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1. INTRODUCTION

This paper is an expanded and updated version of Siu (1993), which in turn can be

regarded as a synoptic version of the sequel to the survey by Siu (1989) on binary sequences,

promised therein but long overdue as a result of procrastination on the author’s part. The

subject of discussion in this paper is the two-dimensional analogue of a periodic binary

sequence, viz. a periodic binary array, i.e. an infinite array a = (aij) with aij ∈ F2, i, j

running through all non-negative integers and aij = ai+r,j = ai,j+s for all i, j. We will

call such an array a periodic r × s array. (Sometimes we actually require r, s to be the

smallest such integers.) Throughout this paper we will omit the adjective “periodic” and

even regard a periodic r×s array as a binary r×s matrix whenever that proves convenient.
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We will also omit the adjective “binary” because we will not discuss any case other than

that, although it should be noted that many results have their q-ary analogues.

To keep this paper within reasonable length we have not included illustrative exam-

ples, and we do not claim to have given full documentation on the results. For details reader

can consult references cited together with their bibliographies. For applications readers

can consult relevant items in the bibliographies of references cited, most of which are in

the area of telecommunication or computer science, (but in Clapham (1986), Grünbaum

and Shepherd (1980) readers will find applications in a totally different direction). In this

paper we will treat only the mathematical content of these problems.

2. WINDOW PROPERTY

In this section our objective is to recover every possible m × n array as a subarray

in an r × s array in a most economical way, i.e. construct (if possible) an r × s array

with rs = 2mn in which all m × n subarrays are distinct. In Fan and Siu (1989) such an

array is called an (r, s ; m,n)-M-array. (The topic was treated under different names by

various authors. See Chung, Diaconis and Graham (1992), Clapham (1986), Cock (1988),

Hurlbert and Isaak (1993), Iványi and Toth (1988).) The special case when r = m = 1

(or s = n = 1) is the well-known topic of a de Bruijn sequence. (See Fredricksen (1982)

for a comprehensive account of it.) Reed and Stewart (1962) gave the first example which

is a (4, 4; 2, 2)-M -array (under the name of a perfect map). Ma (1984) took the next

significant step in constructing a (2m, 2m(n−1); m,n)−M−array (n ≥ 3) from a de Bruijn

sequence of span m. Using a graph-theoretic language on cycles in the “2-dimensional de

Bruijn graph” and extending the idea of the Lempel homomorphism (in Lempel (1970)),

Fan, Fan, Ma and Siu (1985) succeeded in constructing certain M -arrays from smaller

ones. In particular, it is proved that there exists an (r, s; m,n)-M -array for some r, s
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when m, n are given, and that there is an (r, r; m,m)-M -array if and only if m is even.

The last result settles a special case completely since a necessary condition for existence

of an (r, s; m,n)-M -array is clearly rs = 2mn. For r > 1, s > 1, this necessary condition

is no longer sufficient since we must also have r > m and s > n. Etzion (1988) gave a

construction for a large class of M -arrays. Combining the construction by Etzion and

that by Fan, Fan, Ma and Siu, and making use of linear complexity of binary sequences

(discussed in Chan, Games and Key (1982)), Paterson (1994) proved that, with that

additional conditions amended, we have a necessary and sufficient condition for existence

of M -arrays. The “aperiodic” analogue of the problem was formulated and solved by

Mitchell (1995).

Techniques used in treating the problem above are purely combinatoric in nature.

But when we ask a similar question, viz. look for an r × s array with rs = 2mn − 1 in

which all m× n subarrays are distinct and NONZERO, we can bring in linear algebra to

our rescue. In Fan and Siu (1989) such an array is called an (r, s ; m,n)-m-array. Again,

the necessary condition rs = 2mn− 1 is not sufficient in general. But for r = m = 1 (resp.

s = n = 1), s = 2n − 1 (resp. r = 2m − 1) is a necessary and sufficient condition. Indeed,

take a de Bruijn sequence of span n and delete one zero from the (unique) n-tuple of zeros,

one obtains a (1, s; 1, n)−m-array. However, there is another well-known object called a

maximal length sequence (see MacWilliams and Sloane (1976), Zierler (1959)) which

also serves this purpose but which has a strong algebraic flavour. Although an M -array is

a 2-dimensional analogue of a de Bruijn sequence, an m-array is, strictly speaking, NOT a

2-dimensional analogue of a maximal length sequence. The strict analogue of a maximal

length sequence is an (r, s; m,n)-m-array satisfying a “linear recurrence”, usually referred

to as an LR-m-array. In the 2nd Chinese Combinatorial Conference in 1985 Fan and

Siu (1989) gave a general formulation that includes all the previously known constructions

of LR-m-arrays discussed in Gordon (1966), MacWilliams and Sloane (1976), Nomura,
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Miyakawa, Imai and Fukuda (1972). Let r, s be relatively prime positive integers such

that rs = 2mn − 1, and let α be a primitive element of F2mn . Let ϕ : Zr × Zs → Zrs

be a group isomorphism. If {αϕ(i,j)|0 ≤ i < m, 0 ≤ j < n} is a basis for F2mn (as a

vector space over F2) and L : F2mn → F2 is a nonzero linear functional, then A = (aij)

where aij = L(αϕ(i,j)) can be verified to be an (r, s;m,n)-m-array. (Geometrically, we

are “folding up” a maximal length sequence of length 2mn − 1 into an r × s array.) As a

corollary, there exists an (r, s;m,n)-m-array for some r, s when m,n are given. The author

posed in 1985 the natural question: Are all LR-m-arrays obtained in this way? Lin and

Liu (1988, 1993) settled the query in the affirmative and showed that indeed a necessary

and sufficient condition for this to happen is that r, s are relatively prime positive integers

with rs = 2mn − 1. In this sense the study of LR-m-arrays is reduced to the study of

maximal length sequences. But of course there are (r, s; m,n)-m-arrays which are not

LR-m-arrays.

3. AUTOCORRELATION PROPERTY

A maximal length sequence possesses certain characteristic features of pseduo-randomness

(see MacWilliams and Sloane (1976), Siu (1989)), one of which is the autocorrelation prop-

erty, viz. the numbers of 0∗· · ·∗0, 0∗· · ·∗1, 1∗· · ·∗0, 1∗· · ·∗1 (asterisks in between signify

an arbitrary string of prescribed length) are nearly equal. This has its natural extension

to an array a = (aij). The real periodic autocorrelation function, defined by

RP (u, v) =
r−1∑

i=0

s−1∑

j=0

bijbi+u,j+v , u, v ∈ Z+ ∪ {0}

where bij = (−1)aij , measures the number of coinciding entries (both 0 or both 1) minus

the number of non-coinciding entries between a and its (u, v)-translate, i.e. the array
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(ai+u,j+v). The binary periodic autocorrelation function, defined by

BP (u, v) =
r−1∑

i=0

s−1∑

j=0

aijai+u,j+v , u, v ∈ Z+ ∪ {0} ,

measures the number of coinciding 1’s between a and its (u, v)-translate. The objective

is to construct a with |RP (u, v)| or BP (u, v) small for (u, v) 6≡ (0, 0) mod (r, s), and in

some applications we even want RP (u, v) or BP (u, v) to take on exactly two values, i.e.

a common off-phase value. We call the latter two-level autocorrelation property.

Suppose k is the number of 1’s in a, i.e. the weight of a, then by counting it is not hard

to see that RP (u, v) = rs − 4k + 4BP (u, v). Hence RP (u, v) takes on two values if and

only if BP (u, v) takes on two values.

Let us look at an array a with two-level autocorrelation property, viz. RP (u, v) = c

(or BP (u, v) = λ) for all (u, v) 6≡ (0, 0) mod (r, s). Note that c = rs− 4k + 4λ = rs− 4n

where n = k−λ. If we let D = {d1, . . . , dk} be a subset of Zr×Zs defined by d = (i, j) ∈ D

if and only if aij = 1, then this is equivalent to saying that the family of di − dj (i 6= j)

consists of all nonzero elements of Zr × Zs, each repeated λ times. Such an object is

well-known in combinatorial mathematics and is called a difference set in the group

Zr × Zs with parameters (rs, k, λ). (Some standard references for difference sets are

Baumert (1971), Beth, Jungnickel and Lenz (1983), Jungnickel (1989), Lander (1983).

For surveys on difference sets, see Arasu (1990), Ma (1994), Jungnickel (1992), and the

recent monograph by Pott (1995).). The parameter n = k − λ is called its index. ¿From

this interpretation it is easy to see a necessary condition, viz. k(k − 1) = λ(rs − 1).

A perfect r × s array is an array with two-level autocorrelation and c = 0. Since

rs =
r−1∑
u=0

s−1∑
v=0

RP (u, v) =
( r−1∑

i=0

s−1∑
j=0

bij

)2 = [(number of 0) − (number of 1)]2 and rs = 4n,

we see that a necessary condition for a perfect r×s array is rs = 4N2 where N2 = n = k−λ.

Actually, a perfect r× s array corresponds to a difference set in Zr × Zs with parameters

(4N2, 2N2±N, N2±N). Menon (1962) investigated difference sets of index n in an abelian

group of order 4n. (The definition for a difference set given above is valid for an abelian
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group word for word, and with obvious modification it applies to a non-abelian group as

well.) It turns out n = N2 and the parameters are (4N2, 2N2 ± N, N2 ± N). Such a

difference set is therefore known as a Menon difference set. (Some authors prefer to

call such an object an Hadamard difference set, although confusion may arise from the

fact that this name had already been used in earlier times to refer to a difference set with

parameters (4n − 1, 2n − 1, n − 1)!) When (r, s) = 1, the situation reduces to a Menon

difference set in Zrs or to a perfect sequence. A conjecture says that there is no Menon

difference set in a cyclic group except Z4, or in terms of perfect arrays, the only perfect

r × s arrays with (r, s) = 1 are (0001) or (1110) or their transpose. An account on the

relationship between this conjecture and a number of other conjectures in combinatorial

designs was given by Siu (1989). Despite several purported proofs, this conjecture remains

open (see Jedwab and Lloyd (1992), Lin and Wallis (1993) for further clarification). We

now turn to the case when (r, s) > 1. Calabro and Wolf (1968) gave the first example of

a 2 × 2 and a 4 × 4 perfect array. Chan, Siu and Tong (1979), by relating the object to

a difference set, gave examples of 6 × 6 and 3 × 12 perfect arrays a decade later. There

began a surge of interest in perfect arrays from engineers in the late 1980s (see Lüke and

Bömer (1989) for an account in engineering, and Chan and Siu (1991) for a brief survey up

to 1990). In the meantime, mathematicians approached the same topic in the language of

Menon difference sets. Menon (1962) showed that a Menon difference set of index 4n1n2

in G1×G2 can be constructed from a Menon difference set of index n1 in G1 and a Menon

difference set of index n2 in G2. Turyn (1984) proved the existence of Menon difference

sets of index 32s(s ≥ 1). Therefore Menon difference sets of index (2a · 3b)2 exist for all

a ≥ 0, b ≥ 0. McFarland conjectured that this sufficient condition on the index is also

necessary, but recently this was, to the great surprise of many, refuted by Xia (1992), who

gave an example of a Menon difference set in the direct product of Z4 and a finite number

of Zpi where each pi is a prime satisfying pi ≡ 3(mod4). (Smith (1995) gave a counter-
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example in the case of a non-abelian group by finding a difference set with parameters

(100, 45, 20) using group representation. His example is particularly interesting, since

it has been shown that no Menon difference set exists in an ABELIAN group of order

100.) The construction of Xia involves complicated calculation with cyclotomic classes.

Recently Xiang and Chen (1994) gave a character theoretic proof of Xia’s example from a

new viewpoint. In the direction of nonexistence, the classic result is a theorem of Turyn

(1965), giving upper bounds on the exponent of certain Sylow subgroups of an abelian

group containing a Menon difference set. (This seminal paper of Turyn (1965) initiated

the use of character theory in the study of the subject of difference sets, which reduces the

problem to the solution of a certain equation in an integral group ring. See Pott (1995)

for a succinct account of the detailed mathematics.) McFarland (1989) proved a result in

favour of his conjecture (which we now know is incorrect), viz. if an abelian group G of

order 4p2 (p a prime number) has a Menon difference set, then p = 2 or 3. Interpreting

Turyn’s basic theorem in the case of Zr × Zs, we obtain necessary conditions on the size

of r × s perfect arrays with rs = 4N2, N = pd where p is a prime number, viz. (i)

2d+1 × 2d+1 or 2d × 2d+2 (d ≥ 0); (ii) 2 · 3d × 2 · 3d or 3d × 4 · 3d or 2 · 3d−1 × 2 · 3d+1 or

3d+1×4 ·3d−1 or 3d−1×4 ·3d+1 (d ≥ 1); (iii) 2 ·pd×2 ·pd or pd×4 ·pd for p ≥ 5 (d ≥ 1). In

recent years various authors have constructed perfect arrays for certain cases among those

allowable cases listed above (see Arasu, Davis, Jedwab and Sehgal (1993), Davis (1991),

Dillon (1990), Jedwab, Mitchell, Piper and Wild (1994)) or proved nonexistence in other

cases (see Arasu and Jedwab (1992), Chan (1993), Chan and Siu (1991), Chan, Siu and

Ma (1994), Jedwab (1991)). For an updated survey see Davis and Jedwab (1994).

We now turn to the case of BP (u, v) = λ for all (u, v) 6≡ (0, 0) mod (r, s). Since

k(k − 1) = λ(rs − 1), we see that only trivial cases (no 1 in a, or exactly one 1 in a)

can satisfy the condition λ = 0. The next best to hope for is when λ = 1. This happens

if and only if rs = n2 + n + 1 where n = k − 1. Hence we are looking for a difference
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set of index n in Zr × Zs with parameters (n2 + n + 1, n + 1, 1). Using finite projective

geometry Singer (1938) constructed such difference sets in Zn2+n+1. For rs = n2 + n + 1

with (r, s) = 1 this yields r × s arrays with λ = 1. For the special case of a square array

(i.e. r = s), this is impossible unless r = s = 1. However, in some applications we relax

the condition to BP (u, v) ≤ 1 for all (u, v) 6≡ (0, 0) mod (s, s) (so the array has three-level

autocorrelation rather than two-level). It can be shown that in this case the weight k of a

cannot exceed s. In the optimal case when k = s, BP (u, v) takes on the value k once, the

value 0 s− 1 times and the value 1 s2 − s times (see Fung, Siu and Ma (1990)). In those

applications we also require that the s 1’s are so placed that each column has exactly one

1. Such a matrix is called an ideal matrix by Kumar (1988). An alternative formulation

is to construct a function f : Zs → Zs satisfying the condition that fv is injective for all

v 6= 0, where fv(j) = f(j + v) − f(j). The correspondence is to put f(j) = i if and only

if aij = 1. In the literature such a function is called a planar function on Zs. When

s = p is a prime number, f can be expressed as a polynomial function of degree ` less

than p (by Lagrange Interpolation). Obviously if p > 2 and ` = 2, fv is injective for all

v 6= 0, i.e. f is planar. Actually, this is the only possible case for f to be planar, as proved

independently by Gluck (1990), Hiramine (1989), Rónyai and Szönyi (1989). There is no

planar function on Zs with s odd because 0 =
s−1∑
j=0

fv(j) = 1+2+ · · ·+(s−1) = s(s−1)/2.

Translating back to the language of ideal matrix, this means that for the case s = p (p a

prime number), we know everything about an s × s ideal matrix. What about the case

when s is an odd composite number? The main conjecture is: An s× s ideal matrix exists

if and only if s an odd prime (and hence corresponds to a quadratic function). Kumar

(1988) had shown that a finite projective plane of order s can be constructed from an s×s

ideal matrix. A long-standing conjecture says that the order of a finite projective plane

must be a power of a prime. (The case of order 10 was confirmed by Lam, Thiel and

Swiercz (1989).) By formulating the problem in a group algebra and using factorization
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of ideals in cyclotomic fields, Fung, Siu and Ma (1990) proved that existence of an s × s

ideal matrix implies s is square-free. Hence, granting the conjecture on finite projective

plane, the conjecture on ideal matrix will be settled in the affirmative. Hiramine (1992)

proved (in a setting which is somewhat more general) that if there exists a planar function

on Z3p (p a prime number), then p < 5. Hence there does not exist a 3p× 3p ideal matrix

where p is an odd prime number. Besides planar functions and finite projective planes,

ideal matrices are also intimately related to difference sets. Indeed, an s×s ideal matrix is

equivalent to a so-called relative difference set of parameters (s, s, s, 1) in Zs ×Zs relative

to the subgroup 0× Zs. (More generally, D = {d1, . . . , dk} is a relative difference set

of parameters (m,n, k, λ) in an abelian group G of order mn relative to a subgroup H

of order n if the family di − dj (i 6= j) consists of all elements of G \ H, each repeated

λ times.) Very recently, Ma (1995) gave another proof of Hiramine’s result by applying

character theory to the problem formulated as a problem in relative difference sets, and

extended the nonexistence to s = pq where p, q are prime numbers. In particular, it is now

known that if an s× s ideal matrix exists for s ≤ 50, 000, then s is a prime number except

for the four undecided cases s = 15655, 29523, 35855 or 42627. Hence the first unsettled

case concerning the conjecture stands now at s = 15655 instead of the previous s = 55.

4. APERIODIC CASE

We now turn to investigate the analogous problem of autocorrelation of an array

a = (aij) with attention confined to the overlapping part only. The real aperiodic

autocorrelation function, defined by

RA(u, v) =
r−1∑

i=0

s−1∑

j=0

b′ijb
′
i+u,j+v , u, v ∈ Z

where b′ij = (−1)aij if 0 ≤ i ≤ r − 1, 0 ≤ j ≤ s − 1 and b′ij = 0 otherwise, measures

the number of coinciding entries (both 0 or both 1) minus the number of non-coinciding
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entries between a and its (u, v)-translate on the overlapping part. The binary aperiodic

autocorrelation function, defined by

BA(u, v) =
r−1∑

i=0

s−1∑

j=0

a′ija
′
i+u,j+v , u, v ∈ Z

where a′ij = aij if 0 ≤ i ≤ r−1, 0 ≤ j ≤ s−1 and a′ij = 0 otherwise, measures the number

of coinciding 1’s between a and its (u, v)-translate on the overlapping part.

Since BA(u, v) ≤ BP (u, v), an ideal matrix (See section 3) will satisfy BA(u, v) ≤ 1

for all (u, v) 6≡ (0, 0) mod (r, s). (The converse is not true.) Costas (1966) investigated, in

connection with SONAR signals, s×s arrays with exactly one 1 in each column and exactly

one 1 in each row such that BA(u, v) ≤ 1 for all (u, v) 6≡ (0, 0) mod (s, s). Today such an

array is known as a Costas array. For a survey on Costas arrays, see Golomb and Taylor

(1982, 1984), Golomb (1991). Constructions by Golomb, Lempel, Welch and Taylor,

reported in Golomb (1984), Golomb and Taylor (1982, 1984), guarantee the existence of

a Costas array when s = p − 1 or q − 2 where p is a prime and q(> 2) is a power of a

prime. The basic idea can been seen in Welch’s construction in which aij = 1 if and only

if j = αi (0 < i, j < p) where α is a preassigned primitive element of Fp. Lempel gave a

twist in setting aij = 1 if and only if αi +αj = 1 (0 < i, j < q−1) where α is a preassigned

primitive element of Fq. Golomb further extended the construction by setting aij = 1 if

and only if αi + βj = 1 (0 < i, j < q− 1) where α, β are preassigned primitive elements of

Fq. The last construction has an interesting feature, viz. when α + β = 1, one obtains a

(q− 3)× (q− 3) Costas array by deleting the leftmost column and the topmost row. This

triggers off concern over a purely algebraic query known as the Golomb Conjecture:

In any finite field with more than two elements, there exist primitive elements α, β such

that α + β = 1. Various authors contributed to this query since the mid 1980s, and the

conjecture (plus some variants of it) was settled in the affirmative around 1990. (see Chang

and Kang (1991), Cohen and Mullin (1991), M.H. Le (1990), J.P. Wang (1988) and papers

referred to therein.) With this conjecture settled, the first undecided case of existence of
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a Costas array is s = 32 (the two exceptional cases of s = 19 and s = 31 were constructed

by a sporadic method by Golomb and Taylor (1984)). It is believed (but not yet proved)

that an s× s Costas array exists for each s. A similar question which allows more 1’s in

the array is more difficult . For instance, as reported in Golomb and Taylor (1982), the

largest number of 1’s in a 3× 3 array with BA(u, v) ≤ 1 for all (u, v) 6≡ (0, 0) mod (3, 3) is

5 (while a 3×3 Costas array has only 3 1’s). It is an open question to know the maximum

number of 1’s and how to construct such an array.

A related object is the so-called SONAR array which is an r × s array a = (aij)

with exactly one 1 in each column satisfying BA(u, v) ≤ 1 for all (u, v) 6≡ (0, 0) mod (r, s).

It corresponds to a SONAR sequence (ai) (with aij = 1 if and only if i = aj) in which

aj ∈ {0, 1, . . . , r − 1} and ai+k − ai are distinct for all i ∈ {1, 2, . . . , s− k} for each fixed

k ∈ {1, 2, . . . , s−1} (see Golomb and Taylor (1982)). It is not hard to see that for a given

r, the largest value s can attain is 2r, but known data reported in Robbins and Taylor

(1984) seem to purport the fact that the actual attainable value is nearer to r than to 2r.

This is asymptotically confirmed by the bound s < r + 3r2/3 + 2r1/3 + 9 established in

Erdös, Graham, Ruzsa and Taylor (1992). Games (1987) constructed certain r×s SONAR

array when s is a power of a prime, using the properties of maximal length sequence and

GMW-sequence. (GMW-sequence, related to difference sets constructed by Gordon, Mills

and Welch (1962) and hence its name, was discussed in Scholtz and Welch (1984).) For

a brief recent survey on sonar sequence, see Moreno, Games and Taylor (1993). Etzion

(1990) has applied Costas arrays and sonar sequences to construct arrays with window

property (see Section 2).

For the case of RA(u, v), we like to find r × s array for which |RA(u, v)| ≤ 1 for

all (u, v) 6≡ (0, 0) mod (r, s). Such an array is known as a Barker array, discussed in

Alquaddoomi and Scholtz (1989). By a counting argument Alquaddoomi and Scholtz

(1989) showed that there does not exist an r × s Barker array where r is an even in-
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teger congruent to 2 mod 4 and s is an odd integer larger than 1. Further analysis by

Alquaddoomi and Scholtz (1989), Jedwab (1993), Jedwab, Lloyd and Mowbray (1993)

revealed a connection between a Barker array and a difference set, viz. (i) when r or

s is even, then the existence of an r × s Barker array implies the existence of a Menon

difference set in Zr × Zs with parameters (4N2, 2N2 −N,N2 −N), rs = 4N2; (ii) when

rs ≡ 1(mod4), the existence of an r × s Barker array implies the existence of a difference

set in Zr × Zs with parameters (2N2 + 2N + 1, N2, N(N − 1)/2), 2rs − 1 = (2N + 1)2;

(iii) when rs ≡ 3(mod4), the existence of an r× s Barker array implies the existence of a

Hadamard difference set in Zr×Zs with parameters (4N −1, 2N −1, N −1), rs = 4N −1.

Results on nonexistence of certain difference sets will thus yield results on nonexistence of

certain Barker arrays. The main conjecture stated in Alquaddoomi and Scholtz (1989) is:

Apart from
[

1 1
1 0

]
and

[
1 0
0 0

]
(and their obvious derived arrays), there does not exist

another r× s Barker array with r > 1, s > 1. The case for r = 1 or s = 1 already arose in

the early 1950s when Barker (1953) investigated such sequences, now known as Barker

sequences, in connection with group synchronization. Up to now we know the existence

of Barker sequences of length 1, 2, 3, 4, 5, 7, 11 or 13. Turyn and Storer (1961) proved that

for odd s, the known Barker sequences are the only possible cases, while for even s, the

existence of a Barker sequence of length s implies s = 2 or 4N2 and that furthermore it

implies the existence of a Menon difference set in Zs. (See Siu (1989) for a discussion on

its relationship to other conjectures.) Turyn (1968) reported that if a Barker sequence of

even length exists, its length must be at least 12100 = 4 × 552. There is strong evidence

that there does not exist any Barker sequence apart from the known cases in view of the

conjecture on nonexistence of cyclic Menon difference set with index larger than 1 (see

Section 3). Many authors have contributed results on this query (see Eliahou and Kervaire

(1992), Eliahou, Kervaire and Saffari (1990), Fredman, Saffari and Smith (1989), Jedwab

and Lloyd (1992), Saffari and Smith (1988)). Eliahou and Kervaire (1992) hold the record
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to date that there exists no Barker sequence (apart from the known cases) of length less

than 4 × 6892 = 1898884, based on the striking result in Eliahou, Kervaire and Saffari

(1990) which rules out Barker sequence of even length s having a prime divisor congruent

to 3 modulo 4.

References

Alquaddoomi, S. and Scholtz, R.A. (1989). On the nonexistence of Barker arrays and

related matters. IEEE Trans. Inform. Theory. IT-35, 1048-1057.

Arasu, K.T. (1990). Recent results on difference sets. In: Ray-Chaudhuri, D., Ed., Coding

Theory and Design Theory, Part II: Design Theory , Springer-Verlag, Heidelberg, 1-23.

Arasu, K.T. and Davis, J.A. and Jedwab, J. (1992). A nonexistence result for abelian

Menon difference sets using perfect binary arrays, HPL-92-140, Hewlett Packard, Bristol.

Arasu, K.T. and Davis, J.A. and Jedwab, J. and Sehgal, S.K. (1993). New constructions

of Menon difference sets. J. Comb. Theory. A-64, 329-336.

Barker, R.H. (1953). Group synchronizing of binary digit systems. In: Jackson, W., Ed.,

Communication Theory , Butterworths, London, 273-283.

Baumert, L.D. (1971). Cyclic Difference Sets. Springer-Verlag, Heidelberg.

Beth, T. and Jungnickel, D. and Lenz, H. (1983). Design Theory . Cambridge University

Press, Cambridge.

Calabro, D. and Wolf, J.K. (1968). On the synthesis of two-dimensional arrays with

desirable correlation properties. Inform. Control, 11, 537-560.

Chan, A.H. and Games, R.A. and Key, E.L. (1982). On the complexities of de Bruijn
13



sequences. J. Comb. Theory. A-33, 233-246.

Chan, W.K. (1993). Necessary conditions for Menon difference sets. Designs, Codes and

Cryptography. 3, 147-154.

Chan, W.K, and Siu, M.K. (1991). Summary of perfect s × t arrays, 1 ≤ s ≤ t ≤ 100.

Electron. Lett. 27, 709-710 (correction (1991), Electron. Lett. 27, 1112).

Chan, W.K. and Siu, M.K. and Ma, S.L. (1994). Nonexistence of certain perfect arrays.

Discrete Math. 125, 107-113.

Chan, Y.K. and Siu, M.K. and Tong, P. (1979). Two-dimensional binary arrays with good

autocorrelation. Inform. Control. 42, 125-130.

Chang, Y.X. and Kang, Q.D. (1991). A representation of nonzero elements in finite fields.

Science in China (Series A). 34, 641-649.

Chung, F.R.K. and Diaconis, P. and Graham, R.L. (1992). Universal cycles for combina-

torial structures. Discrete Math. 110, 43-59.

Clapham, C.R.J. (1986). Universal tilings and universal (0, 1)-matrices. Discrete Math.

58, 87-92.

Cock, J.C. (1988). Toroidal tilings from de Bruiju-Good cyclic sequences. Discrete Math.

70, 209-210.

Cohen, S.D. and Mullen, G.L. (1991). Primitive elements in finite fields and Costas arrays.

Appl. Alg. in Engin. Comm. and Comp. 2, 45-53.

Costas, J.P. (1966). Project Medior – A medium-oriented approach to SONAR signal

processing, HMED Tech. Publ. R66EMH12, General Electric Co. (originally classified;

see also Costas, J.P. (1975). Medium constraints on SONAR design and performance,

EASCON Conv. Rec., 68A-68L).
14



Davis, J.A. (1991). Difference sets in abelian 2-groups. J. Comb. Theory. A-57, 262-286.

Davis, J. and Jedwab, J. (1994). A survey of Hadamard difference sets. HPL-94-14,

Hewlett Packard, Bristol.

Dillon, J.F. (1990). Difference sets in 2-groups. In: Kramer, E.S., Ed., Finite Geometries

and Combinatorial Designs, Contemporary Mathematics. 111, 65-72.

Eliahou, S. and Kervaire, M. (1992). Barker sequences and difference sets. L’Enseignement

Math. 38, 345-382. (corrigendum (1994). L’Enseignement Math. 40, 109-111).

Eliahou, S. and Kervaire, M. and Saffari, B. (1990). A new restriction on the lengths of

Golay complementary sequences. J. Comb. Theory. A-55, 49-59.

Erdös, P. and Graham, R.L. and Ruzsa, I. and Taylor, H. (1992). Bounds for arrays of

dots with distinct slopes or lengths. Combinatorica. 12, 1-6.

Etzion, T. (1988). Constructions for perfect maps and pseudo-random arrays. IEEE

Trans. Inform. Theory. IT-34, 1308-1316.

Etzion, T. (1990). On pseudo-random arrays construced from patterns with distinct dif-

ferences. In: Capocelli, R.M., Ed., Sequences I: Combinatorics, Compression, Security,

and Transmission, Springer-Verlag, Heidelberg, 195-207.

Etzion, T. (1990). Combinatorial designs derived from Costas arrays. In: Capocelli, R.M.,

Ed., Sequences I: Combinatorics, Compression, Security, and Transmission, Springer-

Verlag, Heidelberg, 208-227.

Fan, C.T. and Fan, S.M. and Ma, S.L. and Siu, M.K. (1985). On de Bruijn arrays. Ars

Combinatoria. 19A, 205-213.

Fan, S.M. and Siu, M.K. (1989). Construction of m-arrays and M -arrays (in Chinese).

Math. in Practice and Theory. 1, 77-86.
15



Fredman, M.L. and Saffari, B. and Smith, B. (1989). Polynômes réciproques: conjec-
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