among patterns. In DGE, these meta-patterns might emerge via intelligent construction 

and dragging by the engaging person. In H & J’s Reductio ad Absurdum proof, the 

behaviour of the pseudo-quadrilateral can be regarded as a meta-pattern that essentially 

captured a proof of a theorem concerning quadrilaterals. In this sense, a dynamic 

template constructed by a person engaging in a mathematical task is a kind of visualizer 

of abstract geometrical objects (figural concepts).  Interaction between the person and the 

DGE plays a key role in activating this visualizer to look for insight and understanding.  

Once a meta-pattern is recognized, it might then be possible to formulate a proof. We 

suggest that the idea of such a visualizer might be helpful to the understanding of proof in 

DGE and the construction of visualizers relevant to a geometrical problem may become a 

core pedagogical content of a dynamic geometry classroom. 

 

Implications for Further Research 

The cognitive-visual scheme on proof by contradiction in DGE that we have proposed 

was inspired by the work of a pair of students. In structuring it we have made a number 

of speculations on the cognitive processes that might have taken place in the students’ 

minds, especially when the pair of students were not able to articulate their reasoning in 

logically precise fashion. Even though the theoretical constructs in the scheme appear to 

be able to capture the essence of a geometrical proof by contradiction in a coherent way 

and open up a possible new type of geometrical reasoning in DGE, we still have to 

address the mathematical validity of this hypothetical proposal. An implication on the 
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nature of Euclidean geometry is the following question: What kind of theorem in 

Euclidean geometry can be written in the following form? 

 

If C(A) is assumed, then an O(A) can always be constructed such that there exists a locus 

of validity associated with O(A) on which O(A) degenerates and C(A) holds true. 

 

The existence of a locus of validity is the crucial determinant that fosters conjecture and 

justification. We do not know yet whether there is mathematical analysis that can 

guarantee its existence in a given geometrical situation. However, one thing we could 

certainly do is to apply the scheme for different geometrical theorems and test the 

feasibility of constructing these virtual geometrical objects in DGE. We hope that this 

line of research will produce more evidence on the validity of the proposed scheme. 

 

One of the aims of our work is to contextualize the theory of cognitive unity of theorems 

in DGE. We studied a pair of students’ behaviour on how they linked up their visual 

experience in DGE to construct a formal proof to a geometrical theorem. The 

hypothetical dynamic visualization model in DGE that we constructed to simulate their 

cognitive processes carries the idea of holistic figural concept with an inherited duality. 

This duality suggests a type of non-linear reasoning in contrast with the traditional linear 

deductive reasoning in a symbolic formal system: that is, depending on the disposition of 

the person interacting with DGE, a dragging activity can randomly access different facets 

of a geometrical scenario activating various logical modes (e.g. inductive, deductive). 

This opens up a new didactic discourse in the study of Euclidean geometry supported by 
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DGE. How should pedagogy be structured in order to nurture this type of non-linear 

figural reasoning that could bring about intensive argumentative activities in the 

cognitive unity of theorems in DGE? In the context of proof by contradiction, our 

proposed scheme suggests such a possible pedagogy. This work was motivated by a 

special case and there were only limited student data for us to work on. Further research 

in the applicability of the scheme in different didactic situations is needed to investigate 

the nature of this new discourse in DGE, and the extent to which this scheme can bridge 

the experimental-theoretical gap. 
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