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ALLEN LEUNG and FRANCIS LOPEZ-REAL

THEOREM JUSTIFICATION AND ACQUISITION IN DYNAMIC

GEOMETRY: A CASE OF PROOF BY CONTRADICTION

ABSTRACT. Theorem acquisition and deductive proof have always been core elements in the
study and teaching of Euclidean geometry. The introduction of dynamic geometry environments,
DGE (e.g. Cabri-Géometre, Geometer's Sketchpad), into classrooms in the past decade has posed
a challenge to this praxis. Students can experiment through different dragging modalities on
geometrical objects that they construct, and consequently infer properties (generalities, theorems)
about the geometrical artifacts. Because of the inductive nature of the DGE, the experimental-
theoretical gap that exists in the acquisition and justification of geometrical knowledge becomes
an important pedagogical and epistemological concern. In this paper, we will describe and study a
‘Cabri proof by contradiction’ of a theorem on cyclic quadrilaterals given by a pair of 16 year-old
students in a Hong Kong secondary school. We will discuss how their construction motivates a
visual-cognitive scheme on ‘seeing’ proof in DGE, and how this scheme could fit into the
theoretical construct of cognitive unity of theorems proposed by Boero, Garuti and Mariotti
(1996). The issue of a cognitive duality and its relation to visualization will be raised and
discussed. Finally, we propose a possible perspective to bridge the experimental-theoretical gap
in DGE by introducing the idea of a dynamic template as a visualizer to geometrical theorem

justification and acquisition.
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INTRODUCTION
Theorem acquisition and proof have traditionally been at the heart of the study and
teaching of Euclidean geometry. In our mathematical culture, Euclidean geometry has
been regarded as a formal system and proofs in it are deductive in nature. A geometrical
theorem or statement is justified by deducing it from known theorems and axioms in
manners that are consistent with a formal axiomatic system. This has given rise to a
tradition in which the teaching of Euclidean geometry is largely about teaching deductive
reasoning by means of proving theorems. However, the introduction of dynamic
geometry environments, DGE (e.g. Cabri-Géometre, Geometer's Sketchpad), into the
classrooms in the past decade has posed a challenge to this praxis (see, for example,
Chazan, 1993; Hoélzl, 1996; Noss & Hoyles, 1996; King & Schattschneider, 1997,
Mariotti & Bartolini Bussi, 1998). In a dynamic geometry environment, teacher and
students can experiment through different dragging modalities on geometrical objects that
they have constructed, and consequently infer properties (generalities, theorems) about
the geometrical artifacts. The ideal synthetic view of Euclidean geometry is approximated
by a computer model that might consequently give rise to a different geometry and

suggest new styles of reasoning:

“...dynamic geometry should not be treated as if it is merely a new interface to Euclidean
construction. Line segments that stretch and points that move relative to each other are
not trivially the same objects that one treats in the familiar synthetic geometry, and this

suggests new styles of reasoning.” (Goldenberg 1995, p.220)
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On the one hand, this possible new geometry is shaped by anomalies due to
‘computational transposition’ (Balacheff 1993) from abstract idealism to concrete
computational graphic images, while on the other hand it has evolved from pedagogical

rationales.

“Cabri’s drag-mode may be axiomatically neutral but certainly not heuristically neutral.
Thus, dragging suggest new styles of consideration and reasoning which are in a way
characteristic of Cabri geometry.....not in an axiomatic sense but in a didactic one.”

(Holzl, 1996, p.177)

Drag-mode in dynamic geometry seems to be a kernel that is potent with rich didactic
possibilities. Studies have been conducted to investigate the effect of different dragging
behaviours of students. Holzl observed that some students favored a “drag & link”
strategy and did not “simply want to fix a solution but to create new knowledge” (Holzl,
1996, p.182). Arzarello, Micheletti, Olivero and Robutti (1998) analysed the types of
dragging strategy (wandering dragging, dragging test, lieu meut dragging) that students
employed in arriving at correspondingly different conjectural statements for an open
geometrical problem. Leung and Lopez-Real (2000) analysed students’ Cabri solutions
to a geometrical construction problem and proposed a dragging scheme that could have
guided them through their Cabri exploration. This dragging scheme seemed to open up a
‘zone of proximal solutions’ (to paraphrase Vygotsky, 1978) between the students and
the Cabri environment in which insight and understanding could be developed via open

investigation and experimentation (Leung & Lopez-Real, 2000, p.150). Arzarello (2000)
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further commented on students’ dragging ‘tempos’ (slow-fast) that seems to reflect a
synchronization between visual perception and cognition, and hence suggested that “a
conscious use of dragging.....can support the subject in the processes of generating

generalities.” (Arzarello, 2000, p.29)

When this empirical and inductive dimension is to be added to a pedagogical structure
that is traditionally rooted in deductive logic, careful examination is needed on how to
combine these two seemingly opposite perspectives: that is, to deal with acquisition and
justification (proof) of geometrical knowledge in a pedagogical situation embedded in a
DGE. The passage from ‘intuitive’ geometry to ‘theoretical’ geometry in the evolution of
a justification in a proof is neither simple nor spontaneous. The possibility of modifying
the system of relations among statements in geometrical knowledge mediated by DGE is
entertained by educational researchers (see for example, Mariotti, 1997). Hoyles and
Healy (1999) investigated how visual reasoning using Cabri, in particular through robust
and soft construction, can motivate students to explain their empirical conjectures using
formal proof. Their findings indicated that there is a disparity in students’ perceptions

between Cabri constructions and Euclidean formal proofs.

“... Cabri-Géometre helps students in defining and identifying geometrical properties and
the dependencies between them, but not in proving them...after starting on the writing of

the proof, the computer interactions were suspended” (Healy, 2000, p.114).
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A connection seems to be missing to bridge the empirical and the theoretical cognitive
domains. This breach may be due to the traditional teaching emphasis on accepting
something is true (T) only if it can be proved (P) (i.e. P= T). Students might see the
proof of a theorem (hence accepting the truth of it) as independent from exploratory
activities in which the content of the theorem can be experimentally verified. However,
deVilliers has argued that “in actual mathematical research, the forward implication (T =
P), ........ often plays a far greater role [in conjecturing and proving] in motivating and
guiding our action” (de Villiers, 1997, p.20). It is the conviction that something is true

that drives us to seek a proof. In DGE, we can easily be convinced of:

“the general validity of a conjecture by seeing its truth displayed while objects undergo
continuous transformation across the screen [but] this provides no personally satisfactory
explanation of why it may be true. ... There is no insight or understanding into how it is

the consequence of other familiar results” (de Villiers, 1997, p.22).

Boero, Garuti, Lemut and Mariotti (Garuti et al, 1996; Boero et al, 1996; Mariotti et al,
1997; Garuti et al, 1998; Boero et al, 1999) conducted a body of research into students’
behaviour in the linkage between the process of producing conjectures (or generating
conditionality of statements) and the process of proving theorems. In particular, Boero et

al proposed a hypothesis on conjecture production as follows:

“the conditionality of the statement can (authors’ emphasis) be the product of a dynamic

exploration of the problem situation during which the identification of a special regularity
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leads to a temporal section of the exploration process, that will be subsequently detached
from it and then “crystallize” from a logic point of view (“if....., then.....”)” (Boero et al,

1996, p.121).

The transformation from detachment to crystallization seems to be a critical process that
could bridge the intuitive-formal epistemological gap.  Harel used the term
“transformational proof scheme” to describe such a process when “students’ justifications
attend to the generality aspects of a conjecture and involve mental operations that are
goal oriented and intended-anticipatory” (Harel, 1996, p.62). A theoretical construct
called the cognitive unity of theorems was proposed (Garuti et al, 1996; Mariotti et al,
1997) as an attempt to fill the cognitive gap between empirical postulation and formal

reasoning. It is expressed in the following terms:

"during the production of the conjecture, the student progressively works out his/her
statement through an intensive argumentative activity functionally intermingled with the
justification of the plausibility of his/her choices. During the subsequent statement-
proving stage, the student links up with this process in a coherent way, organizing some
of the previously produced arguments according to a logical chain." (Garuti et al, 1998,

p.345)

In DGE, intensive argumentative activities involve intelligent interaction between
students and a virtual microworld. Instead of visual activities in DGE that focus mainly

on empirical verification (evidence), we should seek to design structured activities that
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may lead to formation of conjectures and have the potential to bring about insight and
understanding. These structured conjecture-forming activities in DGE should generate an
argumentative reasoning process, like that of Simon's (1996) "transformational

reasoning".

"Transformational reasoning is the mental or physical enactment of an operation or set of
operations on an object or set of objects that allows one to envision the transformations
that these objects undergo and the set of results of these operations. Central to
transformational reasoning is the ability to consider, not a static state, but a dynamic
process by which a new state or a continuum of states are generated." (Simon, 1996,

p.201)

He goes on to suggest that:

".....transformational reasoning is a natural inclination of the human learner who seeks to
understand and to validate mathematical ideas. [It] involves envisioning the
transformation of a mathematical situation and the results of that transformation. The
affective consequence of transformational reasoning is often a sense of understanding

how it works." (Simon, 1996, p.207)

DGE fits naturally with transformational reasoning because in it a figural continuum of
geometrical states can be visually generated. This genre of reasoning mediates (or is a

hybrid) between inductive and deductive reasoning and “may not only produce a
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different way of thinking about mathematical situations, it may also involve a different
set of questions” (Simon, 1996, p.203). Furthermore, mathematical understanding may be
achieved through a “realization of the appropriateness” (Simon, 1996, p.203) of a
dynamic argumentative process (conducted through transformational reasoning) situated
in a particular geometrical context. In DGE, the objects upon which transformational
reasoning acts usually possess a dual nature. On the one hand they are spatial figures
(drawings) depicted on the computer screen while on the other hand, when properly
constructed, they represent ideal geometrical concepts that are formally constrained under
an axiomatic system. This duality was the essence of Fischbien’s theory of figural

concepts:

“In this symbiosis between concept and figure, as it is revealed in geometrical entities, it
is the image component which stimulates new directions of thought, but there are the
logical, conceptual constraints which control the formal rigour of the process.”

(Fischbein, 1993, p.139)

Hence figural concepts are holistic cognitive structures that embrace the simultaneous
interpretation of sensorial images (figural properties) and abstract symbolic constraints
(conceptual properties) of geometrical entities. They “constitute only the ideal limit of a
process of fusion and integration between the logical and the figural facets” (Fischbein,

1993, p.150).
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In summary, we outline a possible framework on theorem acquisition and justification in

DGE:

Theorem acquisition and justification in DGE is a schematic cognitive-visual dual
process potent with structured conjecture-forming activities, in which dynamic visual
explorations through different dragging modalities are applied on geometrical entities.
These activities stimulate argumentative/transformational reasoning, which enables the
process to converge towards integrated figural concepts that could bring about formal
mathematical proofs, hence producing a cognitive unity in acquiring and proving

geometrical theorems.

The focus of the above framework is on the epistemic (i.e. knowledge producing) process
that brings about the security of an ‘integrated knowledge’, rather than the formulation of
a ‘rational proof’. Rodd (2000) distinguishes justification (formal proof) and warrant as
“rationale for a belief” and “that which secures knowledge” respectively. She argued
philosophically that “proof does not always warrant, and a warrant may be other than a
proof”. In particular, she discussed the issue of visualization as a mathematical warrant in
the context of DGE. In this sense, our framework on theorem acquisition and justification
in DGE is about a warrant on geometrical theorems. This warrant embodies what Rota
called “the exchangeability of theorem and proof” (Rota, 1997, p.190). In brief, this
refers to a common phenomenon in research mathematics, in which during the process of

developing a proof for a particular theorem, new significant mathematical possibilities
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often arise, which sometimes even overshadow the original intended theorem. Rota

proposed that:

“a rigorous version of the notion of possibility be added to the formal baggage of
metamathematics....A realistic look at the development of mathematics shows that the
reasons for a theorem are found only after digging deep and focusing upon the

possibilities of the theorem.” (Rota, 1997, p.191)

Hanna & Jahnke (1993) also called for a shift to a pragmatic view of proof in which
meaning, new aspects of the theorems proved, and potentiality for future applications are
emphasied rather than merely the logical deduction of a formal proof. In the light of this
open approach to mathematics, the visual dynamic nature of DGE makes DGE an ideal
laboratory to explore the richness of geometrical knowledge, in particular, the nature of

geometrical theorems.

In this paper, we will first describe and analyse a case of “Cabri proof by contradiction”
of a theorem on cyclic quadrilaterals given by a pair of 16 year-old students in a Hong
Kong secondary school. We will then discuss how their construction motivated us to
begin to put together a scheme for “seeing” proof by contradiction in DGE, and to discuss
how this scheme could fit into our framework. The issue of a cognitive duality and its
relation to visualization will be discussed, and we will propose a possible perspective to

bridge the experimental-theoretical gap in DGE by introducing the idea of a dynamic

10
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template as a visualizer to geometrical theorem justification and acquisition. Finally, we

will point out two directions of research implied by our proposed scheme.

A CASE STUDY

Background

Hilda and Jane were Form 4 (Grade 10) students in a band one secondary school in Hong
Kong. (Hong Kong’s secondary schools are streamed according to students’ ability. A
band one school is for the most able students.) They were introduced to deductive proof
in Euclidean geometry in Form 3 and became quite proficient at it. Hilda and Jane’s Form
4 mathematics teacher acquainted them with the Cabri computer environment and since
then, they were treating it as part of their mathematics toolkit, using it to explore
mathematics whenever they felt the need. We were researching students’ problem solving
strategies with and without the use of computers, and decided to run regular after-school
problem-solving workshops for Form 3 and Form 4 students on a voluntary basis in Hilda
and Jane’s school. In the workshops, Cabri was introduced to students for the benefit of
those who were not familiar with it, and subsequently students were asked to use it to
solve some geometrical problems. Hilda and Jane joined the workshops, and they always

worked together as a pair.

One of the most difficult problems that was set in the workshops was the following:

11
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Let ABCD be a quadrilateral such that each pair of interior opposite angles adds up

to 180°. Find a way to prove that ABCD must be a cyclic quadrilateral.

This is the converse of a theorem with which students were familiar and which they had
already proved in their normal coursework. They were also familiar with this converse
statement, although no proof had been given in the textbook or by their teacher. The
‘traditional’ proof of this converse is by contradiction and it is for this reason that it is
omitted in the textbook. In any case, it is important to note that the students had never

experienced this type of proof.

Hilda and Jane’s Proof
Hilda and Jane worked on the problem using Cabri and the diagram for their solution is

shown in Figure 1 along with their written proof.

PROOF:

Assume that for a quadrilateral with each pair of interior opposite
angles adding up to 180°, the four vertices can be on different
circles.

From the diagram we see that it has a contradiction as the sum of
the opposite angles of the blue quadrilateral (EBFD) is 360°,

which is impossible.

Therefore, for a quadrilateral with each pair of interior opposite
angles adding up to 180°, the four vertices must be on the same

circle.

Figure 1

Hilda and Jane's Cabri proof

12
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The Interview
We interviewed Hilda and Jane after the workshops. The following is an excerpt from the

interview. (H is Hilda, J is Jane, I; and I, were the interviewers.)

1. I;: Did you start with the quadrilateral or did you start with a circle?
2. J: To start we draw a quadrilateral.
3. I;: So this quadrilateral is such that this angle plus this one makes 180, right? I

can see you got ‘a’ marked here and (180 — a) here.

4. J: We assumed that the sum is 180.

5. I;: When you say you assumed, in fact you drew any quad and then you just said
we’ll assume this is 180-a. OK. What did you do then?

6. H: Angle at centre is twice angle at circumference. We used this property to say
that this angle is 2a and this one is 360-2a.

7. I;: So before you did that presumably you first of all drew a circle through 3 of

the points and then you did the same for these 3 points.

8. H: Yes.
9. I;: So then you marked these 2 centres. What did you say after that?
10. H: Because the angle sum of a quadrilateral is 360 and these two (referring to

£ E and ZF) already add up to 360 so this is not possible.
11. I So this is impossible. But do you think you have proved this?
12. H: Not yet.

13. I,: Why not yet?

13



Postprint

14.  H: Mmm.... When this point and the whole circle is moved to ... then it is not a
quadrilateral .... This one for example, if we move it up to here.

15. I;: Actually I'm interested in the assumptions that you’re making. Because you
started off by saying let’s assume that this angle and this one make 180, and you
didn’t actually draw it like that. You drew any quadrilateral and you just marked
these two adding up to 180.

16. J: If I draw a quadrilateral with these two angles is 180, then if I draw a circle it
goes through the 4 points.

17. I;: Exactly. So this was a problem right? Is that what you did to begin with? Did
you try to draw a quadrilateral that did have the opposite angles supplementary?

18.  J: No. We learned that theorem before. We knew already that it would give one

circle so we didn’t think about drawing it.

From Hilda and Jane’s written proof, the interview and our observation notes of their

interaction with Cabri, we attempt to reconstruct the process they A

stands for Hilda and Jane.

Analysis of Hilda and Jane’s Proof

went through to reach their conclusion. For what follows, H & J Q\ B
C

D 180 -a

H & J started their process of seeking a proof by insisting that any Figure 2

quadrilateral ABCD constructed in Cabri must satisfy the

condition that each pair of opposite angles add up to 180°. They

forced this assumption (presupposition) onto the Cabri world by

A wrongly labelled Cabri
quadrilateral ABCD was
drawn intentionally to
force a visual perception
that opposite angles add
up to 180°.

14
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marking the angles arbitrarily in a symbolic fashion (Figure 2). In other words, they
deliberately drew a ‘wrong’ picture in Cabri and assumed that it is correct (lines 4, 5, 15).
This tag-on labelling kept reminding them of the extra meaning that they gave to
quadrilateral ABCD. In fact, this is simply equivalent to drawing a ‘sketch’ in paper-and-
pencil geometry. We should note that their use of the word ‘assume’ in this context is
therefore quite different to the use in their written proof. In the first line of the written
proof, the stated assumption is precisely the kind of statement needed to initiate a proof
by contradiction in the traditional sense; that is, as a starting point from which to
investigate the consequences of the assumption. Returning to their labelling in the Cabri
diagram, H & J thus conjured up a biased Cabri world that existed as a kind of hybrid

between their visual cognition and the actual Cabri environment'.

H & J’s goal was to prove that such a quadrilateral ABCD must be cyclic. This goal
motivated them to start to construct circles that would pass through the vertices of
ABCD. H & J knew from prior knowledge that a unique circle could be drawn through
any three given points. They chose to construct circles C1
(passing through A, B, D) with centre E and C2 (passing
through B, D, C) with centre F, not expecting that circles

C1 and C2 would coincide (lines 1-2, 7-9, see Figure 3). As

a consequence of their forced presupposition, they

Figure 3

observed, using a property of the circle that they were o .o o o ecCl

and C2.

"1t is interesting to note that in a questionnaire on the advantages and disadvantages of using
computer software in geometry, H commented that one of the disadvantages of DGE is that it
‘cannot draw a wrong picture’.

15
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familiar with, that £ DEB = 2a and ZDFB=360" —2a (line 6). As before, they labelled

these two angles symbolically (see Figure 4). In doing so, H & J literally ‘saw’ that the

sum of a pair of opposite interior angles in the (convex) quadrilateral EBFD equals 360°
(line 10). This, of course, contradicted the Euclidean property
of a quadrilateral concerning the sum of its interior angles. H
& J's forced presupposition resulted in an ‘impossible

Euclidean quadrilateral’ EBFD. We call this quadrilateral

EBFD a pseudo-quadrilateral in H & J 's biased Cabri world.

Figure 4

At this point, H & J concluded that if their forced

Construction of an
o ] ) ] ) "impossible"
presupposition were to result in a true Euclidean configuration,  quadrilateral EBFD.

then A, B, C and D must lie on the same circle because otherwise, an impossibility would
occur (see their written proof). However, when they were asked to revive their experience
in reaching this conclusion during the interview, they were not completely convinced that
they had proved what they wanted (lines 11-14). We try to
speculate about their worries and delve further into their

biased Cabri world.

When C is being dragged sufficiently far inside the circle

Figure 5

C1, the angle values 2a and 360° —2a correspond to the

The "flipping" of quadrilateral
exterior angles (instead of interior angles as depicted in ~ EBFD.
Figure 4) ZDEB and Z DFB respectively (see Figure 5). During the session when H & J

were trying to come up with a Cabri proof, we recall that this scenario made them

uncomfortable due to the sudden “flip” of the quadrilateral EBFD. This flip resulted in

16
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the interior angles £ DEB and £ DFB, that give rise to the contradiction, becoming
exterior angles, and the original convex quadrilateral EBFD became a re-entrant
quadrilateral. It would not be difficult for H & J to figure out that the contradiction still

holds in this case since:

interior £ DEB + interior ZDFB = (360" —2a)+2a= 360°".

However, they did not consider this in their written proof. We speculate that this
“flipping” produced some kind of visual uncertainty (or even a conflict) for H & J, which
prevented them being fully convinced of their conclusion. This could have disturbed H &
J and led them to doubt the validity of their construction. If they had put the two
situations depicted in Figure 4 and Figure 5 together, and commented on the
contradictions that these configurations entailed, they would have produced a complete

formal proof by contradiction of the theorem.

Conjecture-forming Activities

Even though their written proof was not a complete one, H & J’s construction essentially
captured the “validity” of the theorem. In retrospect, they did not really need the Cabri
environment to arrive at the proof that they had produced. However, the Cabri world did
inspire them to construct the pseudo-quadrilateral EBFD that acted as a visual guide,
helping them to structure their geometrical reasoning. We could hence regard DGE as a
catalytic agent that visually promotes transformational reasoning. This would motivate

argumentative (conjecture-forming) dragging activities that foster insight and

17
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understanding. In the following, we will suggest how such dragging activities could have

taken place in H & J's situation.

Figure 5 was not the only scenario that contributed to H & J’s uncertainty. H mentioned
in the interview (Line 14) that when C is dragged to different positions, ABCD is no
longer a quadrilateral and this prevented her being confident about her proof. However, it
is exactly this aberration that could open up the situation from a specific consideration to

a more general scenario.

Case 1 Case 2 Case 3

Figure 6

The above cases show how the shape of the pseudo-quadrilateral EBFD changes as C is being
dragged to different positions.

In Figure 6, we shade the pseudo-quadrilateral EBFD and hide the marked angles to
make the diagrams more suggestive in the following discussion. In Case 1, quadrilateral
ABCD is not convex whereas in Case 2 and Case 3, we cannot form a quadrilateral with
A, B, C, D in this order. These cases contributed further to the visual conflict (a type of
cognitive conflict) that H & J experienced and that hindered them from finalizing their

proof. The situation in Case 1 could easily be dealt with since upon careful calculation,

18
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the contradiction Z DEB = 2a and ZDFB=2360° —2a continues to hold. Moreover,
visually it seems obvious that A, B, C and D cannot lie on the same circle since a circle is
a convex object while the quadrilateral ABCD here is not. Case 2 and Case 3 posit a new
configuration for A, B, C and D which is the result of folding a convex quadrilateral

ABCD along the diagonal BD. If we insist that the pseudo-quadrilateral EBFD possesses

the same contradiction (i.e. ZDEB + ZDFB = 360°) as before in these two cases, then

the forced presupposition (assumption) for the biased Cabri world needs to be changed to

ZDAB = £DCB instead of ZDAB + ZDCB = 180°. In fact, this new configuration is
actually validating another familiar Euclidean theorem concerning concyclic points.
Therefore, even in Case 2 and Case 3, we are essentially still in H & J’s biased Cabri
world though the two forced presuppositions seem to be different on the surface. This
dragging episode thus opens up intensive arguments on the plausible geometrical
meanings that different positions of the dragged point C might entail. In particular, Case
2 and Case 3 together seem to suggest a different theorem (conjecture). Furthermore, the

pseudo- quadrilateral EBFD plays an important role in organizing the cognitive-visual
process that would eventually lead to the acquisition and justification of an integrated
theorem. EBFD is a visual object that measures the degree of anomaly of the biased Cabri
world with respect to the different positions of the vertices A, B, C and D. There are
positions where the pseudo quadrilateral EBFD vanishes when a vertex of ABCD is
being dragged. Figure 7 depicts a sequence of snapshots in a dragging episode when C is
being dragged until EBFD vanishes. The last picture in the sequence shows that when C

lies on the circumcircle C1 of A, B, and D, then E and F coincide. Furthermore, at this

instance, ZDEB+ ZDFB =360 (which has been a contradiction arising from the

19



Postprint

Figure 7

Figure 7 depicts a sequence of snapshots in a dragging episode when C is being dragged until the
pseudo-quadrilateral EBFD vanishes.

pseudo- quadrilateral EBFD) is now a valid Euclidean statement. In fact, this condition
holds only when C lies on C1. That is, when A, B, C and D are concyclic. We call C1 a
locus of validity associated with the pseudo-quadrilateral EBFD. By this we mean the
path that C traces out when it is being dragged intentionally to keep EBFD vanished, that
is, maintaining the final configuration illustrated in Figure 7. This locus confines the
types of configuration that A, B, C and D can assume under which the forced

presupposition is valid.

It seems reasonable (in the sense of Simon's transformational reasoning) to conclude
from the above dynamic visual process that if pairs of opposite interior angles of a
quadrilateral add up to 180°, then the quadrilateral is cyclic. The drag-until-vanish
activity described above is an example of an intensive argumentative activity in DGE, in

which a dual process of conjecture-forming and justification seems to take place.
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A SCHEME OF DYNAMIC THEOREM JUSTIFICATION AND ACQUISITION

In the above analysis, we saw that the content of a formal proof by contradiction was
essentially captured in an episode of ‘moving pictures’ in the Cabri world, driven by H &
J. To what extent do we accept this dynamic construction as a kind of ‘picture proof’?
Does this episode of ‘moving pictures’ constitute a figural concept that is a hybrid
between inductive and deductive thinking? After experiencing a strategic dragging
episode, how possible is it that the structure of a formal proof can emerge from the
dynamic variation of some inter-dependent constructions in the Cabri world? The
pseudo-quadrilateral in the biased Cabri world that H & J constructed seems to be the key
artifact that gave the insight to H & J to form their Reductio ad Absurdum proof. We also
saw how the dynamic variation of this pseudo-quadrilateral via dragging captured those
locations where the imposed condition is Euclidean valid, and in turn suggested the
geometrical theorem that was aimed to be proved. Thus the dual role that this pseudo-
quadrilateral plays might bring about the cognitive unity of a theorem bridging the
empirical-theoretical gap between inductive acquisition and formal justification (in
particular, proof by contradiction) of a geometrical statement in DGE. We try to
schematize the cognitive-visual process that composes this cognitive unity of a theorem
in which a proof by contradiction could be ‘visualized’. We will put in parentheses the
ideas and Cabri objects, that Hilda and Jane used, corresponding to the constructs in our

scheme.
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Suppose A is some type of geometrical configuration, e.g. a quadrilateral, in DGE. We
begin by assuming that A (the quadrilateral ABCD) satisfies a certain condition C(A)
(interior opposite angles are supplementary) and impose it on all geometrical
configurations of type A in DGE. This forced presupposition evokes a kind of ‘mental
labelling’ (the arbitrary labelling of £ DAB=2a and £ DCB=180-2a) in our minds which
acts on DGE. The forced presupposition makes an object of type A in DGE biased with
extra meaning. This biased DGE exists as a kind of hybrid state between the visual-true
DGE (a virtual representation of the Euclidean world) and a pseudo-true interpretation,
C(A), insisted on by us. Depending on our disposition, an object depending on A can be
constructed which inherits a local (i.e. depending on the location of the object) property
that is not necessarily consistent with the Euclidean world because of C(A), hence
resulting in a (local) contradiction. We call such an object associated with A in the biased
DGE a pseudo object and denote it by O(A) (the quadrilateral EBFD). When part of A
(the point C) is being dragged to different positions, O(A) might vanish (or degenerate,
i.e., a plane figure to a line, a line to a point). The path or locus on which this happens
gives a constraint under which the forced presupposition C(A) is Euclidean valid, i.e.,
where the biased microworld is being realized in the Euclidean world. We call this path
the locus of validity of C(A) associated with O(A) (the circle C1). On the one hand, the
locus of validity restricts A to certain special configurations resulting in A possessing a
certain property which either we are trying to verify (prove) or are consequently led to
discover (making conjecture). On the other hand, the essence of a formal proof by
contradiction is encapsulated in the pseudo object O(A) and the locus of validity of C(A)

associated with O(A) which convince us of the validity of a geometrical theorem. In
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either case, these artifacts are potent with insight and understanding that could lead to
both formulation of formal proofs and acquisition of theorems, and hence serve as visual

tools for argumentative activities in the cognitive unity of a theorem (Figure 8).

DISCUSSION

Duality and Visualization

We suggest from our analysis that an important feature in the above cognitive scheme is
the critical dependence on the interaction between the person engaging in the
mathematical task and DGE. In particular, the role of visualization is pivotal in the
development of epistemic behaviour during the process that we described in the scheme.
The construction of a pseudo object relies on the person’s visual interpretation of

configurations in the biased microworld. The determination of the locus of validity is the

result of episodes of intelligent dragging. In the person’s cognitive realm, there can exist
a duality in interpreting the dynamic visual information simulated by the drag-mode.
During any dragging episode, the boundary between exploring new geometrical
situations and justifying a theorem is a blurred one. A pseudo object and its locus of
validity could be instrumental in making a conjecture and proving the conjecture at the
same time. The holistic nature of the dynamic visual representation in DGE allows
variation in meaning when a DGE entity is observed (via dragging) from different points
of view. Hence the dragging modality can be interpreted as a kind of “random access” to
different cognitive modes (making conjecture, formulating proof) in the mind of the
person who is interacting with DGE. This duality in interpretation in DGE is somewhat
similar to Sfard’s (1991) discussion on the dual nature of mathematical conceptions, that
is, the complementary unity between operational (process, algorithm) conception and
structural (abstract object) conception of a mathematical entity. It facilitates the

acquisition of deeper insight into the task at hand that could lead to further generalization.
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Argumentative Stages of a Proof by Contradiction in DGE

A, a type of geometrical
configuration in DGE ™

Impose condition C(A) Initial Argumentative Stage

dynamic geometry microworld

I onA :
’ >- Construction of a biased

A biased DGE loaded _<
with a forced
presupposition C(A)
. Second Argumentative Stage
Observation guided by >- Construction of a pseudo object
: geometrical intuition

Construction of a pseudo _<
object O(A) that inherits
internal inconsistency

. Third Argumentative Stage

i Employ the drag-until-
i vanish strategy on O(A)

' ..................

> Discovery of a locus of validity

Discovery of a locus of 4
validity associated with
0(A)
Final Argumentative Stage
Make conjecture and/or organize
a proof by contradiction
Figure 8

A schematic flow on how the cognitive unity of a theorem could be broken down into different
stages of argumentative activities in the context of seeking a proof by contradiction.
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This kind of interaction between a person and DGE thus creates a web of meaning in
which “the learners can draw upon and reconstruct (authors’ emphasis) for support — in
ways that they choose as appropriate for their struggle to construct meaning for some

mathematics.” (Noss & Hoyles, 1996, p.108)

In light of the duality discussed above, instead of asking whether one can prove a
geometrical theorem in DGE, perhaps the question should be how much content value of
a traditional formal proof is being carried by the microworld in a particular construction-
dragging episode. By content we mean here the potentiality of the emergence (this
happens in the person’s mind) of a formal proof structure. Appropriate and suggestive
visual effects increase the magnitude of content value. For example, the drag-until-vanish
Reductio ad Absurdum visualization procedure described in the scheme played an
important role in realizing a proof. In this sense, the sequence of snapshots depicted in
Figure 7 represents a potentiality that has a “high” content value. We might want to call
such a visualization procedure a potential proof if our mind-set is on theorem
justification. A traditional symbolic logical proof could then be an interpretation of such a
visual potential proof. This opens up the question of equivalence between a visual
potential proof in DGE and a formal Euclidean proof. To what extent do we accept a
visual potential proof as a ‘proof’ in the traditional sense of the word? Is there a kind of
visual logic system for DGE that is structurally isomorphic with a formal logical system
on which the concept of a proof can be based? These are questions that deserve further
investigation. Rather than addressing this problem of equivalence, let us recall the

concept of visual theorems proposed by Davis:
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“Briefly, a visual theorem is the graphical or visual output from a computer program —
usually one of a family of such outputs — which the eye organizes into a coherent,
identifiable whole and which is able to inspire mathematical questions of a traditional
nature or which contributes in some way to our understanding or enrichment of some

mathematical or real world situation.” (Davis, 1993, p.333)

“It [visual theorem] is the passage from the mathematical iteration to the perceived figure
grasped and intuited in all its stateable and unstateable visual complexities.” (Davis,

1993, p.339)

This idea of visual theorem agrees quite nicely with our visualization scheme in DGE that
plays the role of argumentative activity in the theory of cognitive unity of a theorem.
Using Resnick’s (1998) idea of abstract mathematical objects as positions in patterns and
templates as concrete representations of patterns, we can think of our visualization
scheme as a dynamic template and the computer environment as a vehicle that carries it.
A special position resulting from a dragging episode when this dynamic template is
activated represents an abstract geometrical object (a figural concept) and possibly a
theorem associated with it. With this interpretation we can then think of constructions
(e.g. a pseudo object) and their associated dragging modalities as means to discover these
positions. For example, in the case studied above, points on a locus of validity (circle in
this case) are positions in which a forced presupposition on a quadrilateral is Euclidean
valid. These positions specify the general pattern of a quadrilateral into those locations

we call cyclic quadrilaterals (a mathematical object) and at the same time, verifying a
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theorem about such quadrilaterals. We could think of proof as meta-pattern finding
among patterns. In DGE, these meta-patterns might emerge via intelligent construction
and dragging by the engaging person. In H & J’s Reductio ad Absurdum proof, the
behaviour of the pseudo-quadrilateral can be regarded as a meta-pattern that essentially
captured a proof of a theorem concerning quadrilaterals. In this sense, a dynamic
template constructed by a person engaging in a mathematical task is a kind of visualizer
of abstract geometrical objects (figural concepts). Interaction between the person and the
DGE plays a key role in activating this visualizer to look for insight and understanding.
Once a meta-pattern is recognized, it might then be possible to formulate a proof. We
suggest that the idea of such a visualizer might be helpful to the understanding of proof in
DGE and the construction of visualizers relevant to a geometrical problem may become a

core pedagogical content of a dynamic geometry classroom.

Implications for Further Research

The cognitive-visual scheme on proof by contradiction in DGE that we have proposed
was inspired by the work of a pair of students. In structuring it we have made a number
of speculations on the cognitive processes that might have taken place in the students’
minds, especially when the pair of students were not able to articulate their reasoning in
logically precise fashion. Even though the theoretical constructs in the scheme appear to
be able to capture the essence of a geometrical proof by contradiction in a coherent way
and open up a possible new type of geometrical reasoning in DGE, we still have to

address the mathematical validity of this hypothetical proposal. An implication on the
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nature of Euclidean geometry is the following question: What kind of theorem in

Euclidean geometry can be written in the following form?

If C(A) is assumed, then an O(A) can always be constructed such that there exists a locus

of validity associated with O(A) on which O(A) degenerates and C(A) holds true.

The existence of a locus of validity is the crucial determinant that fosters conjecture and
justification. We do not know yet whether there is mathematical analysis that can
guarantee its existence in a given geometrical situation. However, one thing we could
certainly do is to apply the scheme for different geometrical theorems and test the
feasibility of constructing these virtual geometrical objects in DGE. We hope that this

line of research will produce more evidence on the validity of the proposed scheme.

One of the aims of our work is to contextualize the theory of cognitive unity of theorems
in DGE. We studied a pair of students’ behaviour on how they linked up their visual
experience in DGE to construct a formal proof to a geometrical theorem. The
hypothetical dynamic visualization model in DGE that we constructed to simulate their
cognitive processes carries the idea of holistic figural concept with an inherited duality.
This duality suggests a type of non-linear reasoning in contrast with the traditional linear
deductive reasoning in a symbolic formal system: that is, depending on the disposition of
the person interacting with DGE, a dragging activity can randomly access different facets
of a geometrical scenario activating various logical modes (e.g. inductive, deductive).

This opens up a new didactic discourse in the study of Euclidean geometry supported by
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DGE. How should pedagogy be structured in order to nurture this type of non-linear
figural reasoning that could bring about intensive argumentative activities in the
cognitive unity of theorems in DGE? In the context of proof by contradiction, our
proposed scheme suggests such a possible pedagogy. This work was motivated by a
special case and there were only limited student data for us to work on. Further research
in the applicability of the scheme in different didactic situations is needed to investigate
the nature of this new discourse in DGE, and the extent to which this scheme can bridge

the experimental-theoretical gap.
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