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In this paper, the properties of tangential and cyclic polygons discussed by Lopez-Real in 

[4] [5] will be proved rigorously using the theory of circulant matrices. In particular, the concepts 

of slippable tangential polygons and conformable cyclic polygons will be defined. It will be 

shown that an n-sided tangential (or cyclic) polygon nP  with n even is slippable (or conformable) 

and the sum of a set of non-adjacent sides (or interior angles) of nP  satisfies certain equalities. 

On the other hand, for a tangential (or cyclic) polygon nP  with n odd, it is rigid and the sum of a 

set of non-adjacent sides (or interior angles) of nP  satisfies certain inequalities. These 

inequalities give a definite answer to the question raised by Lopez-Real in [5] concerning the 

alternating sum of interior angles of a cyclic polygon. 
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1. Introduction 

 

In School geometry, an important portion of the syllabus is usually occupied by the study 

of different type of quadrilaterals and their properties. One type of quadrilateral of 

particular interest is the cyclic quadrilateral. A cyclic quadrilateral is a quadrilateral that 

is circumscribed by a circle, i.e., the four vertices of the quadrilateral all lie on the same 

circle. This union between a circle and a quadrilateral imparts cyclic quadrilaterals with 

special properties. One such property that any student of geometry is familiar with is 

opposite interior angles of a cyclic quadrilateral supplement each other. In usual practice, 

School geometry often stops at listing, with or without formal proofs, these properties 

and then goes on to engage in problems applying these properties. This is a perfectly 

sound and fruitful practice of Mathematics. However, a curious student of Mathematics 

might wonder and wander in different directions. There are at least two possible paths to 

query about the concept of cyclic quadrilaterals. The first one is whether these well 

established properties for cyclic quadrilaterals will still hold, and in what sense, for cyclic 

n-sided polygons when n is greater than four. The second one is instead of having a circle 

circumscribing a quadrilateral, or in general a polygon, what about having a circle 

inscribed in a quadrilateral or a polygon. That is, the sides of the polygon of interest are 

tangential to the same circle that lies inside the polygon. In this situation, what are the 

properties for such a tangential polygon? Furthermore, how different or similar are these 

properties compared with those of cyclic polygons? One would suspect that there might 

exist some kind of duality in the properties between these two types of polygons since 

both of them are intimately related to a circle.  
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Lopez-Real, in a two-part paper [4] [5], studied these questions in a detailed 

narrative fashion describing a process of investigation into the possibility of generalizing 

and finding properties for tangential and cyclic polygons by looking at quadrilaterals, 

pentagons and hexagons. By insightful observations and heuristic arguments, interesting 

conclusions and questions are made at the end of the paper. Those that will form the 

objects of later discussions in this paper are outlined as follow. 

 

 

Tangential polygons: 

 

T1 If an even-sided polygon is tangential, the sums of alternating sides are equal 

(alternating sides means a sequence of every other side starting with a particular 

side). 

T2 If an even-sided polygon is tangential, there are infinite number of polygons with 

the same sides that are also tangential. (This corresponds to the idea of the 

polygon  'slipping' around the circle. For example, the case of a quadrilateral 

ABCD is illustrated in figure 1). 
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T3 If an odd-sided polygon is tangential, then it is unique (i.e. there is no other 

polygon with the same sides that is also tangential). 

T4 If an odd-sided polygon is tangential, then the sum of any alternating set of sides 

is greater than the sum of the remaining sides. (Notice that the last side of any 

alternating sequence is in fact adjacent to the first side in the sequence). 

 

Cyclic polygons: 

 

C1 If an even-sided polygon is cyclic, then the sums of alternating interior angles are 

equal (alternating interior angles means a sequence of every other interior angle 

starting with a particular interior angle).  

C2 Given an even-sided cyclic polygon with a particular sequence of interior angles, 

there are an infinite number of cyclic polygons (with the same number of sides) 

figure 1 

 

Quadrilateral ABCD ‘slips’ around a circle 
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with the same set of angles. (In figure 2a, BAAB// ′′ , CBBC// ′′ , DCCD// ′′ , 

EDDE// ′′ , FEEF// ′′  and AFFA// ′′ , hence a cyclic hexagon FEDCBA ′′′′′′  can be 

constructed such that it has the same sequence of interior angles as the given 

cyclic hexagon ABCDEF). 

 

 

 

 

 

 

 

 

 

 

 

 

C3 If an odd-sided polygon is cyclic it is unique. (See Figure 2b for an example on 

the seemingly impossibility to construct another cyclic pentagon that has the same 

sequence of interior angles as the given cyclic pentagon ABCDE using the 

method suggested in Figure 2a).  

 

 

 

figure 2a 

 

By constructing corresponding parallel sides, hexagon A′B′C′D′E′F′ has the 

same sequence of interior angles as the original hexagon ABCDEF 
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C4 The sum of any alternating set of interior angles is not necessarily greater than the 

sum of the remaining interior angles. (In figure 3, v+x+z<w+y). This is quite 

unsatisfactory when one is trying to look for a 'dual inequality' to T4. Does there 

exist an inequality relating these two sets of interior angles? 

 

 

 

 

 

 

figure  2b 

 

The construction in figure 2a for a hexagon does not work for a pentagon  
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Lopez-Real did not give formal proofs to the above claims and left C4 as an open 

question for the readers. In the process of arriving at conclusions T2 to T4, a number 

puzzle game inspired Lopez-Real to study systems of linear equations associated with 

tangential pentagons and hexagons. This 'unexpected connections' brought about fruitful 

insights and transformed the geometrical problems into algebraic questions. In this paper, 

tangential and cyclic polygons will represented by two systems of linear equations and 

formal proofs to T1 to T4, C1 to C3 will be provided. Furthermore, the question posed in 

C4 will be answered by a strict inequality.  

 

It turns out that for each tangential (or cyclic) n-sided polygon, the coefficient 

matrices for the associated nn ×  system of linear equations take the form of circulant 

matrices. The use of circulant matrices to study problems in Euclidean geometry is not 

new (see Davis [2] [3]) and they have important applications in mathematical physics 

figure 3 

 

The sum of the alternating set of interior angles v, x and z  is less than the sum of the 

remaining interior angles w and y 
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(see Aldrovandi [1]). The theory of circulant matrices is very rich and it is associated 

with the theory of Finite Fourier Transforms, however, only elementary facts are needed 

for the analyses in this paper. Definition, notation and some useful properties of circulant 

matrices will be stated in the next section. After familiarization with the needed facts, the 

rest of the paper goes on to explore the properties of tangential and cyclic polygons in the 

context of circulant matrices and give the claimed proofs. 

 

2. Some facts on circulant matrices 

 

 

An nn× matrix is said to be circulant if it takes the form 

 





















=
−

132

11

21

ccc

ccc

ccc

nn

n

L

MMM

L

L

            CCCC  

 

where each row of CCCC is a 'shifting forward one place' of the previous row in a cyclic 

fashion. For convenience, a circulant matrix CCCC is denoted by  

 

                        CCCC ),...,,(circ 21 nccc= . 

Notice right away that 

 

) , ... ,, ,( circ )) , ... , ,( circ( 21121 ccccccc nn
T

n −=   (1) 
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where  the superscript T stands for matrix transpose. 

 

 All circulant matrices of order n are simultaneously diagonalizable by the matrix 

associated with the Finite Fourier Transform (for details, see Davis [3]). This has the 

important consequences that circulant matrices commute with each other and if 1−
CCCC exits, 

then 1−
CCCC is also circulant. In fact, invertible circulants of the same order form a 

commutative group under matrix multiplication.     

 

To every circulant matrix CCCC, there is associated a complex-valued generating 

polynomial )(zPCCCC
 given by 

 

12

321)( −++++= n

n zczczcczP LCCCC
    (2) 

 

and the eigenvalues jλ  of  CCCC  are precisely  

 

njP
j

j     ,,,,    ,,,,            CCCC
L2,1),( 1 == −ωλ      (3) 

 

where ( )niπω 2exp=  is the n-th root of unity. Consequently, it is not difficult to express 

the determinant of a circulant matrix in terms of ω        CCCC
and)(zP : 
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Theorem 1. (Davis [3]) Let C be a circulant matrix. 

 

If  12 += rn  is odd, then 

 

∏∏
=

−

=

==
r

j

j

CC

n

j

j

C PPPC
1

2
1

0

)()1()(det ωω . 

 

If  22 += rn is even, then 

 

∏∏
=

−

=

−==
r

j

j
CCC

n

j

j
C PPPPC

1

21

0

)()1()1()(det ωω . 

 

 

 These stated facts will be suffice to furnish the analysis in the following sections. 

Readers are encouraged to consult [1], [2] and [3] for deeper understanding of circulant 

matrices. 

 

3. Tangential Polygon 

 

Definition 1. An n-sided polygon nP  is said to be tangential if the sides of nP  are 

tangents to an inscribed circle. A tangential nP  is said to be slippable if there exists 



Postprint 

 11 

another n-sided polygon nP′  that is tangential to the same circle as nP  and that preserves 

the sequence of lengths of the sides of nP . Otherwise, nP  is said to be rigid.  

 

Let nP  be a tangential polygon, by the tangent properties of circle, one can see 

that the tangential polygon nP  (see figure 4) with vertices n21 A ....., ,A ,A  must satisfy 

the following nn ×  system of linear equations: 

 

nn

nnn

axx

a

a

a

xx

xx

xx

                      

          

1

1

2

1

1

32

21

=+

=

=

=

+

+

+

−−

MMMMM       (S) 

 

where 211 AA=a  , 1-nn322 AA  ,  ,AA == naa L  with 0,,,,,,, 2121 >nn aaaxxx LL . 
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A tangential polygon nP  
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The system (S) can be written in terms of a circulant matrix as 

 

















=
















⋅

−
nn

n a

a

x

x

MM321L

11

2

    )0 ,  0, 1, (1, circ . 

 

Let         TTTT 0) , 0, 1, (1, circ L=n be the coefficient matrix of (S), then from (2), the generating 

polynomial of nT  is given by 

     zzP
n

+= 1)(TTTT
.    (4) 

 

By non-adjacent sides of nP , I mean any sequence of sides of nP  in which no two 

sides are adjacent to each other and the sequence terminates at the side where this 

condition cannot be met when proceeding one step further. For example, in Figure 4, if n 

is even, then alternating sides are non-adjacent sides of nP . If n is odd, then 

 

1-n2-n4321 AA  ,   ,AA  ,AA L  

 

would be a set of non-adjacent sides of nP . The compliment of a set of non-adjacent 

sides will simply be called the remaining sides of nP . Under this convention, Lopez-

Real’s alternating sides for odd n are the remaining sides. In this context, Properties T1 

and T2, T3 and T4 for tangential polygons are stated (and proved) as Theorem Two and 

Theorem Three below. 
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Theorem 2.  Suppose nP  is a tangential polygon and 4≥n  is even, then nP  is 

slippable and the sums of non-adjacent sides of nP  are equal.  

 

Proof.  Let 211 AA=a , 1-nn322 AA  ,  ,AA == naa L  be the lengths of the sides 

of nP  and let each side of nP  be divided into two segments at the point of tangency with 

lengths 1 and +ii xx  as shown in Figure 4. Since 1 ,22 ≥+= rrn  is even, using Theorem 1 

and (4), the determinant of nT is given by 

 

∏∏∏
==

−

=

=+−=−==
r

j

j
r

j

j
TTT

n

j

j
Tn nnnn

PPPPT

1

2

1

21

0

01)11(2)()1()1()(det ωωω . 

 

This means that nT  is singular and hence the solution set of the system (S) forms 

a subspace of 
nR . By continuity argument, there must exist other positive solutions for 

(S). That is, there exist other sets of 0,,, 21 >nxxx L  that preserve the lengths and the 

sequence of sides of nP . Furthermore, each set of 0,,, 21 >nxxx L  determines an n-sided 

polygon that is tangential to the same circle as nP . Hence nP  is slippable. 

 

Because n is even, one can observe from (S) (or from figure 4) that the sum of any 

set of non-adjacent sides must be equal to nn xxxxx +++++ −1321 L . This concludes 

that the sums of non-adjacent sides of nP  are equal.      
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Theorem 3.  Suppose nP  is a tangential polygon and 3≥n  is odd, then nP  is rigid and 

the sum of any set of non-adjacent sides is strictly less than the sum of the remaining 

sides.  

 

Proof.  As in the proof of Theorem 2 above, with 1 ,12 >+= rrn  odd, the 

determinant of nT  is given by: 

 

  12)()1()(det
1

2

1

21

0

∏∏∏
==

−

=

+===
r

j

j
r

j

j
TT

n

j

j
Tn nnn

PPPT ωωω .  (5) 

 

Since n is odd, ( ) 12exp −≠= niπω . This implies that the terms jω+1  are non-

zero. Hence 0det >nT  which means that nT  is non-singular and 1−
nT exists. Therefore 

the system (S) has an unique solution. This shows that nP  is rigid.  

 

Furthermore, it can be shown that  

 

1) 1, ,,1 ,1 ,1 ,1 ,1( circ
2

11 −−−=− LnT . 
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  nT  is circulant implies that 
1−

nT  is also circulant. Hence, it suffices to find out the 

entries for the first row of 
1−

nT . Since nnn ITT =⋅ −1
 (the nn× identity matrix), we must 

have 

 





















=





















⋅

0

0

1

2

1

MM

n

n

u

u

u

T     (6) 

 

where T
nuuu ),,( 2,1 K is the first column of 

1−
nT . This corresponds to the linear system: 

 

0

0

0

1

1

1

32

21

                      

          

=+

=

=

=

+

+

+

−

n

nn

uu

uu

uu

uu

MMMMM    (7) 

 

 

By backward substitution, one can check that that 

 

L ,0   ,0   ,0   ,0   ,0 141312111 =+=−=+=−=+ −−−− uuuuuuuuuu nnnnn  

 

Since n is odd, when this process continues until the first two equations of the system (7), 

the first two equations become 
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1   and0 1112 =+=− uuuu       . 

 

This gives  2121 == uu . Consequently, the first column of 
1−

nT  must be 

 

 )21 ,21 , ,21 ,21 ,21 ,21 ,21 ,21( T−−− L . 

 

Since 
1−

nT  is circulant, equation (1) implies that the first row of 
1−

nT  must equal 

 

         )21,21,,21,21,21,21,21,21( −−−− L . 

 

Hence,  1) 1, ,,1 ,1 ,1 ,1 ,1( circ 
 2

1
 1 −−−=− LnT .  

From the form of 1−
nT , one can compute easily the solutions of the system (S): 

 

).(21

                                         

),(21

),(21

124321

1243212

1243211

nnnn

nnn

nnn

aaaaaaax

aaaaaaax

aaaaaaax

++−++−+−=

−+−++−+=

+−++−+−=

−−

−−

−−

L

MM

L

L

 

 

 0,,, 21 >nxxx L  implies that 
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.

                                                    

,

,

16422531

1421753

5311642

nnn

nn

nn

aaaaaaaaa

aaaaaaaa

aaaaaaaa

+++++<++++

++++<++++

++++<++++

−−

−

−

LL

MMM

LL

LL

 

 

This means that when n is odd, the sum of any set of non-adjacent sides of nP  is 

strictly less than the sum of the remaining sides. Notice that when 3=n , these 

inequalities reduce to the triangle inequalities.      

 

 

4. Cyclic Polygon 

 

Definition 2. An n-sided polygon nP  is called cyclic if nP  is circumscribed by a circle. 

A cyclic nP  is said to be conformable if there exists another n-sided polygon nP′  that is 

circumscribed by the same circle as nP  and that preserves the sequence and the    

magnitudes of the interior angles of nP . Otherwise, nP  is said to be rigid.   

 

 For convenience in making visual observation, the discussion in this section will 

be restricted to cyclic polygons with the centre of the circumscribing circle lying inside 

the polygons (see figure 5). 
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Let nP  be a cyclic polygon. It is not difficult, using the properties of angles in a 

circle, to  see that the cyclic polygon nP  (see figure 5) with vertices n21 A ....., ,A ,A  must 

satisfy the following nn ×  system of linear equations:    

 

nnn

n

n

n

n

xxxx

x

x

x

x

xx

x

x

x

x

xx

α

α

α

α

α

=++++

=+

=+

=

=

+

++

++

+

+

+

++

−

−

−

          

         

         

321

4

3

2

1

1

4

43

3

2

1

2

21

L

MMMMM

L

L

L

L

 (S′ ) 

 

where nxxx ,,, 21 L are angles at the centre subtended by arcs 214332 AA,,AA,AA L  

respectively and n11 A2,,A2 ∠=∠= nαα L . 
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A cyclic polygon nP  
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The system (S′ ) can be written in terms of  a circulant matrix as 

 

















=
















⋅

−
nn

n x

x

α

α

MM321 L

11

2

  0) ,0 , 11,1,( circ  

 

Let 0) ,0 , 11,1,( circ  

2

321 L

−

=

n

nC  be the coefficient matrix of ( S′ ), then from (2), the 

generating polynomial of nC  is given by 

 

          321)( −++++= n
zzzzP

n
LCCCC

   (8) 

 

 

 A similar ‘non-adjacent’ convention as in the tangential polygon case will be used 

here for the definition of non-adjacent interior angles for nP . Notice in the case when n is 

odd, any sequence of consecutive non-adjacent interior angles starting with an arbitrary 

chosen interior angles must have the first member of the sequence two angles away from 

the last member of the sequence. 

 

Properties C1 and C2 for cyclic polygons can be summarized as: 

 

Theorem 4.  Suppose nP  is a cyclic polygon. If 4≥n  is even, then nP  is 

conformable and the sum of non-adjacent interior angles of nP  is equal to 2)2( π−n .  
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Proof.  Let n1 A,,A ∠∠ L  be the interior angles of nP  and 0,,, 21 >nxxx L  be 

the angles at the centre of the circle subtended by arcs 214332 AA,,AA,AA L  

respectively as shown in Figure 5. Since 1 ,22 ≥+= rrn  is even, using Theorem 1 and 

(8), the determinant of nC is given by 

 

( )

0           

 1)1()1()1(1)2(           

)()1()1(det

1

2
)3(232

1

2

=

++++−++−+−+−=

−=

∏

∏

=

−−

=

r

j

jnjjn

r

j

j
CCCn

n

PPPC
nnn

ωωω

ω

LL . 

 

Therefore nC  is singular and hence the solution set of the system (S′ ) forms a 

subspace of 
nR . By continuity argument, there must exist other positive solutions for 

( S′ ). That is, there exist other sets of 0,,, 21 >nxxx L  such that the sequence and 

magnitudes of n1 A,,A ∠∠ L  are preserved. Furthermore, each set of 0,,, 21 >nxxx L  

determines a cyclic polygon circumscribed by the same circle as nP .  Hence nP  is 

conformable. 

 

Next, after some careful counting and the fact that n is even, one can deduce from 

(S′ ) that 

 

( ) .)2(2
2

2
1

2
3211531 ππαααα −=⋅

−
=++++⋅








−=++++ − n

n
xxxx

n
nn LL  
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Similarly, 

 

( ) ππαααα )2(2
2

2
1

2
321642 −=⋅

−
=++++⋅








−=++++ n

n
xxxx

n
nn LL . 

 

Therefore, 

 

( ) ( )

( ) ( ) .2)2(21   AAA

,2)2(21AAA

153142

1531131

παααα

παααα

−=++++⋅=∠++∠+∠

−=++++⋅=∠++∠+∠

−

−−

n

n

nn

nn

LL

LL
 

 

This concludes that the sum of non-adjacent interior angles of nP  is equal to 

2)2( π−n . 

 

 

 The following theorem will prove property C3 and answer the question raised in 

C4 with an inequality. 

       

Theorem 5.   Suppose nP  is a cyclic polygon and 5≥n  is odd, then nP  is rigid. 

Furthermore, the sum of any set of non-adjacent interior angles of nP  is strictly greater 

than 2)3( π−n  and the sum of the corresponding remaining interior angles is strictly 

less than 2)1( π−n . 
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Proof.  As in the proof of Theorem four, with 1 ,12 >+= rrn  odd, the 

determinant of nC  is given by: 

 

 

 1)2(           

)()1(det

1

2
)3(2

1

∏

∏

=

−

=

++++−=

=

r

j

jnjj

r

j

j
CCn

n

PPC
nn

ωωω

ω

L

   (9) 

 

Since n is odd, ( ) 12exp −≠= niπω . This implies that the terms 

jnjj )3(21 −++++ ωωω L  in the last product are non-zero. Therefore, nC  is non-

singular and 1−
nC exists. Hence the system (S′ ) has an unique solution. Therefore, nP  is 

rigid.  

 

In particular, it can be shown that  

 

( )rrrrrrrrr
n

Cn −−−−−
−

=− 1 , , ,1 , ,1 , ,1 ,1 , circ 
2

11 K  

 

Since  nC  is circulant, 
1−

nC  is also circulant. It suffices to find out the entries for 

the first row of 
1−

nC . Since nnn ICC =⋅ −1
 (the nn× identity matrix), we must have 
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




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n

v
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where 
T

2,1 ),,( nvvv K is the first column of 
1−

nC . This corresponds to the linear system: 

 

0          

         

0

0

0

1

         

321

1

4

43

3

2

1

2

21

=++++

=+

=+

=

=

+
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+

+

+
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−

−

−
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n

n

n

n

vvvv

v

v

v

v
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v

v

v

v
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L

MMMMM

L

L

L

L

  (10) 

 

Starting from the second equation, subtract two consecutive equations in a 

downward fashion until the last equation to obtain 

 

1324645342312   ,  , ,  ,  ,  ,  , −−−− ======= nnnnn vvvvvvvvvvvvvv L  . 

 

That is, 

 

.   and  247531138642 −−−− ============= nnnnn vvvvvvvvvvvvv LL  

 

Substitute these relations into equations one and two in (10) yields 
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1
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rv
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The solutions to this set of equations are 

 

2

1
    and    

2
21

−

−
=

−
=

n

r
v

n

r
v . 

 

This gives the first column of  
1−

nC  

 

T
T

n
n

r

n

r

n

r

n

r

n

r

n

r

n

r
vvv 









−

−

−

−

−−

−

−−

−

−
=

2

1
,

2

1
,,

2
,

2

1
,

2
,

2

1
,

2
),,( 2,1 LK . 

 

Since 
1−

nC  is circulant, the first row of 
1−

nC  is given by 

 










−

−

−−

−

−−

−

−−

−

−

−

− 2

1
,

2
,,

2

1
,

2
,

2

1
,

2
,

2

1
,

2

1
,

2
 

n

r

n

r

n

r

n

r

n

r

n

r

n

r

n

r

n

r
K . 

 

Hence 

( )rrrrrrrrr
n

Cn −−−−−
−

=− 1 , , ,1 , ,1 , ,1 ,1 , circ 
2

11 K . 

 

From the form of 1−
nC , the solutions of the system (S′ ) can be computed easily: 
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))1()1()1()1((
2

1

                                                                                                                      

))1()1()1()1((
2

1

))1()1()1()1((
2

1

154321

1543212

1543211

nnn

nn

nn

rrrrrrr
n

x

rrrrrrr
n

x

rrrrrrr
n

x

ααααααα

ααααααα

ααααααα

+−+++−++−+−
−

=

+−+++−+−++−
−

=

−+++−++−+−+
−

=

−

−

−

L

MMMM

L

L

  (11) 

 

Since 0 , ,1 >nxx L  and nn A2 , ,A2 ,A2 2211 ∠=∠=∠= ααα L , we must have 

 

( )

( )

( )1421753

1431752

5321641

AAAA
1

AAAA

                                                                                            

AAAA
1

AAAA

AAAA
1

AAAA

−

−

−

∠++∠+∠+∠
−

>∠++∠+∠+∠

∠++∠+∠+∠
−

>∠++∠+∠+∠

∠++∠+∠+∠
−

>∠++∠+∠+∠

nn

nn

nn

r

r

r

r

r

r

LL

MMM

LL

LL

 (12) 

 

This means that the sum of any set of non-adjacent interior angles of nP  is strictly 

greater than rr )1( −  times the sum of the remaining interior angles. 

 

For completeness of argument, instead of using 0 , ,1 >nxx L  to conclude (12), 

one can consider the following set of inequalities (see figure 5) 

 

.22    ,121    ,22   ,  ,422    ,321 απαπαπαπαπ −<−<−−<−−<−< nxnxnnxxx L  

 

Combining these inequalities with (11) and using the fact that 
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π)2(AAAA 321 −=∠++∠+∠+∠ nnL , 

 

the same set of inequalities (12) can be computed. 

 

Now let Σ  be the sum of a set of non-adjacent interior angles and Σ′  be the sum of the 

set of the corresponding remaining angles, (12) can be re-written as 

 

      Σ′
−

>Σ   
1

    
r

r
.       (13) 

 

Since π)2( −=Σ′+Σ n , 

 

   

[ ]

. )1(                    

, )12(
1

    
1

1 

, )2(  
1

                  

π

π

π

−>Σ

−
−

>






 −
+Σ

Σ−−
−

>Σ

r

r
r

r

r

r

n
r

r

    (14) 

 

Substitute r with 2)1( −n ,  one arrives at 

 

                   π
2

3
    

−
>Σ

n
. 

 

This gives the desired result. Similarly, it can be shown that 
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                                                   π
2

1
    

−
<Σ′

n
. 

 

The proof is complete. 

       

 

5. Remarks 

 

This has been a fruitful experience in doing Mathematics. Lopez-Real's investigation 

gave the inspiration, and indeed the clue, to look for generalization and mathematical 

rigor. In the process of developing the analyses in this paper, computer dynamic 

geometry environment and computer software for working with matrices were used to 

speculate and verify conjectures before formal theorems were stated and proofs were 

constructed.   

School geometry is very rich in content, and it can lead to wonderful 

mathematical adventures if one has the openness to ask simple and obvious questions. 
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