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ABSTRACT 

The paper proposes a novel fade-compensation algorithm using a pilot symbol-aided 

technique for digital land mobile satellite systems. In a conventional pilot symbol-aided 

system, a pilot symbol from a known pseudoradom-symbol sequence is inserted periodically 

into the data-symbol sequence in the transmitter. At the receiver, these pilot symbols are 

extracted from the received signal and used to estimate the signal distortion introduced in the 

fading channel. The resultant estimate is then used to correct the fading effects in the 

received data symbols. In the paper, a novel fade-compensation technique that uses both the 

pilot symbols and data symbols is proposed. A series of computer-simulation tests has been 

carried out to assess the effectiveness of the technique on the bit-error-rate (BER) 

performances of an uncoded 16-ary phase-shift keyed (16PSK) and an uncoded 16-ary 

quadrature-amplitude modulated (16QAM) signals over the land mobile satellite channels. 

The results have shown that, substantial improvements in the BER performances of the 

systems can be obtained, relative to those using only the pilot symbols. 
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1. Introduction 

In recent years, mobile satellite communications services have undergone a new 

development phase in both technologies and applications. In addition to the existing services 

such as the maritime mobile, the land mobile and the aeronautical mobile services, the 

concepts of satellite-based personal communications services (PCS) have been emerged 

[1-5]. The PCS demands for a higher channel capacity and so requires a better utilization of 

the RF spectrum. Therefore, signals with better spectral efficiencies than the conventional 

quaternary-phase keyed (QPSK) or Gaussian phase-shift keyed (GMSK) signals are needed 

to be considered. Among the spectrally-efficient signals, 16-ary phase-shift keyed (16PSK) 

and 16-ary quadrature-amplitude modulated (16QAM) signals are promising candidates 

because of their relative simplicity of implementation and good error-rate performances 

through linear channels [6-8]. Unfortunately, efficient transmission of these signals in mobile 

environments is difficult to achieve because the wide tracking bandwidth requirement when 

conventional carrier recovery schemes are used [9]. 

Recently, the pilot symbol-aided transmission techniques have been proposed for 

coherent transmission of spectrally-efficient signals over the fading channels [8, 10-13]. In a 

pilot symbol-aided system, the transmitted data-symbol sequence is divided into frames of 

data symbols. A known pilot symbol is then inserted into each of these frames for 

transmission. At the receiver, the pilot symbol is extracted from the received signal and used 

to estimate the signal distortion introduced in the fading channel. The resultant estimate is 

then used to correct the fading effects of the data symbols. Several algorithms have been 

proposed to estimate the fading effects using the received pilot symbols, including 

interpolation, interpolation with Kalman filtering, and using one, two or three pilot symbols 

with applications to trellis-coded modulation (TCM) [8, 10-13]. However, in these studies, 

little emphasis has been put on the time delay of the fading compensation process (distortion 

estimation and correction). The time delay introduced could be critical for voice transmission 

over the satellite channels, therefore, compensation techniques with mininal complexity and 
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storage delay are desirable. A simple algorithm uses an extrapolation technique has been 

proposed by the authors to minimize the time-delay in the estimation process [13]. 

In the paper, the work in [13] is extended. A novel fade-compensation technique uses 

both the pilot symbols and data symbols to enhance the accuracy of the distortion estimation 

process is proposed. The technique introduces virtually zero storage delay to the received 

message because the compensation process can start immediately after the first symbol (the 

pilot symbol) of the frame is received; thus it is suitable for land mobile satellite systems. A 

series of computer-simulation tests has been carried out to assess the effectiveness of the 

proposed technique on the bit-error-rate (BER) performances of the uncoded 16PSK and 

uncoded 16QAM signals over the land mobile satellite channels. It is assumed that the 

systems are operating at a rate 32 kb/s or 8 kbauds with the signal carrier frequency of 1.8 

GHz. Tests have been carried out using various frame lengths of the transmitted signals and 

with the mobile travelling at a radial velocities of 24 km/hr, 48 km/hr, or 96 km/hr, thus 

resulting in the worst normalized Doppler spreads of 0.005, 0.01 or 0.02 of the symbol rate, 

respectively. The results have shown that, by using the proposed technique in estimating the 

fading effects, the BER performances of both the uncoded 16PSK and the uncoded 16QAM 

signals can be improved substantially, relative to those using only the pilot symbols. 
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2. System Model 

The baseband equivalent data-transmission model used in the study is shown in 

Fig. 1. The information to be transmitted is carried by the binary digits { }nu . When the 

encoder has received the binary information { }nu  at time t = nT seconds (where n is a 

positive integer and T is the symbol duration), it maps these signals into the appropriate data 

symbol nd  according to the 16PSK or 16QAM signal constellations as shown in Fig. 2. For 

every (L-1)-data symbols, a pilot symbol from a known pseudorandom-symbol sequence 

{ }np  is inserted to form a frame of L-symbol long as shown in Fig. 3. (A pseudorandom 

sequence of pilot symbols is used to avoid transmitting tones [10]). To minimize the 

performance degradation due to additive white Gaussian noise (AWGN), the signals in { }np  

are chosen from those signal vectors with the largest energy level in the signal 

constellations [13]. It is assumed that the receiver has the prior knowledge of { }np , which 

therefore can be used to estimate the signal distortion introduced in the transmission path and 

subsequently makes the appropriate correction to the received data signal. At time t = nT 

seconds, the symbol to be transmitted is used to form the impulse ( )nq t nTδ − , which is fed 

to the premodulation filter with an impulse response a(t). The nq  is complex-valued and is 

either a data symbol or a pilot symbol, and ( )tδ  is the Dirac delta function. At the output of 

the premodulation filter, the signal becomes ( )n nq a t nT−Σ . This signal is then used to 

linearly modulate a carrier signal to produce the transmit signal. 

The transmission path in Fig. 1 is a land mobile satellite channel that introduces 

Rician fading to the transmitted signal [14]. The Rician-faded signal is composed of a direct 

component and a multipath component as shown in Fig. 4 [14]. The multipath component is 

assumed to be Rayleigh-faded and is generated by multiplying the direct component by a 

complex-valued parameter h(t) to give ( ) ( )n nq a t nT h t−Σ  as shown in Fig. 5. The two 

lowpass filters in Fig. 5 are two second-order Butterworth filters with the same normalized 

power-spectral-density of [15] 
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 (1) 

The quantity fD  determines the maximum Doppler frequency of the multipath 

component and is given by [16] 

D
vf
λ

=  (2) 

where v is the radial velocity of the mobile and λ is the wavelength of the signal carrier. 

Stationary AWGN is assumed to be added at the input of the receiver. In Fig. 5, the two 

amplifiers with a gain of K are used to adjust the ratio of the direct-component power to the 

multipath-component power in the simulation tests. The ratio, CMR, is defined as 

CMR=10 log dBC
M

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (3) 

where C is the direct-component power and M is the multipath-component power. 

The baseband equivalent signal at the receiver is given by 

( ) ( ) ( ) ( )n n n nq a t nT K q a t nT h t v t− + − +Σ Σ  

[ ]( ) ( ) ( )n nq a t nT y t v t= − +Σ  (4) 

where ( ) 1 ( )y t Kh t= +  has been used. ( )Kh t  is the fading effects due to the multipath 

component introduced in the transmission path and ( )v t  is the additive white Gaussian 

waveform with single-sided power spectrum of 0N . 

The received signal is then filtered by a postdemodulation filter. The 

postdemodulation filter is taken to have the same impulse response a(t) as the premodulation 

filter in the transmitter to give the corresponding baseband signal 

( ) ( ) ( )* ( ) ( )n nr t q a t nT y t a t w t= − +∑  (5) 
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where * denotes the convolution process and ( ) ( )* ( )w t v t a t=  is the filtered noise waveform. 

The Doppler shift of the received signal due to the motion of the mobile is assumed to 

be small compared to the symbol rate, so that the inter-symbol-interference (ISI) caused by 

the filtering process can be neglected. The baseband signal r(t) is sampled in synchronism at 

the time instants {nT}. For convenience, it is assumed that a(t)*a(t) = 1 at time t = 0. 

Therefore, the sample signal at time t = nT seconds is 

n n n nr q y w= +  (6) 

where ( )ny y nT=  and ( )nw w nT= . If nq  is a pilot symbol and in the absence of noise, the 

signal ny  can be obtained as 

n
n

n

ry
q

=  (7) 

However, in the presence of noise, only an estimate of ny  can be obtained. The 

estimate, 'ny , is then used for fading compensation (estimation and correction) of the 

received data symbols in the associated frame. The corrected data symbols are fed to the 

detector and decoder to produce the binary data { ' }nu  at the output. The proposed 

compensation technique is described in the following section. 
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3. Fade-Compensated Coherent Transmission Technique 

It is assumed in the following sections that frame synchronization of the received 

signal has been achieved. At the output of the postdemodulation filter, the sample signal at 

the i-th position of the k-th received frame is denoted by 

, , , ,k i k i k i k ir q y w= +  (8) 

where ,k iq  is either a pilot symbol or a data symbol (Fig. 3). For i = 0, the signal is 

,0 ,0 ,0 ,0k k k kr p y w= +  (9) 

where ,0kp  is the pilot symbol of the k-th frame. For i = 1, 2, ..., L-1, the signal is 

, , , ,k i k i k i k ir d y w= +  (10) 

where ,k id  is a data symbol in the k-th frame. From Eq. (9), ,0ky  can be written as 

,0 ,0
,0

,0 ,0

k k
k

k k

r w
y

p p
= −  (11) 

Since the pilot symbol ,0kp  is known at the receiver, at high signal-to-noise ratios, 

,0ky  can be estimated as 

,0
,0

,0

' k
k

k

r
y

p
=  (12) 

In the previously developed algorithm where only the pilot symbols are used for 
fading estimation, ,0'ky  is obtained using Eq. (12) and treated as the estimates of the fading 

effects for the rest of the data symbols in the associated frame, i.e., 

, ,0' 'k i ky y=       for i = 1, 2, ..., L-1 (13) 

 However, in the algorithm proposed in this paper, not only the pilot symbols, but also 

the data symbols are used for signal distortion estimation and hence for signal correction of 
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the data symbols. The ,0'ky  obtained using Eq. (12) is subsequently treated as an estimate of 

,1ky  (the distortion effects in the first data symbol of the k-th frame), i.e., 

,0
,1 ,0

,0

' ' k
k k

k

r
y y

p
= =  (14) 

The signal is used to correct the fading effects in ,1kr  to produce the corrected data 

signal 

,1
,1

,1

'
'
k

k
k

r
r

r
=  (15) 

The corrected data signal ,1'kr  is then fed to a threshold detector to give ,1'kd , which 

is a possible signal vector on the constellation. The signal ,1'kd  is subsequently decoded into 

binary data { ' }nu . Since ,1'kd  is a possible signal vector on the constellation and ,1'kd  is 

closer to ,2ky  in terms of time, a better estimate of ,2ky  can be obtained as 

,1
,2

,1

"
'
k

k
k

r
y

d
=  (16) 

Thus a better performance can be obtained if the signal ,2"ky  obtained from Eq.(16) is 

used, instead of ,2'ky  obtained using Eq. (13), to correct the second data symbol ,2kr  in the 

same frame according to 

,2
,2

,2

'
"
k

k
k

r
r

y
=  (17) 

This compensation process is carried out on each of the following data symbols until 

all the data symbols in the k-th frame have been corrected, i.e., 

, 1
,

, 1

"
'
k i

k i
k i

r
y

d
−

−

=                for i = 2, 3 , ..., L-1 (18) 

,
,

,

'
"
k i

k i
k i

r
r

y
=                   for i = 2, 3 , ..., L-1 (19) 

Then the whole process repeats for every received signal frame. 
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4. Performance Degradation in a Gaussian Channel 

4.1 Signal Energy Considerations 

Since the pilot symbols are known to the receiver, they carry no data information. 

However, the pilot symbols require a certain amount of power for transmission. Thus for a 

system with a fixed transmission power, a portion of the power has to be assigned for 

transmitting the pilot symbols. Therefore, the net average data-symbol energy is reduced. If 

the same transmit data-symbol energy as that without transmitting the pilot symbols is to be 

maintained, the average energy per data symbol has to be increased by 

1 1

10 log dB
1

d p

s
d

LP PL L LE
L P

⎡ ⎤−⎛ ⎞⋅ + ⋅⎢ ⎥⎜ ⎟⎛ ⎞Δ = ⎢ ⎥⎜ ⎟⎜ ⎟−⎝ ⎠⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

  

       110 log 1 dB
1

p

d

P
P L

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟= +⎜ ⎟⎜ ⎟ −⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
 (20) 

where L is the frame length, pP  and dP  are the average energies required to transmit a pilot 

symbol and a data symbol, respectively. 

For 16PSK signal, all the signal vectors have the same energy level, and Eq. (20) 

reduces to 

10 log dB
1s

LE
L

⎛ ⎞Δ = ⎜ ⎟−⎝ ⎠
 (21) 

For 16QAM signal, since the pilot symbols are selected from those signal vectors 
with the largest signal levels in the constellation [13], pP  : dP  = 9 : 5 and Eq. (20) becomes 

9 110 log 1 dB
5 1sE

L
⎡ ⎤⎛ ⎞Δ = +⎜ ⎟⎢ ⎥−⎝ ⎠⎣ ⎦

  

        5 410 log dB
5( 1)

L
L

⎡ ⎤+
= ⎢ ⎥−⎣ ⎦

 (22) 
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The theoretical BER performances of the coherent transmission of 16PSK and 

16QAM signals in a Gaussian channel are given by [17] 

1
2

,16
0

41 erfc sin
4 16

b
b PSK

EP
N

π⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥≈ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
 (23) 

and 
1 1

2 2

,16
0 0

6 63 3erfc 1 erfc
8 15 8 15

b b
b QAM

E EP
N N

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥ ⎢ ⎥≈ × −⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 (24) 

where bE  is the average energy required to transmit a bit, and 0N  is the single-sided noise 

power-spectral-density of the AWGN. Taking into account of the loss of energy due to 

transmitting the pilot symbols, the BER performances for these two signals over a linear 

channel, with different values of frame length L, become 

1
2

,16
0

1 erfc 4 sin
4 16

b
b PSK s

EP E
N

π⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥≈ − Δ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦⎣ ⎦

 (25) 

and 
1 1

2 2

,16
0 0

3 6 3 6erfc 1 erfc
8 15 8 15

b b
b QAM s s

E EP E E
N N

⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥ ⎢ ⎥≈ −Δ × − −Δ⎢ ⎥ ⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎩ ⎭

 (26) 

respectively, as shown in Fig. 6. No compensation technique is used in these systems. It can 

be seen that, the longer the frame length L is, the less is the performance degradation due to 

transmitting the pilot symbols. 

4.2 Bandwidth Considerations 

In addition to signal energy, bandwidth is also required to transmit the pilot symbols. 

If the same system throughput as that without transmitting the pilot symbols is to be 

maintained, the resultant symbol rate needs to be increased by a factor of /( 1)L L − . 

Obviously, signal with a longer frame length requires less amount of extra bandwidth and 

extra energy for transmitting the pilot symbols. 
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4.3 Zero Time-Delay 

The perceptibility of voice communication degrades significantly for a message time-

delay of more than 300 ms. In geostationary satellite communications, the propagation delay 

for a single-hop system is already about 250 ms. Although the future satellite-based PCS may 

use low-earth-orbit (LEO) satellites, any additional time delay (e.g. due to speech coding,  

forward-error-correction encoding, or fading compensation) may cause the total delay time to 

approach the limit of 300 ms and so should be minimized. In many other pilot symbol-aided 

algorithms where interpolation is used, the compensation processes cannot start until at least 

two pilot symbols have arrived. In this proposed algorithm, the storage delay introduced into 

the received message due to the compensation process is virtually zero because the 

compensation process for a frame can start immediately after the first symbol (the pilot 

symbol) of the frame is received. In addition, using the proposed technique, no storage of 

data symbol is required and the implementation is straight forward. 
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5. Simulation Results and Discussions 

A series of computer-simulation tests has been carried out to investigate the 

effectiveness of the proposed technique on the BER performances of an uncoded 16PSK and 

uncoded 16QAM signals used in the system of Fig. 1. The transmission path is assumed to be 

Rician-faded as shown in Fig. 4. In all tests, the baseband equivalent model as shown in 

Fig. 1 has been used. A CMR value of 7 dB, which is specified in the INMARSAT systems 

specifications, has been assumed throughout the tests [14]. The signal-to-noise ratio (SNR) is 

taken as 

0

SNR 10 log dBbE
N

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (27) 

where bE  is the average energy required to transmit a bit (after taking into account of the 

pilot symbols) and 0N  is the single-sided power spectral density of the AWGN. The resultant 

transfer function of the premodulation filter and the postdemodulation filter in cascade has a 

sinusoidal roll-off of 100%. For convenience, the systems are assumed to be operating at a 

rate of 32 kb/s or 8 kbauds (i.e., a symbol period of 0.125 ms) with the signal carrier 

frequency of 1.8 GHz. 

With the frame lengths of L = 8, 16, 32 and 64, and when the mobile is travelling at 

the radial velocities of v = 24 km/hr, 48 km/hr, and 96 km/hr resulting in the worst 

normalized Doppler spreads of Df T =  0.005, 0.01 and 0.02 of the symbol rate, the simulation 

results of the 16PSK and 16QAM signals are shown in Figs. 7, 8 and 9, respectively. It can 

be seen that the 16QAM signal outperforms the 16PSK signal in all the conditions tested. At 

lower velocities, both signals have better BER performances. This is expected because the 

signals fade more slowly at high velocities than at lower velocities and the fading effects 

between the pilot symbol and the data symbols in the associated frame are therefore more 

correlated. As a result, the estimates of the fading effects and hence the correction of the 

signals are more accurate, leading to a better performance.  
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Since the practical values of BERs for digital voice communications are around 310− , 

it is interesting to see how much the technique can reduce the required SNRs of the 16PSK 

and 16QAM signals for achieving this BER. Using the results of Figs. 7, 8 and 9, the SNRs 

required for the signals to achieve a BER of 310−  are shown in Table 1. It can be seen that, if 

only the pilot symbols are used for fading correction, the 16PSK signal cannot achieve the 

BER of 310− in all the conditions tested; while the 16QAM can achieve this BER only in one 

test, i.e., when v = 24 km/hr and L = 8. However, if the data symbols as well as the symbols 

are used, i.e., the propsoed technique, then the 16QAM and 16PSK signals can achieve the 

BER of 310−  in most of the tests. 

To further access the effectiveness of the proposed technique, the SNR values at 

which the 16PSK and 16QAM signals using the technique start to gain advantages in BER 

performances are shown in Table 2. It can be seen that, by using the technique and in all the 

conditions tested, both the 16PSK and 16QAM signals start to gain BER performance 

advantages in the SNR range from 13 dB to 25 dB. For a given frame length L, the signals 

start to gain BER performance advantages at lower SNRs with higher radial velocities, for 

the same reason described previously. At a given radial velocity, the signals start to gain 

advantages at lower SNRs with longer frame lengths. The lowest SNRs for the 16PSK and 

16QAM to start gaining BER performance advantages are 13.5 and 13 dB, respectively, 

which occur when the frame length L = 64 and the radial velocity v = 96 km/hr. If the frame 

length is decreased to L = 8, the respective SNR values are reduced to 15.5 and 17 dB. 

However, if the frame length is maintained at L = 64 but the radial velocity is decreased to 24 

km/hr instead, the SNR values for both signals are reduced to 15 dB. 

Finally, it may be interesting to look at the improvements in BER performances at 

very high SNRs. Figures. 7, 8 and 9 show that,  at the SNR of 40 dB where the error-rate 

floors of the signals occur, substantial improvements in the BER performances can be 

obtained by using both the pilot symbols and data symbols in the compensation process, 

instead of using only the pilot symbols. The longer the frame length is, the better is the 

improvement of the performance. However, the shorter the frame length is, the better is the 
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BER performance. For example, at a radial velocity of v = 24 km/hr (i.e., Df T =  0.005), Fig. 

7 shows that if both the pilot symbols and data symbols are used, the BERs of the 16PSK and 

16QAM signals can be reduced by factors of about 233 (from 29.8 10−×  to 44.2 10−× ) and 

281 (from 25.9 10−×  to 42.1 10−× ), respectively, at a SNR = 40 dB and L = 64. A better 

performance can be achieved by using a shorter frame length. With L = 8, the BERs of the 

16PSK and 16QAM signals are reduced from 31.1 10−×  to 58.4 10−×  and from 43.0 10−×  to 
54.1 10−× , respectively. Table 3 lists the factors of improvements on the BER performances 

of the signals using the proposed technique. It is evident that the proposed technique is more 

effective when the mobile is travelling at slow radial velocities (i.e. in the small Doppler 

spread environments), in the sense that better improvements can be obtained, relative to those 

of using only the pilot symbols for compensation. At higher velocities or in the large Doppler 

spread environments, shorter frame lengths should be used for achieving better performances. 
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6. Conclusions 

A novel fade-compensation technique using both the received pilot symbols and data 

symbols, instead of only the pilot symbols, for the coherent transmission of spectrally-

efficient signals in the land mobile satellite channels has been proposed. The technique is 

particularly suitable for voice transmission over the satellite channels because the 

compensation process for a frame can start immediately after the first symbol (the pilot 

symbol) is received. The effects of the technique on the BER performances of an uncoded 

16PSK and uncoded 16QAM signals have been studied using computer simulations. It has 

been shown that the 16QAM signal outperforms the 16PSK signal in all the conditions 

tested. 

 If only the pilot symbols are used for fading correction, the 16PSK signal cannot 

achieve the practical BER of 310−  for voice communcations. However, by using the proposed 

technique, the 16PSK and 16QAM signals can achieve the BER in most of the conditions 

tested. The proposed technique has substantial improvements in the BER performance of the 

16PSK and 16QAM signals over the conventional technique which employs only the pilot 

symbols for fading estimation. In all the test carried out, these improvements occur in the 

SNR range from 13 dB to 25 dB. 

The proposed technique also reduces the error-rate floors of the 16PSK and 16QAM 

signals substantially. The reductions are more significant with the mobile traveling at slow 

radial velocities (i.e., with smaller Doppler spreads) and longer frame lengths. 
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Table 1. SNRs required for a) 16PSK and b) 16QAM to achieve a BER of 310−  

Table 1 (a) 

v = 24 km/hr 48 km/hr 96 km/hr 

Frame Length Pilot Pilot+Data Pilot Pilot+Data Pilot Pilot+Data 

L = 8 X 25 dB X 26.5 dB X 32.5 dB 

L = 16 X 26.5 dB X 29 dB X X 

L = 32 X 28.5 dB X 33.5 dB X X 

L = 64 X 31 dB X X X X 

 

 

 

 

Table 1 (b) 

v = 24 km/hr 48 km/hr 96 km/hr 

Frame Length Pilot Pilot+Data Pilot Pilot+Data Pilot Pilot+Data 

L = 8 20.5 dB 23 dB X 24 dB X 25 dB 

L = 16 X 24 dB X 25 dB X 28 dB 

L = 32 X 25 dB X 27.5 dB X 33.5 dB 

L = 64 X 27 dB X 30 dB X X 
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Table 2. SNRs at which the technique starts gaining advantages for 16PSK and 16QAM 

 

 16PSK 16QAM 

Frame Length 24 km/hr 48 km/hr 96 km/hr 24 km/hr 48 km/hr 96 km/hr 

L = 8 21.5 dB 17.5 dB 15.5 dB 25 dB 20.5 dB 17 dB 

L = 16 17.5 dB 15.5 dB 14.5 dB 20.5 dB 16.5 dB 14.5 dB 

L = 32 16.5 dB 14.5 dB 13 dB 17 dB 14 dB 13 dB 

L = 64 15 dB 14.5 dB 13.5 dB 15 dB 13.5 dB 13 dB 

 

Table 3. Factors of improvments on BER Performance using the proposed technique 

 

v = 24 km/hr 48 km/hr 96 km/hr 

Frame Length PSK QAM PSK QAM PSK QAM 

L = 8 13 7 24 12 25 23 

L = 16 79 40 74 60 48 74 

L = 32 182 150 103 141 52 92 

L = 64 233 281 93 178 38 86 
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Fig. 1 System model of data-transmission system 
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Fig. 2 16PSK and 16QAM signal constellations 
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Fig. 3 Frame structure of transmitted symbols 
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Fig. 5 Model to generate the multipath component in Figure 4 
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Fig. 7 Performances of a) 16PSK and b)16QAM in Rician channel with CMR = 7 dB,  v 
24 km/hr ( Df T  = 0.005) and different values of L used for fade-compensation 
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Fig. 8 Performances of a) 16PSK and b)16QAM in Rician channel with CMR = 7 dB,  v 
= 48 km/hr ( Df T  = 0.01) and different values of L used for fade-compensation 
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Fig. 9 Performances of a) 16PSK and b)16QAM in Rician channel with CMR = 7 dB,  v 
= 96 km/hr ( Df T  = 0.02) and different values of L used for fade-compensation 
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Fig. 9b 

 


