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In this paper, the properties of tangential and cyclic polygons discussed by Lopez-Real in
[4] [5] will be proved rigorously using the theory of circulant matrices. In particular, the concepts

of slippable tangential polygons and conformable cyclic polygons will be defined. It will be

shown that an n-sided tangential (or cyclic) polygon P, with n even is slippable (or conformable)
and the sum of a set of non-adjacent sides (or interior angles) of P, satisfies certain equalities.
On the other hand, for a tangential (or cyclic) polygon P,, with n odd, it is rigid and the sum of a

set of non-adjacent sides (or interior angles) of P, satisfies certain inequalities. These

inequalities give a definite answer to the question raised by Lopez-Real in [5] concerning the

alternating sum of interior angles of a cyclic polygon.
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1. Introduction

In School geometry, an important portion of the syllabus is usually occupied by the study
of different type of quadrilaterals and their properties. One type of quadrilateral of
particular interest is the cyclic quadrilateral. A cyclic quadrilateral is a quadrilateral that
is circumscribed by a circle, i.e., the four vertices of the quadrilateral all lie on the same
circle. This union between a circle and a quadrilateral imparts cyclic quadrilaterals with
special properties. One such property that any student of geometry is familiar with is
opposite interior angles of a cyclic quadrilateral supplement each other. In usual practice,
School geometry often stops at listing, with or without formal proofs, these properties
and then goes on to engage in problems applying these properties. This is a perfectly
sound and fruitful practice of Mathematics. However, a curious student of Mathematics
might wonder and wander in different directions. There are at least two possible paths to
query about the concept of cyclic quadrilaterals. The first one is whether these well
established properties for cyclic quadrilaterals will still hold, and in what sense, for cyclic
n-sided polygons when n is greater than four. The second one is instead of having a circle
circumscribing a quadrilateral, or in general a polygon, what about having a circle
inscribed in a quadrilateral or a polygon. That is, the sides of the polygon of interest are
tangential to the same circle that lies inside the polygon. In this situation, what are the
properties for such a tangential polygon? Furthermore, how different or similar are these
properties compared with those of cyclic polygons? One would suspect that there might
exist some kind of duality in the properties between these two types of polygons since

both of them are intimately related to a circle.
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Lopez-Real, in a two-part paper [4] [5], studied these questions in a detailed
narrative fashion describing a process of investigation into the possibility of generalizing
and finding properties for tangential and cyclic polygons by looking at quadrilaterals,
pentagons and hexagons. By insightful observations and heuristic arguments, interesting
conclusions and questions are made at the end of the paper. Those that will form the

objects of later discussions in this paper are outlined as follow.

Tangential polygons:

T1 If an even-sided polygon is tangential, the sums of alternating sides are equal
(alternating sides means a sequence of every other side starting with a particular
side).

T2 If an even-sided polygon is tangential, there are infinite number of polygons with
the same sides that are also tangential. (This corresponds to the idea of the
polygon 'slipping' around the circle. For example, the case of a quadrilateral

ABCD is illustrated in figure 1).
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figure 1

Quadrilateral ABCD °‘slips’ around a circle

T3 If an odd-sided polygon is tangential, then it is unique (i.e. there is no other
polygon with the same sides that is also tangential).

T4 If an odd-sided polygon is tangential, then the sum of any alternating set of sides
is greater than the sum of the remaining sides. (Notice that the last side of any

alternating sequence is in fact adjacent to the first side in the sequence).

Cyclic polygons:

Cl If an even-sided polygon is cyclic, then the sums of alternating interior angles are
equal (alternating interior angles means a sequence of every other interior angle
starting with a particular interior angle).

C2 Given an even-sided cyclic polygon with a particular sequence of interior angles,

there are an infinite number of cyclic polygons (with the same number of sides)
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C3

with the same set of angles. (In figure 2a, AB//A'B", BC//B’C’, CD//C'D’,
DE//D’E’, EF//E'F" and FA//F'A’, hence a cyclic hexagon A'B'C'D’E’F’ can be
constructed such that it has the same sequence of interior angles as the given

cyclic hexagon ABCDEF).

figure 2a

By constructing corresponding parallel sides, hexagon A’'B’'C'D’E’'F” has the
same sequence of interior angles as the original hexagon ABCDEF

If an odd-sided polygon is cyclic it is unique. (See Figure 2b for an example on
the seemingly impossibility to construct another cyclic pentagon that has the same
sequence of interior angles as the given cyclic pentagon ABCDE using the

method suggested in Figure 2a).
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figure 2b

The construction in figure 2a for a hexagon does not work for a pentagon

C4 The sum of any alternating set of interior angles is not necessarily greater than the
sum of the remaining interior angles. (In figure 3, v+x+z<w+y). This is quite
unsatisfactory when one is trying to look for a 'dual inequality' to T4. Does there

exist an inequality relating these two sets of interior angles?
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v =66
x =133
Z=63

w=134
y= 144

figure 3

The sum of the alternating set of interior angles v, x and z is less than the sum of the
remaining interior angles w and y

Lopez-Real did not give formal proofs to the above claims and left C4 as an open
question for the readers. In the process of arriving at conclusions T2 to T4, a number
puzzle game inspired Lopez-Real to study systems of linear equations associated with
tangential pentagons and hexagons. This 'unexpected connections' brought about fruitful
insights and transformed the geometrical problems into algebraic questions. In this paper,
tangential and cyclic polygons will represented by two systems of linear equations and
formal proofs to T1 to T4, C1 to C3 will be provided. Furthermore, the question posed in

C4 will be answered by a strict inequality.

It turns out that for each tangential (or cyclic) n-sided polygon, the coefficient
matrices for the associated nxn system of linear equations take the form of circulant
matrices. The use of circulant matrices to study problems in Euclidean geometry is not

new (see Davis [2] [3]) and they have important applications in mathematical physics
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(see Aldrovandi [1]). The theory of circulant matrices is very rich and it is associated
with the theory of Finite Fourier Transforms, however, only elementary facts are needed
for the analyses in this paper. Definition, notation and some useful properties of circulant
matrices will be stated in the next section. After familiarization with the needed facts, the
rest of the paper goes on to explore the properties of tangential and cyclic polygons in the

context of circulant matrices and give the claimed proofs.

2. Some facts on circulant matrices

An nXn matrix is said to be circulant if it takes the form

¢ G C,
C _ Cn Cl n—1
€, G ¢

where each row of C is a 'shifting forward one place' of the previous row in a cyclic

fashion. For convenience, a circulant matrix C is denoted by

C=circ (¢, ¢,,...,C,) .

Notice right away that

. T .
(circ(cy,Cy,...,C,))" =circ(cy, €y, Cp_ys-easC) (1)
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where the superscript 7 stands for matrix transpose.

All circulant matrices of order n are simultaneously diagonalizable by the matrix

associated with the Finite Fourier Transform (for details, see Davis [3]). This has the
important consequences that circulant matrices commute with each other and if C™'exits,

then C'is also circulant. In fact, invertible circulants of the same order form a

commutative group under matrix multiplication.

To every circulant matrix C, there is associated a complex-valued generating

polynomial P (z) given by

Po(z)=c,+c,z+c,20 +-+c,2" 2)

and the eigenvalues A, of C are precisely

ﬂ’j:PC(a)j_l)’ j:1’2,'”,n (3)

where @ = exp(Zﬂi/ n) is the n-th root of unity. Consequently, it is not difficult to express

the determinant of a circulant matrix in terms of P, (z) and @:
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Theorem 1. (Davis [3]) Let C be a circulant matrix.

If n=2r+1 is odd, then
n—1 ) r 2
detC =[] P.(@) = P[] |P-(@”)] .
j=0 j=1
If n=2r+2iseven, then

.12
Pc(a)’)‘ .

n—1 r
detC =[] P-(@’) = PP (D[ |
j=0 j=l

These stated facts will be suffice to furnish the analysis in the following sections.
Readers are encouraged to consult [1], [2] and [3] for deeper understanding of circulant

matrices.

3. Tangential Polygon

Definition 1. An n-sided polygon P, is said to be tangential if the sides of P, are

tangents to an inscribed circle. A tangential P, is said to be slippable if there exists

10
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another n-sided polygon P, that is tangential to the same circle as P, and that preserves

the sequence of lengths of the sides of P,. Otherwise, P, is said to be rigid.

Let P, be a tangential polygon, by the tangent properties of circle, one can see
that the tangential polygon P, (see figure 4) with vertices A, A,,....., A must satisfy

the following nxn system of linear equations:

X+ X = q
X, + X3 = a,
' : (S)
Xpo1 T Xy = Ay
X+ X, = a,
where a, = A A, , a,=A,A;,---, a,=A A, with x,X,,"*-,Xx,,a,,d5,*+,a, >0.

figure 4

A tangential polygon P,

11
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The system (S) can be written in terms of a circulant matrix as

X1 a
circ(1,1,0,---,0)-| : |=
;\/__J
n—2 X

Let T, =circ(1,1,0,---,0) be the coefficient matrix of (S), then from (2), the generating
polynomial of 7, is given by

P ()=1+z. 4)

By non-adjacent sides of P,, I mean any sequence of sides of P, in which no two

sides are adjacent to each other and the sequence terminates at the side where this
condition cannot be met when proceeding one step further. For example, in Figure 4, if n

is even, then alternating sides are non-adjacent sides of P, . If n is odd, then

AIAZ’ A3A4’ B An—ZAn—l

would be a set of non-adjacent sides of P,. The compliment of a set of non-adjacent
sides will simply be called the remaining sides of P,. Under this convention, Lopez-

Real’s alternating sides for odd n are the remaining sides. In this context, Properties T1
and T2, T3 and T4 for tangential polygons are stated (and proved) as Theorem Two and

Theorem Three below.

12
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Theorem 2. Suppose P, is a tangential polygon and n >4 is even, then P, is

slippable and the sums of non-adjacent sides of P, are equal.

Proof. Let a, =AA,, a,=A,A,,---, a, =A A, , be the lengths of the sides
of P, and let each side of P, be divided into two segments at the point of tangency with
lengths x; and x,,; as shown in Figure 4. Since n=2r+2,r 21 is even, using Theorem 1
and (4), the determinant of 7, is given by

2
‘ ~0.

detT, = ﬁPTn (@)= P (OP; (—1)I£I‘PT” (o’ )‘2 =2(1- 1)ﬁ‘1 +
= j1

Jj=0

This means that 7, is singular and hence the solution set of the system (S) forms
a subspace of R" . By continuity argument, there must exist other positive solutions for
(S). That is, there exist other sets of x,,x,,---,x, >0 that preserve the lengths and the
sequence of sides of P,. Furthermore, each set of x;,x,,---,x,, >0 determines an n-sided

polygon that is tangential to the same circle as P,. Hence P, is slippable.

Because 7 is even, one can observe from (S) (or from figure 4) that the sum of any

set of non-adjacent sides must be equal to x; +x, +x3 +---+ x,_; +x,,. This concludes

that the sums of non-adjacent sides of P, are equal.

13
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Theorem 3. Suppose P, is a tangential polygon and n >3 is odd, then P, is rigid and

the sum of any set of non-adjacent sides is strictly less than the sum of the remaining

sides.

Proof. As in the proof of Theorem 2 above, with n=2r+1,r >1 odd, the

determinant of 7, is given by:

&)

detT, = ﬁPT” (@) =P, (1)IL[‘P,n (a)j)‘z = 2Ir]‘1+ a)j‘z
j=0 j=l j=1

Since n is odd, @ = exp(27a'/ n)# —1. This implies that the terms ‘1 +w’ ‘ are non-

zero. Hence det7, >0 which means that 7, is non-singular and Tn_1 exists. Therefore

the system (S) has an unique solution. This shows that P, is rigid.

Furthermore, it can be shown that

7! :%ciro(1,—1,1,—1,1,""—1’1)-

n

14
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T, is circulant implies that Tn_l is also circulant. Hence, it suffices to find out the

entries for the first row of Tn_l. Since T, -Tn_l = I, (the nXn identity matrix), we must

have

ul 1
0

7,7 =] ©)
u, 0

where (u; u,,...,u, )" is the first column of Tn_l. This corresponds to the linear system:

u, + u, =1
I/lz + Lt3 = O
(7
Upy + U, = 0
u, + u, = 0

By backward substitution, one can check that that

u,+u, =0, u, ,—u; =0, u, ,+u, =0, u, 5—u =0, u, 4+u =0,

Since n is odd, when this process continues until the first two equations of the system (7),

the first two equations become

15
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u, —u; =0 and wu;+u,=1.
This gives u; =u, =1/2 . Consequently, the first column of Tn_1 must be
(1/2,1/2, =1/2,1/2, =1/2, 1/2, ---,1/2, —1/2)T :
Since Tn_1 is circulant, equation (1) implies that the first row of Tn_1 must equal

/2, -1/2,1/2, =1/2,1/2, =1/2, ---,=1/2,1/2) .

Hence, T, zzicirc(1,—1,1,—1,1,~--,—1,1).

From the form of Tn_1 , one can compute easily the solutions of the system (S):

x =1/2(a;—a, +ay—ay +-+a, ,—a, | +a,),
)C2 :1/2(a1 +612 —a3 +a4 +~--—an_2 +an_l —an),

X, =1/2(=ay+ay—ay+a, +—a, 5 +a,;+a,).

Xy,X,,+++, X, >0 implies that

16
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as +a4 +a6 +"'+an_1 <a1+a3 +a5 +"'+Cln,
a3 +a5 +a7 ++Cln <a1+a2 +a4 +---+an_1,

ap+az+as+--+a, ,<d,tayt+agt---ta, | ta,.

This means that when 7 is odd, the sum of any set of non-adjacent sides of P, is

strictly less than the sum of the remaining sides. Notice that when n =3, these

inequalities reduce to the triangle inequalities.

4. Cyclic Polygon

Definition 2. An n-sided polygon P, is called cyclic if P, is circumscribed by a circle.
A cyclic P, is said to be conformable if there exists another n-sided polygon Pn' that is
circumscribed by the same circle as P, and that preserves the sequence and the

magnitudes of the interior angles of P,. Otherwise, P, is said to be rigid.

For convenience in making visual observation, the discussion in this section will
be restricted to cyclic polygons with the centre of the circumscribing circle lying inside

the polygons (see figure 5).

17
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figure 5

A cyclic polygon P,

Let P, be a cyclic polygon. It is not difficult, using the properties of angles in a
circle, to see that the cyclic polygon P, (see figure 5) with vertices A, A,,....., A must

satisfy the following nXxn system of linear equations:

X+ ox, + 0+ X, =

X, + x5 + - + X = a,

X, + X, + + X, = Q;

X+ x, + + x, = Q,
(8

X + o x, + + X3 + x, = Q,

where x,,x,,---,x, are angles at the centre subtended by arcs A,A,,A;A,,---,A /A,

respectively and «, =2ZA,---,a, =2ZA .

18
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The system (S”) can be written in terms of a circulant matrix as

circ(1,1,---1,0,0)-| : |=
[ —

n-2 X a

Let C, = circ(1,1,---1,0,0) be the coefficient matrix of (S"), then from (2), the
n-2

generating polynomial of C, is given by

Pc”(z)=1+z+z2+-~-+z"_3 (8)

A similar ‘non-adjacent’ convention as in the tangential polygon case will be used

here for the definition of non-adjacent interior angles for P, . Notice in the case when n is

odd, any sequence of consecutive non-adjacent interior angles starting with an arbitrary
chosen interior angles must have the first member of the sequence two angles away from
the last member of the sequence.

Properties C1 and C2 for cyclic polygons can be summarized as:

Theorem 4. Suppose P, is a cyclic polygon. If n>4 is even, then P, is

conformable and the sum of non-adjacent interior angles of P, is equal to (n—2)7/2.

19
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Proof. Let ZA,,---,ZA, be the interior angles of P, and x,,x,,---,x, >0 be
the angles at the centre of the circle subtended by arcs A,A;,AA,,---,AA,
respectively as shown in Figure 5. Since n=2r+2,r 21 is even, using Theorem 1 and

(8), the determinant of C,is given by

.2
Pe (w’ )‘

detC, = P. WP (D[]
j=1

- - ; 12
= ('1—2)(1+(—1)+(—1)2 +---+(—1)"_3)II‘1+QJ + @Y 4V
j=1

=0

Therefore C, is singular and hence the solution set of the system (S”) forms a

subspace of R". By continuity argument, there must exist other positive solutions for
(S”). That is, there exist other sets of X{,X5, -+, x, >0 such that the sequence and
magnitudes of LA, ---,ZA  are preserved. Furthermore, each set of x;,x,,--,x, >0
determines a cyclic polygon circumscribed by the same circle as P,. Hence P, is

conformable.

Next, after some careful counting and the fact that » is even, one can deduce from

(S") that

a +o,+as++a, :(%—lj-(xl+x2+x3+~--+xn)=n—;2'2ﬂ'=(n—2)ﬂ'.

20
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Similarly,
n n—2
O, +a, + 0+ +a, =(E—lj-(xl+x2+x3+---+xn):T-27::(n—2)7r.

Therefore,

LA+ LA+ -+ LA, =(1)2) (@) + o5 +as +--+a, )= (n-2)7/2,
LA+ LA+ LA, =(12)- (g +ag + s+ +a, )= (n—-2)7)2.

This concludes that the sum of non-adjacent interior angles of P, is equal to

(n-2)7/2.

The following theorem will prove property C3 and answer the question raised in

C4 with an inequality.

Theorem 5. Suppose P, is a cyclic polygon and n =35 is odd, then P, is rigid.
Furthermore, the sum of any set of non-adjacent interior angles of P, is strictly greater
than (n—3)7/2 and the sum of the corresponding remaining interior angles is strictly

less than (n—1)7/2.

21
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Proof. As in the proof of Theorem four, with n=2r+1,r>1 odd, the

determinant of C,, is given by:

detC, = P, (1)f1 Pe (@)
- )

= -2 I

J=1

1+’ +0* +--+ 0"/

Since n is odd, wzexp(Zm'/n);t—l . This implies that the terms

l+@’ +@* ++ ">/ ‘ in the last product are non-zero. Therefore, C, is non-

singular and C, Lexists. Hence the system (S”) has an unique solution. Therefore, P, is

rigid.

In particular, it can be shown that

c,' =

" circ(r,l—r,l—r,r,l—r,r,l—r,...,r,l—r)

n—

Since C,, is circulant, C, !'is also circulant. Tt suffices to find out the entries for

the first row of C, ' Since C . C b=1 , (the nXxn identity matrix), we must have

22
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Vl 1

% 0
C,-| ?|=

% 0

where (v v,,...,V, )" is the first column of C, ! This corresponds to the linear system:

Vit v, o+ v, =1

Vo + vyt e+ v, =0

v + vy 4+ -+ v, =0

v o+ vy o+ + v, =0
: (10)

v, + v, + + v, + v, =0

Starting from the second equation, subtract two consecutive equations in a

downward fashion until the last equation to obtain

Vo = Vs Vi = V3, Vo =V, V3 = Vs, Vg = Vet Vg = V05 V3 =V -
That is,

V) SV E Vg =g ==V, 3 =V, =V, and vy S vy S Vs =y ==Y, 0=V, .

Substitute these relations into equations one and two in (10) yields

23
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i + (r=Dv, =1,
(r=Dv; + 1y = 0.
The solutions to this set of equations are
r 1-r
v, = and v, =
n— n—2

This gives the first column of C, !

T
V1 vpseesvy)’ =

1-r 1-r

[r 1-r r 1-r r

Since C,, ! is circulant, the first row of C, lis given by

n—2’n—2ﬁr&fn—2’n—2f“

‘'n-2"n-2

( r 1-r 1-r r 1-r r 1-r

r 1-r
n-2"n-2"n-2"n-2"n-2"n-2"n-2"n-2"n-2

Hence

cl=

n—

1 .
" c1rc(r,1—r,1—r,r,1—r,r,l—r,..

”nl—r)

From the form of C, !, the solutions of the system (S”) can be computed easily:
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X = (roy+(-rea, +d-ro; +ra, +(1-ros +---+ra,  +(1-r)a,)

n-2

X, :L((l—r)&’l +ro, +(-rna;+(1-ro, +ras +---+(1-rea,_ +re,)

n-2 11

X

n

:—niz((l—r)Oﬁ +(-ra, +roay+(1-ro, +ras+---+(1-rea,_  +ra,)

Since x;,--,x, >0 and a =2ZA |, a, =2LA,,---,a, =2LA,, we must have
LA+ LA+ LA+ + LA >r—_1(4A2 + LA+ LA+ + LA )
r

LA, + ZLAs+ LA +--+ LA, >FT_1(LA1 + LA+ LA o+ LA, ) (12)

LA+ LA+ LA+ + LA, >r—_1(LA1 + LA, + LA+ + LA, )
r

This means that the sum of any set of non-adjacent interior angles of P, is strictly

greater than (r—1)/r times the sum of the remaining interior angles.

For completeness of argument, instead of using x;,---, x, >0 to conclude (12),

one can consider the following set of inequalities (see figure 5)
X <2m—ay, Xy <2W—0y, -, X, 5 <2T—0y, X, | <2T-0q, xp<2T-0).

Combining these inequalities with (11) and using the fact that

25
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LA+ LA, + LA+ + ZA, = (n-D)7,

the same set of inequalities (12) can be computed.

Now let ¥ be the sum of a set of non-adjacent interior angles and X" be the sum of the

set of the corresponding remaining angles, (12) can be re-written as

r > Y. (13)
r
Since 2+ X =(n-2)x,
r—1
Y >— [n-27r-3],
r
2(1+’”_1j LYY P (14)
r r
> (r-Drx.
Substitute r with(n—1)/2, one arrives at
x> n_37r.

This gives the desired result. Similarly, it can be shown that

26



Postprint

The proof is complete.

5. Remarks

This has been a fruitful experience in doing Mathematics. Lopez-Real's investigation
gave the inspiration, and indeed the clue, to look for generalization and mathematical
rigor. In the process of developing the analyses in this paper, computer dynamic
geometry environment and computer software for working with matrices were used to
speculate and verify conjectures before formal theorems were stated and proofs were
constructed.

School geometry is very rich in content, and it can lead to wonderful

mathematical adventures if one has the openness to ask simple and obvious questions.

27
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