Cartan-Fubini type extension of holomorphic maps
for Fano manifolds of Picard Number 1

Jun-Muk Hwang! and Ngaiming Mok

In the study of manifolds having the geometric structure modeled on Hermitian symmetric
spaces ([HM1]) and the deformation rigidity of irreducible Hermitian symmetric spaces of the
compact type ([HM2]), the following result of Ochiai ([Oc]) played an essential role.

Theorem (Ochiai) Let X be an irreducible Hermitian symmetric space of the compact type
of rank > 2. X has a natural G-structure where G is the reductive Levi factor of the isotropy
subgroup of a base point of X. Let Uy,Uy C X be two connected open sets and ¢ : Uy — U,
be a biholomorphism preserving the G-structure. Then ¢ can be extended to a biholomorphic
automorphism of X .

This result was generalized to other rational homogeneous spaces by Yamaguchi ([Ya]), where
the statement holds with ‘G-structure’ replaced by a natural geometric structure on the homoge-
neous space. Their proof relies on the vanishing of certain Lie algebra cohomology groups. Since
this result was very useful in the study of many geometric problems on the rational homogeneous
spaces, one may ask whether a more geometric proof can be given using only rational curves,
so that it can be generalized to some non-homogeneous projective manifolds. This was partially
achieved in secions 3 and 4 of [HM4], where the authors were able to give a proof of the above
result of Ochiai and Yamaguchi, via the deformation theory of rational curves and basic theory
of differential systems, without using Lie algebra cohomology. Still, it was unsatisfactory in the
sense that one has to use group actions to analytically continue ¢ to the whole X, so the proof
works only for the homogeneous manifolds.

In this paper, we overcome this by introducing analytic continuations along special families
of rational curves and give a proof which can work for a large class of Fano manifolds of Picard
number 1.

To state our result, it is necessary to define a natural ‘geometric structure’ on a Fano manifold
of Picard number 1. This is given by tangent vectors to standard rational curves. Roughly
speaking, a standard rational curve is an immersed P; in the Fano manifold X whose normal
bundle contains only O(1) and O factors. Such curves exist by a result of Mori ([Mo]). Choosing
a maximal irreducible family H of standard rational curves, we define the variety of H-tangent
C C PT(X) as the collection of tangent vectors to standard rational curves belonging to H
(see section 1 for details). This corresponds to our geometric structure on X. In the case of a
rational homogeneous space X of Picard number 1, the lines on X under the minimal projective
embedding of X are standard rational curves and the associated C corresponds to the natural
geometric structure on X. In other words, the condition on ¢ “preserving the G-structure” in
the above Theorem of Ochiai can be replaced by “whose differential sends C|y to C|y”. Our
main theorem is a generalization of Ochiai’s theorem in this sense. We can give a rough oul
of the statement of the main theorem as follows. See Theorem 1.2 for the precise '
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Main Theorem Let X be a Fano manifold of Picard number 1. Suppose there exists
a family of standard rational curves H such that the associated C C PT(X) satisfies certain
conditions which hold for many examples as given in section 1. Let X' be any Fano manifold
of Picard number 1 and H' be a family of standard rational curves on X'. Given any connected
open subsets U C X, U’ C X' with a biholomorphic map ¢ : U — U’ such that the differential
@s : PT,(X) - PTy4)(X') sends each irreducible component of C|y to an irreducible component
of Cly» biholomrophically, there ezists a biholomorphic map ® : X — X' such that ¢ is the
restriction of ® to U.

This result is stronger than Ochiai’s even for the irreducible Hermitian symmetric space X
in the sense that we need not assume that X’ is a priori biholomorphic to X.

When both X and X’ are hypersurfaces of low degree in the projective space, our result can
follow from the work of Jensen and Musso ([JM]) which completed a study initiated by E. Cartan
and G. Fubini. Although the method of proof and basic ideas are completely different, we think
that it is fair to say that the origin of this type of problem goes back to E. Cartan and G. Fubini,
and we name the extension of the above kind as ‘Cartan-Fubini type extension’.

We expect that there are many applications of the Cartan-Fubini type extension property.
As a matter of fact, our works [HM1], [HM2], [HM3] can be viewed as applications. Another
application is the rigidity of generically finite morphisms which we explain at the end of Section
1, after giving precise statement of the main theorem, Theorem 1.2, and some examples.

The proof of Theorem 1.2 will be given in Sections 2-4. Section 2 and Section 3 are the
main part of the analytic continuation. Our analytic continuation is different from the classical
one in the sense that it should by carried out only along the rational curves involved. For this,
we introduce the concept of ‘parametrized analytic continuation’. The proof will be finished in
Section 4 by proving first that the map can be extended to a bimeromorphic map and then that
it cannot have a ramification locus.

A few words on the terminology are in order. When we say an open set, it is in the classical
topology, not Zariski topology, unless it is specifically said so. By a generic point of an analytic
variety, we mean a point outside the union of countably many proper analytic subvarieties. A
variety is not necessarily irrecucible, but has only finitely many components.

1 Statement and examples of the main result

We start with defining some terms that we are going to use throughout the article. We will skip
most of the proofs of standard facts, refering 1.1 of [HM4] and I1.2 of [K]] for further details.

A rational curve h : P; — X on a complex manifold X is called a standard rational curve,
if *T(X) = O(2) ® [O(1)]? @ O for nonnegative integers p,q. In this case, h is necessarily a
holomorphic immersion and birational. From H!(P;, h*T(X)) = 0, the space Hom(Pq, X) of
morphisms from P to X is smooth at the point [h] and the tangent space is H°(P1, h*T(X)).
Let H be an irreducible component of Hom (P, X) containing a standard rational curve. Then
a generic point of H is a standard rational curve. An irreducible component H of Hom (P, X)




will be called a standard component if a generic member of H is a standard rational curve.
The following properties of standard rational curves will be useful.

Lemma 1.1 Let h: P; — X be a standard rational curve. Then

(1) The image of deformations of h cover an open neighborhood of h(P;) in X.

(2) Let hy be a deformation of h = hy parametrized by the disc A = {t € C,|t| < 1}.
Suppose the deformation h; fizes two points, namely, for two distinct points 0,00 € Py and for
all t, hi(o) = ho(0) and hi(o0) = ho(c0). Then h; is a trivial deformation in the sense that
he(s) = ho(s) for all s € P;.

Proof. (1) follows from H!(P1,h*T(X)) = 0 and the fact h*T(X) is generated by global
sections. (2) follows from the fact that the normal sheaf h*T'(X)/T(P;) = [O(1)]? @ O cannot
have sections vanishing at two distinct points. O

Given a standard component H, the natural action of the automorphism group of P; gives H
a structure of PGLy-principal bundle over an analytic space K. The graphs of the elements of
Hom(Py, X) induces a P;-bundle U over K, with natural universal family morphisms p: U — K
and p: U — X. Let K° C K be the Zariski-open subset consisting of standard rational curves
and U° := p~}(K°) be the universal family over K°. Then K° is a complex manifold of dimension
n+ p — 1. By associating the tangent vectors to standard rational curves, we define the tangent
morphism 7 : Y° — PT(X), which is a holomorphic immersion. Let C C PT'(X) be the closure
of the image of 7. C will be called the variety of H-tangents, or variety of rational tangents
if the choice of H is clear. For a point z € X, we call C; := C N PT,(X) the variety of H-
tangents at z. We define U, := p~!(z) and U2 = U, NU°. Let 7, : U2 — PT,(X) be the
restriction of 7. For a generic point z € X, C, is equal to the closure of the image of 7.

The foliation on U° defined by the fibers of p induces a multi-valued foliation F on a Zariski-
open set of C by the immersion 7 : Y° — C. F will be called the tautological foliation on C.
This name is not precise in the sense that F may be multi-valued. However, in the case we deal
with in this article, it will be a univalent foliation.

When X is a projective manifold, K is a quasi-projective scheme which is the semi-normalization

of the subvariety of the Chow variety corresponding to the images of elementsof Hand p: U — K
is induced by the universal family over the Chow variety. See I1.2 of [K]] for details. It follows
that we can naturally compactify X and U to projective varieties and the universal family mor-
phisms p and p can be extended. For projective X, we will use the same symbols K,U to denote
these projective varieties. p : Y — K is no longer a P;-bundle, but just its generic fiber is P;.
Mostly, we will work with X instead of H, because we only use the property of the image of
h : P; — X. For simplicity, we will call the image curve C = h(P;) simply as a standard rational
curve.

Now let X and X’ be a Fano manifold of Picard number 1. By Mori’s bend-and-break trick
([Mo)), X and X' contains a standard rational curve. Let M (resp. H') be a standard component
and C (resp. C') be the variety of H-tangents (resp. H'-tangents) which has fiber dimension
p (resp. p'). We say that Cartan-Fubini type extension holds for the pair (X,H), if for
any choice of X/,H' with p = p’ and any connected open subsets U C X,U’ C X' with a
biholomorphic map ¢ : U — U’ such that the differential ¢, : PT;(X) — PTy(;)(X’) sends each
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irreducible component of C; to an irreducible component of C;,,, for all generic z € U, there
exists a biholomorphic map ® : X — X’ such that ¢ is the restnctlon of ® to U. In other words,
a local holomorphic map preserving varieties of rational tangents extends to a global holomorphic
map. Our main result is the following.

Theorem 1.2 Let X be a Fano manifold with Picard number 1. Suppose there erists a
standard component H with p,q > 0 such that for a generic point ¢ € X, the Gauss map for
each irreducible component of C, at T as a projective subvariety of PT,(X) is generically finite.
Then Cartan-Fubini type extension holds for (X, H).

There are many examples of Fano manifolds where the conditions for Theorem 1.2 hold. The
condition on the Gauss map holds, if it holds for some component of C, at generic z € X by the
irreducibility of C. By Zak’s result ([Za]) or its weaker version ([GH]), this condition is satisfied
if C, is smooth and not linear. Suppose H-curves are lines under a projective embedding of
X. Then the smoothness of C, at generic z € X is well-known and the condition p,q > 0 is
equivalent to 3 < ¢;(X) < dim(X). So Theorem 1.2 works in the following two cases:

(1) Rational homogeneous space G/ P of Picard number 1 different from the projective space.
K is the set of lines under the minimal projective embedding. C, is smooth and not linear.

(2) Smooth linearly nondegenerate complete intersections X C Py of dimension > 2 and of
multi-degree (dy,...,d;) with 1 <dj +---+d; < N — 2. K is the set of lines of Py lying on X.
C, is a smooth complete intersection for generic z. Defining equations of C, can be obtained by
differentiating the defining equations of X.

The following is an example where the standard rational curves are not lines under a projective
embedding:

(3) Let X be the moduli space of stable bundles of rank 2 with a fixed determinant of odd
degree over a smooth projective curve of genus > 5. Through a generic point of X, there exists
a standard rational curve arising from Hecke correspondence, called a Hecke curve. For the
corresponding standard component, C, is a ruled surface which is nondegenerate and smooth in
PT,(X) for generic z € X. See [Hw] for details.

In the statement of Theorem 1.2, the condition that ¢ > 0 is necessary. In fact, if ¢ = 0,
which is the case for the projective space, the condition on ¢ of preserving varieties of rational
tangents is void and ¢ can be just any local biholomorphic map.

On the other hand, the condition p > 0 is restrictive. There are many Fano manifolds with
Picard number 1 such that p = 0 for all standard components with ¢ > 0. Most notably, smooth
hypersurfaces of degree n in P, 1 belong to this case. But we do not know whether there exists
an example with p = 0 for which the Cartan-Fubini type extension property does not hold.

Our proof heavily depends on the condition p > 0. The condition on the Gauss map will be
used only for the following result proved in 3.1 of [HM4].

Proposition 1.3 Assume that (X, H) satisfies the assumptions of Theorem 1.2. Then the
tangent morphism T : U° — C is birational. Furthermore, for any choice of Fano manifold X'
with Picard number 1, a standard component H' with C' C PT(X') having fiber dimension p
over X', and any connected open subsets U C X,U’ C X', if there ezists a biholomorphic map
¢ : U — U satisfying p.(Cz) C Ciy,y for all generic x € U, then for any member C' of K,

4




o(CNU) is contained in C'NU’ for some member C' of K'. In other words, ¢ sends local pieces
of H-curves to local pieces of H'-curves.

Proof. The birationality of 7 is stated in Corollary 3.1.5 of [HM4], where it is proved that the
tautological foliation is uniquely determined by the variety of minimal rational tangents if the
Gauss map condition is satisfied. The second statement is an immediate consequence of this. O

The proof of Theorem 1.2 will be given in Sections 2-4. We want to finish this section with an
application. The Cartan-Fubini type extension property implies the rigidity of generically finite
morphisms in the following sense.

Theorem 1.4 Let (Xy, Ho) be a Fano manifold of Picard number 1 with the Cartan-Fubini
type extension property. LetY be any complete variety and m : X — A := {t € C,|t| < 1} be
a regular family of Fano manifolds of Picard number 1 such that Xy = n=(0). Then for any
surjective morphism f 1Y x A — X over A such that the restriction f; : Y — X; = 7w71(t)
is generically finite for each t € A, there exists € > 0 and a unique family of biholomorphic
morphisms g, : Xo — X for |t| < € satisfying fi = gi o fo.

Corollary 1.5 Given any complete varieties X and Y of the same dimension, let Hol(Y, X)
be the set of surjective holomorphic maps from Y to X. Then for any fired Y and any Fano
manifold X of Picard number 1 having the Cartan-Fubini type extension property with respect
to some choice of a standard component, Hol(Y, X) is countable up to automorphisms of X.
Furthermore there exist only countably many such Fano manifolds X, for which Hol(Y, X) # 0.

For the proof of Theorem 1.3, we need to recall some results from [HM3]. Let Y be a
projective manifold and y € Y be a point. In Section 1 of [HM3], we define the notion of a
variety of distinguished tangents. Roughly speaking, an irreducible subvariety of PT,(Y) is a
variety of distinguished tangents if it is the closure of tangent vectors to a family of curves passing
through y which corresponds to a stratum of a natural stratification of the Hilbert scheme of
curves through y. We refer to [HM3] for precise definitions. What we need here is the fact
that there are only countably many varieties of distinguished tangents in PT,(Y), which is an
immediate consequence of the definition. We also need the following proposition.

Proposition 1.6 (Proposition 3 in [HM3]) Let f : Y — X be a generically finite surjective
morphism from a projective manifold Y to a Fano manifold X of Picard number 1. Choose a
standard component on X and let C C PT(X) be the variety of rational tangents. Then for any
generic point y € Y, each irreducible component of the subvariety df, 1(Csy)) C PTY(Y) is a
variety of distinguished tangents.

In [HM3], this was stated for a finite morphism f and varieties of “minimal rational tangents”
on X. But the proof works equally well for the general case stated above.

Proof of Theorem 1.4. A standard rational curve h : P; — X, can be viewed as a standard
rational curve of X. By Lemma 1.1 (1), there exists a family h; : P; — X, for |t| < € for some
e > 0, which is a standard rational curve in each X;. Let H; be the standard component of
Hom(P1, X;) containing h;. Let X, = 771 ({|t| < €}).

Let H be the standard component of Hom (P, X;) containing h;’s and let C — PT(X,) be the
variety of H-tangents. Since all images of elements of Hom(P;, X) are contained in the fibers
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of 7, C is contained in the subbundle PT™ of PT(X) where T™ denotes the relative tangent
bundle of 7. C is irreducible and there exists some € < € so that C N PT(X,) is irreducible for
0 < |t| < €. In particular, C N PT(X;) is exactly C;, the variety of H;-tangents, for 0 < |t| < €.

Since C is locally an immersed submanifold near the point corresponding to h, we see that
Co, the variety of Ho-tangents, is contained in the closure of the union of C, for 0 < |t| < €.

Choose a small open set U* C Y and shrink € if necessary, so that fi|y« is biholomorphic
for small ¢ and the image f;(U*) is contained in the open set covered by the union of images of
H,, |t| < €. For each y € U*, let Cy,(y) be the variety of rational tangents at f;(y) associated to
H,,0 < |t| < €. Then the closure of the union of {Cy,(,),0 < |t| < €'} contains Cy,(y), the variety
of rational tangents at fy(y) for Ho. By Proposition 1.6, {df; *(Cf,)),0 < |t| < €'} gives a family
of varieties of distinguished tangents in PT,(Y’). Since there are only countably many varieties
of distinguished tangents in PT,(Y), f; *(Cs,)) is independent of ¢ and fo ' (Cy(y)) is the union
of some components of f;*(Cj,¢)),t # 0. The biholomorphic map ¢; := f; o fg ' from fo(U*)
to fi(U*) sends each component of Cy,(,) to a component of Cy,,y. By the Cartan-Fubini type
extension property, it can be extended to a biholomorphic map g; : Xy — X; with the desired
property. O

Remark Although we do not know whether Cartan-Fubini type extension holds for the case
of p = 0, an analogue of Theorem 1.4 for the case of p = 0 is proved in [HM5], by using a
completely different method which cannot work for the case p > 0.

2 Analytic continuation along standard rational curves

For the biholomorphic map ¢ : U — U’ in the statement of Theorem 1.2, we will say that ¢
preserves varieties of rational tangents. For the proof of Theorem 1.2 we will have to deal with
locally defined meromorphic maps which preserve varieties of rational tangents at generic points.
More precisely, let 2 C X be a connected open set and ¢ :  — X’ be a meromorphic map.
We say that ¢ preserves varieties of rational tangents if and only if (a) ¢ is of maximal
rank at a generic point £ € Q and (b) for such z € Q we have ¢.C, C C'y(s), i.e., . sends each
component to C, to a component of C(’p(z).

Theorem 1.2 will be proved by constructing an analytic continuation of ¢. This analytic
continuation is different from the classical one, in the sense that we have to carry it out only
along standard rational cuves. Let C C X be a K°-curve intersecting U. We want to get an
analytic continuation of ¢ along paths lying on C. This analytic continuation needs not be
univalent because C is not necessarily smooth. Moreover we want to repeat this process along
other standard rational curves intersecting U. For this reason, it is convenient to introduce the
notion of parametrized analytic continuation along a holomorphic map from a complex space
into X.

Let zo be a point on X and ¢ be a germ of meromorphic map into X’ at zo preserving varieties
of rational tangents. Let S be a complex space and sy € S be a base point. Let A : § — X be
a holomorphic map such that \(sg) = zo. By the parametrized analytic continuation of ¢
along )\ we mean a germ of meromorphic map F along ¥ := Graph(A) C S x X such that




(a) denoting by prx : S x X — X the canonical projection onto the second factor, the germ
of F at (s, \(s)) agrees with priv for some germ of meromorphic map v into X’ at A(s) € X for
each s € S,

(b) the germ of F' at (so, zo) agrees with prip.

We will write X : (S;s9) — (X; o) to indicate that sy € S is the base point, A(sg) = zo. We
sometimes write (; zo) for the germ of ¢ at zo, and (F'; ) for the germ of F along ¥, etc.

We have analytic continuation of the meromorphic map preserving rational tangents along
standard rational curves in the following way.

Proposition 2.1 Under the assumptions of Theorem 1.2, let o be a point in U and Cy
be a standard rational curve through x,. Choose a point ug € p~2([Co]) satisfying u(uo) = zo.
(A choice of u 1is equivalent to the choice of a local irreducible component of Cy at x.) Then,
there exists an open neighborhood By of [Co] in K°, so that for X := p|,~1sy) : pH(Bo) — X,
there exists a parametrized analytic continuation of the germ of meromorphic map (p; o) along

Az (p7 (Bo); uo) — (X5 0).
We will prove three lemmas first.

Lemma 2.2 Let Q C X be a connected open set and ¢ : Q@ — X' be a meromorphic map
preserving varieties of rational tangents. Let x € Q be a point and [C] € K° be a standard
rational curve passing through x. Choose u € p~1([C]) C U° such that pu(u) = z. Then, there
ezrist an open neighborhood W of u in U°, an open neighborhood B of [C] in K°, together with
meromorphic maps @* : W — U, o* : B — K', such that 7' 0 ¢ = [dp] o T and p' 0 ¢’ = ¥ 0 p.
Moreover, the germs of @ at u and of p* at [C] are uniquely determined by ¢ and they are of
mazimal rank at generic points.

Here and henceforth an open neighborhood is always understood to be connected. As is
evident 7/ : U’ — PT(X') denotes the analogue of 7 : U — PT(X), etc.

Proof. Consider

Ulq - Clo 25 C' &= U™,
By Proposition 1.3, 7 : U° — C and 7' : U’ — C’ are birational immersions. We define ¢’ to
be the composition 77! o @, o 7, which is a meromorphic map from U|q into U’. Let W be the
connected component of U|q containing u. By Proposition 1.3, " sends the fibers of p on W to

fibers of ', inducing a meromorphic map p# : B — K’ for some open set B C K° containing [C].
O

Lemma 2.3 Suppose we are given a connected open set B C K° and a meromorphic map
§:B — K'. Forany [C]) € K°, any z € C and u € p~*(z) N p~}([C]), there exists at most
one germ of meromorphic map ¢ at x to X' preserving varieties of rational tangents, so that the
germ of the induced map o at [C] with respect to u defined in Lemma 2.2 agrees with &.

Proof. Suppose not. We may assume that
(i) there exist two distinct meromorphic maps ¢y, 2 : 2 — X' on some neighborhood 2 of
z, both of them preserving rational tangents;




(i) the induced maps ¢’ and ¢ are defined on the same neighborhood W of u;

(iii) the induced maps o and ¥ are defined and equal on B.

Let y € § be a generic point. p(#~1(y)) is a p-dimensional family of standard rational curves
through y. Recall that ¥ and ©¥ have maximal rank at generic points. By o¥ it will be sent
to a p-dimensional family of standard rational curves on X’ passing through ¢;(y). By ¥, it
will be sent to a p-dimensional family of standard rational curves passing through ¢,(y). But
o = ¥ so we get a p-dimensional family of standard rational curves on X’ passing through
two distinct points ;(y) # 2(y). A contradiction to Lemma 1.1 (2). O

Lemma 2.4 Suppose we are given a K°-curve C C X, a point z € C, u € p~}([C]) Np~ (),
and a meromorphic map ¢ : @ — X' in a neighborhood of x preserving rational tangents.
Choose W, B, ", o* as in Lemma 2.2. Let AP denote the p-dimensional polydisc. Giveny € C
and w € p~Y([C]) N u~(y) with neighborhoods y € Dy in X and w € D, in U satisfying

(i) Dw C p~(B);

(i) w(Dy) = D, and D, is biholomorphic to D, x AP in such a way that the fiber of u|p,
over z € Dy corresponds to {z} x AP ; and

(i) Dy "W # 0 and D, N Q2 # 0,

there exists a meromorphic map ¢, : Dy — X' preserving rational tangents, so that 1 = ¢
on D, N and the induced maps ¥ agrees with o* as germs of meromorphic maps at [C] € B.

Proof. Define ¢ : p~1(B) — K' by ¢ := ¢* o p. Identify D,, with D, x AP. Then choosing a
point v € AP corresponds to assigning a K°-curve C,, to each point z of D,. Choose a generic
v € AP so that ¢ is holomorphic at a generic point of D, x {v}. This gives a K">-curve C , for
each z € D,, defined by the meromorphic map ¢, : Dy — K' by (,(2) = ((2,v) for 2 € D,. We
want to show that the family of curves C, , defined by generic choices of v € AP has a unique
common point and define ¢;(z) as this common point. To make it precise, we will work with
their graphs.

Let ©, C D, x U’ be defined by

8, := (id,p)""(Graph((,))
= {(z,u) e Dy xU',p'(v) € C,,}.
Let (id, ') be the map Dy, x U' — D, x X' and define
I, = (id,')(Ov)
= {(z,2") e Dy, x X',2' € C,}.

Then II, is an analytic subvariety of D, x X' which is proper over D,. Consider now the
intersection

II := [(){IL, : v € A?,(, is holomorphic at a generic point of Dy}
= {(z,2') € D, x X',z' € C,, for generic v € AP}.

Then II is also proper over D,. With respect to the canonical projection Dy x X' — D, the
fiber of Il C D, x X’ over a generic point consists of the intersection of a p-dimensional family
of standard rational curves on X'.




Over a generic point z € D, N}, this is exactly the p-dimensional family of standard rational
curves passing through ¢(z), and II|p,ne can be regarded as the graph of ¢|p,nq. So II|p,nq is
bimeromorphic over D, N§2. From the properness of II over D,, there exists a unique component
of IT which is bimeromorphic over D, defining a meromorphic map ¢; : D, — X'. It certainly
satisfies the required properties. O

Proof of Proposition 2.1. From ¢ at o and ug, we get B, ¢’, ©* as in Lemma 2.2. Since y is
submersive along p~!([Cp]) by Lemma 1.1 (1), we can choose finitely many points y; € Co, w; €
p~Y([Co)) N~ (y;) and cover p~1([Cy]) by finite number of open sets D,,’s in p~1(B) so that
Dy, = D,, x AP for suitable D,,’s covering Cy. Choose By C B so that p~!(By) C UD,,. By
repeatedly applying Lemma 2.4, we obtain analytic continuation ¢; of ¢ on D,,. This may not
be univalent on the open set UD,, of X. But its pull-back to UD,,, must be univalent by Lemma
2.3, defining a parametrized analytic continuation of (yp, zo) along A. O

Let o : (S;5,) — (S;so) be a holomorphic map between complex spaces with base points,
a(39) = so. Let F be a parametrized analytic continuation of ¢ along ¥ := Graph(A). Let V C
S x X be an open neighborhood of ¥ on which F' can be defined. Consider X (8;5) — (X;z0)
for X := Ao co. Then the graph ¥ := Graph(\) € § x X is given by & = (o, id)"*(X). The
meromorphic map F := (o, id)*F is defined on V := (a,4d)"(V), and the germ of meromorphic
map F into X’ along ¥ is a parametrized analytic continuation of the germ of meromorphic map
¢ at zo along the map X (5,5) — (X,z0). By abuse of notations we will write F = o*F.
(F;T) is the parametrized analytic continuation of (;z,) along ) obtained by pulling
back (F;X).

The proof of Proposition 2.1 can be easily modified to give

Proposition 2.5 Under the assumptions of Theorem 1.2, let B be a complex space and
B : B — K° be a holomorphic map, with associated holomorphic Pl-bundle p: P = ﬂ*U" — B
and induced tautological map B : P — U° = p~1(K°). Write by € B resp. sy € p1(by) for
chosen distinguished points on B resp. P, such that u(B(se)) = zo. Suppose there ezists a
holomorphic section o : B — P such that a(bo) = so. Consider po 3 : (P;so) — (X;z0) and
po Blesy : (0(B),s0) = (X;x0). Denote by £ C P x X resp. Lo C 0(B) x X the graphs of po
resp. W o Bla(B)~ Assume now that there exists a parametrized analytic continuation (Fy;Xo) of
(p; x0) along po ,3|6(B). Then, there ezists a parametrized analytic continuation (F';X) of (¢; Zo)
along p o B such that the restriction of F to o(B) x X agrees with Fy as germs along Y.

Proof. As in Lemma 2.2, F induces F : B — K'. Choose a neighborhood V of £y where Fj
is defined. We can cover P by open subsets of the form 3-1(D,,) where D,, C U° is as defined in
Lemma 2.4, in such a way that for each B_l (D), there exists a free rational curve C and a chain of
open sets 87(Dy,),i =0, 1,..., k with w; € p~1([C)) satisfying wo = w, D, N Dy, Np~*([C]) #
0 and 81(D,,) No(B) # 0. By pulling back the analytic continuation @ of  to D, obtained
in Lemma 2.4, we can find analytic continuation ¢ to i 1(Dy). Then ¢# = F(}* as germs at
the points of B where it is defined. Thus the analytic continuation is uniquely well-defined by
Lemma 2.3 and can be patched together to define F'. O




3 Adjunction of standard rational curves

Throughout this section, we assume the situation of Theorem 1.2. We say that an irreducible
subvariety A C X is saturated if for any C with [C] € K°, either C C Aor CN A = 0.

Lemma 3.1 There ezists a countable union of proper subvarieties of X, so that the only
saturated subvariety of X containing a point outside this countable union is X itself.

Proof. Otherwise the union of saturated subvarieties of dimension < n cover a Zariski-open
subset of X. Thus there exists an irreducible subvariety A of the Hilbert scheme of X whose
generic point corresponds to a saturated proper subvariety of X so that the members of A cover
the whole X. By choosing a suitable subvariety of .A, we get a hypersurface H C X which is the
closure of the union of some collection of saturated proper subvarieties of X. Choose a K°-curve
C; which is not contained in H. From the Picard number condition, C; intersects H. Thus small
deformations of C; intersect generic points of H by Lemma 1.1 (1). This gives standard rational
curves not contained in H but intersecting saturated subvarieties lying in H, a contradiction to
the definition of saturated subvarieties. O

Let 2o € X be a generic point in the sense of Lemma 3.1. Let S be an irreducible projective
variety with a distinguished Zariski-open subset V' C S and a distinguished point s € V. Let
X : (S;s0) — (X;o) be a holomorphic map generically finite over its image with A(so) = zo.
Assume A(S) # X.

We can construct a new irreducible projective variety S with a distinguished point § on a
distinguished Zariski-open subset V c $ and a holomorphic map \ : (5; §) — (X; 2o) generically
finite over its image with )\(so) = 1z, as follows.

Consider the natural map p : U — X, the pull-back \*u : A*UY — S and the tautological map
B : MU — U. Since A\(S) is not saturated by the choice of xo, generic fibers of \*u correspond
to standard rational curves which do not lie on S. Choose a generic point u € U° N pu~*(xo)
and let \*u € MU be the lifting of u lying above so. Since A\*U is projective, there exists an
irreducible projective subvariety E C A*U such that A*u|g : E — S is generically finite and
Mu € E. Let o : Q — E be a normalization of E and go € Q be a point such that a(go) = A*u.
Then (p o B0 a)*U defines an irreducible variety P with a natural map v : P — @ which is
generically a P;-bundle. There is a tautological section o : Q — P of v where o(g) corresponds
to the point 3o a(q) of the fiber of U over po Boa(g). We let S =P, 3 = o(g) and A to be the
natural map from P to X induced by p. Then )\(S ) is an irreducible subvariety of X containing

A(S) but not contained in A(S) because A(S) is not saturated. Since dim(S) = dim(S) + 1, this
implies that \ is generically finite. Let @* C @ be the open subset (\*u o a)~1(V). We deﬁne
V to be the Zariski-open subset of P|o- where the fibers of « corresponds to standard rational
curves of X. By our choice of u, 5§, € V.

We say that (5’ 80, V, 5\) is obtained from (.5, sp, V, A) by an adjunction of standard ra-
tional curves. This construction is not unique and depends on the choice of E. From the
construction and Proposition 2.5, the following is immediate.

Proposition 3.2 Let sp € V C S be a distinguished point of a distinguished Zariski-open
subset in an irreducible projective variety. Given a morphism X : (S;s0) — (X, o) generically
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finite over A\(S) # X and zo generic in the sense of Lemma 3.1, let (8, 50,V, ) be an adjunction
of standard rational curves. If there exists a parametrized analytic continuation of (p; xo) along
Alv : (Vis0) — — (X;x0), then there exists a parametrized analytic continuation of (p;xo) along
My : (Vi 80) = (X;20).

Starting from z(, we can repeatedly apply this construction to obtain

Proposition 3.3 Let zo € X be generic in the sense of Lemma 3.1. Then for 1 < k <
n = dlmX there exist a k-dimensional irreducible projective variety S%®) with a distinguished
point s, a holomorphic map A®) : (S®); k)) — (X;z0) generically finite over its image, and
a non-trivial Zariski-open subset V) C S® with s& € V® | such that, for any germ (;z,) of
meromorphic map into X' preserving varieties of rational tangents, there exists a parametrized
analytic continuation of (p;zo) along A®|yw : (V®); sy — (X;z0).

Proof. To start with, choose a K°-curve C passing through zy. Let SO = V1) = Py and A®
be the normalization P; — C with s; € S a point over z,. This satisfies the required analytic
continuation property by Proposmon 2.1. Now apply Proposition 3.2 inductively to construct
(SUH+D_ D) (et1) AR+ g5 (§®) 3{F) (%) () by an adjunction of standard rational curves.
O

Using the above construction, we want to extend the given map ¢ to a multi-valued mero-
morphic map defined on a Zariski dense open subset of X, in other words, a meromorphic map
defined on an unramified cover of a Zariski open subset of X. Given an unramified morphism
X : Z — X from a complex manifold Z and z € Z, we identify T,(Z) with x*T},)(X) canonically
and define C, to be [dx,]| !Cy(,) C PT,(Z).

Proposition 3.4 Let o € X be a generic point, dim(X) = n. Then, there ezxists an n-
dimensional normal projective variety & with a distinguished point oy € ¥, a generically finite
holomorphic map x : £ — X, x(00) = To, and a non-empty smooth Zariski-open subset Z C )y
such that, writing m = x|z

(a) m: Z — X — D 1is unramified for some divisor D;

(b) for any open neighborhood U of zy in X, and any meromorphic map ¢ : U — X' preserving
varieties of rational tangents, there exists a meromorphic map v : Z — X' preserving varieties of
rational tangents in the sense 1¥,(C,) = C{b(z) at points z € Z at which ¢ is locally biholomorphic,
such that for some open neighborhood W of oy on £ for which x(W) C U, we have ¥ = x*¢ on
wnz.

Note that xo may lie on D.

Proof. For k = n in Proposition 3.3, A™ : (S(");s((,")) — (X;zo) is a surjective generically
finite morphism. Write A = A, etc. and assume without loss of generality that S is normal.
We have a non-empty Zariski-open subset V C S, so € V, such that, for any germ (y;zo) of
meromorphic map into X’ preserving varieties of rational tangents, there exists a parametrized
analytic continuation of (¢; zo) along |y : (V;80) — (X;%o). We need to extract a meromorphic
map out of this parametrized analytic continuation.

Write & C V x X for Graph()|;) and (F;X) for the parametrized analytic continuation of
(¢; xo) along A|y. Let prx : V x X — X be the natural projection and x = prx|s. Let £ be
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a suitable projective variety compactifying ¥ so that x can be extended to a holomorphic map
x : 6 — X. Let Z C ¥ be a smooth Zariski-open set so that x is unramified on Z. Write
¥ = F|z. At any point (s,A(s)) € Z C ¥ the germ of F|(53xx at (s, A(s)) preserves varieties
of rational tangents at generic points, when {s} x X is identified with X canonically. By the
condition (a) of the definition of parametrized analytic continuation, the germ of F' at (s, A(s))
is of the form priv for some germ v at A(s), where v preserves varieties of rational tangents. It
follows that 9 : Z — X' is a meromorphic map preserving varieties of rational tangents. O

4 Global extension of a meromorphic map

In this section, we will finish the proof of Theorem 1.2. Starting with the unramified covering
7 :Z — X — D of Proposition 3.4, first we are going to construct a meromorphic map ® from X
to X’ extending a given germ of meromorphic map (y; zo) preserving varieties rational tangents,
and then show that ® is biholomorphic. There are two problems for the construction of ®: Z is
not univalent and the meromorphic map % : Z — X’ may have essential singularities along D.

Proposition 4.1 In the notation of Proposition 3.4, let (v;zo) be any germ of meromorphic
map into X' preserving varieties of rational tangents, and ¢ : Z — X' be the meromorphic
map arising from (p;xo) by parametrized analytic continuation. Let x € X — D and 21,20 € V
be two points lying above x, i.e., m(z1) = w(z2) = z. Then, the germs of meromorphic maps
(¥; 21) and (¥; 22) agree in the sense that (¥; z1) = (1*&; 21), (¥; 22) = (7*€; 22) for some germ of
meromorphic map (§;x) at x into X'.

Proof. Introduce an equivalence relation on Z by writing 2; ~ 2, whenever (i) 7(z1) = 7(22)
and (ii) for each germ (i;zo) the germs of the extended map (v; 21), resp. (¥;22) at 21 resp.
zp agree with each other. Write Z = Z/~. Then the canonical map Z — Z and the associated
covering 7 : Z — X — D are unramified. Replacing Zby Zand7:Z — X—Dby#®:Z — X—D
we may assume without loss of generality that given z; # z with m(21) = m(22), there exists
some germ (y; To) of meromorphic map into X' preserving varieties of rational tangents so that
the extended map 1 has distinct germs at z; and z;. For this new meaning of Z, Proposition
4.1 amounts to saying that 7 is bijective.

We need the following lemma which holds for any Fano manifold with Picard number 1.

Lemma 4.2 Let 7w : Y — X be a generically finite morphism from a normal irreducible variety
Y onto a Fano manifold X with Picard number 1. Suppose for a generic standard rational curve
C C X belonging to a chosen standard component H°, each component of the inverse image
= Y(C) is birational to C by m. Then w:Y — X itself is birational.

Proof of Lemma. Suppose w is not birational. From the simply-connectedness of X (e.g.
[Kb)), there exists a ramification divisor R C Y of m so that m(R) is a divisor in X. By genericity
of C, we may assume that 77!(C) lies on the smooth part of the normal variety Y. Let C)
be any irreducible component of w~!(C) which is birational to C by 7. Let h : P; — C; be
the normalization. Then 7 o h is the normalization of C. Thus a deformation h; : P; —» Y
of C; induces a deformation 7 o h; of C. On the other hand, by the genericity of C, any
small deformation of C' can be lifted to a small deformation of C;. It follows that the space
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of deformations of C' and the space of deformations of C; have equal dimensions. So we have
Ky -C, = Kx - C (cf. [Kl] I1.1.2). This implies C; is disjoint from the ramification divisor
R C Y. Since this holds for any component C; of 7~1(C), C is disjoint from the divisor 7(R), a
contradiction to the assumption that X is of Picard number 1. O

Now we prove that 7 is bijective. Suppose not. By Lemma 4.2, for a standard rational curve
C intersecting U, there exists an irreducible quasi-projective curve C* on Z such that n(C*) C C
and 7|c- is not birational. For a generic point x € C' N U, we have 27 # z; on C* such that
m(z1) = m(22) = z. We can find a germ ¢ of meromorphic map to X preserving rational tangents
so that the germs (¢; z;) and (¢; 22) obtained by analytically continuing ¢ are distinct. Choose
an arc T on C* starting from z; ending at 2,. The analytic continuation of (%;z2;) along T
gives (v; z2). However there is an analytic continuation of ¢ along C by Proposition 2.1. So the
analytic continuation along the loop m(T) on C must give the same germ at z. The analytic
continuation along C* should agree with the one pulled back from C via 7|g«. Thus follows
(¥; 21) = (¥; 22), a contradiction. O

Proposition 4.3 Any germ of meromorphic map (p; o) to X' preserving varieties of rational
tangents extends to a meromorphic map from X to X'.

Proof. From Proposition 4.1, we see that there exists a Zariski-open set X° C X such that
any germ of meromorphic map (p; o) to X' preserving varieties of rational tangents extends to
a meromorphic map ® from X° to X’'. Suppose there exists a divisor D C X — X°. Since X is
of Picard number 1, we have a K°-curve C through a generic point b of D by Lemma 1.1 (1).
Pick an irreducible branch of the germ of C at b. Then by Proposition 2.1, we can extend ® to
the union of X° and a neighborhood Uy, of b. Applying this to each codimension 1 component of
X —X°, ® can be extended outside a codimension > 1 set, and we are done by Hartogs extension
for meromorphic maps. O

Let ® : X — X’ be the meromorphic map in Proposition 4.3. Since ® preserves varieties of
rational tangents, the strict transform of C C PT'(X) by ®, must be a component of C’, and must
agree with C’ from the irreducibility of C'. It follows that ¢.(C;) = C,,,, for generic z € U. This
means that ¢! : U’ — U preserves varieties of rational tangents. Now applying Proposition
4.3 to ! which is a germ of meromorphic map at ¢(zo) € X’ to X preserving varieties of
rational tangents, we get a meromorphic map ! : X’ — X. Thus Theorem 1.2 follows from
the following, whose proof is given in 3.2.5 of [HM4]. Since the proof there is stated in the case
when both X and X’ are irreducible Hermitian symmetric spaces, let us rewrite it.

Proposition 4.4 Let X, X' be as in Theorem 1.2 and ® : X — X' be a birational map
preserving varieties of rational tangents. Then ® is biholomorphic.

Proof We denote by B C X the subvariety on which ® fails to be a local biholomorphism
and call B the bad locus of ®. We claim that Proposition 4.4 will follow if we show that B is of
codimension > 2. Since X and X’ are Fano we may choose k large enough so that both Kx* and
Kx¥ are very ample. Let s be a pluri-anticanonical section on X’ in I'(X, Kx¥). Then ®*sis a
well-defined pluri-anticanonical section on X — B. It extends across B under the assumption that

B is of codimension > 2. It follows that @ induces a linear monomorphism 8 : I'(X’, Kx*) —
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I'(X, Kx*) and hence a linear isomorphism 6* : I'(X, Kx*)* — ['(X’, Kx¥)* by taking adjoints.
Identifying X resp. X' as a complex submanifold of PI'(X, Kx*)* resp. PI'(X’ ,KxF)*, @ is
nothing other than the restriction of the projectivization [6*] : P(T'(X, Kx*)*) — P(I'(X', Kx/)*)
to X, thus a biholomorphism.

It remains to show that the bad locus B of ® : X — Y is of codimension > 2. Otherwise let
R C B be an irreducible component of codimension 1 in X. We can choose a generic K°-curve
C disjoint from the indeterminacy locus of ®. & is a holomorphic map in a neighborhood of
C and ®(C) is a standard rational curve C’ on X' from Proposition 1.3. Let h: P, — C and
k' : P; — C' be the normalizations. From the birationality of ®, we may assume that ®|c lifts
to the identity map on P;. Furthermore, the bundle homomorphism d®|c : T(X)|c — T(X')|c
lifts to a bundle homomorphism ¥ : A*T(X) — h*T(X’).

We have A*T(X) = O2) @ [O(1)]? ® O9. At t € Py we write P, = (O(2) ® [O(1)]P): C
(h*T(X))s, which is independent of the choice of Grothendieck decomposition. If [(A*T;(P1)] €
PTh#(X) is a smooth point of Cp), then Ty(h*C) = P, mod T;(P;). Define P, C (R*T (X))
analogously. For a generic ¢, [h,T;(P;)] is a smooth point of Cu), and [A,T;(P1)] is a smooth
point of Cj,¢. It follows that for a generic t € Py, ¥(P) = F{ since d®y) (Ch(t)) = Chyey-

Since X is of Picard number 1, C intersects the ramification locus R at some point x; = h(t1).
Choose a non-zero tangent vector n € Ty, (X) such that d®(n) = 0. Either h*n € P, or h*n € P,,.
In both cases we are going to derive a contradiction.

Since h*T(X) is semipositive there exists s € I'(P1, h*T(X)) such that s(z;) = h*n. Suppose
h*n & P,,. Then, s(t) ¢ P, for a generic t € Py. It follows that ¥s(t) ¢ P/ for a generic . On
the other hand, ¥s(1) = 0 since d®(n) = 0, implying that ¥s(t) € (O(2) & [O(1)]F); for every
t € Py, a contradiction.

Suppose now h*n € P;,. Then, there exists s € ['(P1,h*T(X)) such that s(0) = 0 and
s(1) = n,s(t) € O(2); for generic t € Py (i.e., h,s is not tangent to C). Then, for ¥s €
I'(Py, "*T(X')), ¥s(0) = 0 since s(0) = 0; ¥s(1) = 0 since d®(n) = 0, while ¥s ¢ T'(P,,0(2)).
Since h*T'(X)/O(2) = [O(1)]P® O does not admit any non-trivial holomorphic section vanishing
at two points, we have again derived a contradiction. O
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Deformation rigidity of the rational homogeneous space
associated to a long simple root

Jun-Muk Hwang'! and Ngaiming Mok 2

As a continuation of our previous works [HM1] and [Hw1], we study the following conjecture on
the rigidity of rational homogeneous spaces of Picard number 1 under Kahler deformation. For
the background of this conjecture, see the introduction of [HM1].

Conjecture Let G be a complex simple Lie group and P be a mazimal parabolic subgroup. Let
m:X > A={teC,|t| <1} be a smooth projective morphism from a complex manifold to the
unit disc. If X; := n~1(t) is biholomorphic to G/P for allt # 0, then X, is also biholomorphic
to G/P.

A natural approach is to construct a geometric structure on X, using the tangent vectors to
minimal rational curves. In [HM1] (resp. [Hwl]), we constructed a G-structure (resp. a contact
structure) this way and proved the Conjecture. By the work of Yamaguchi ([Ya]), for the cases
different from the symmetric or the contact cases, it suffices to recover the nilpotent Lie algebra
structure of a differential system to prove the Conjecture. The purpose of this paper is to show
this when P is associated to a long simple root, including the cases of all maximal parabolic
subgroups when all roots of G are of the same length:

Main Theorem Let G be a complez simple Lie group and P be a mazimal parabolic subgroup
associated to a long simple root. Let m : X — A = {t € C,|t| < 1} be a smooth projective
morphism from a complex manifold to the unit disc. It X; := n~1(t) is biholomorphic to G/P
for allt # 0, then X, is also biholomorphic to G/P.

As in [HM1] and [Hw1] our approach consists of studying distributions derived from varieties
of minimal rational tangents (see Section 2 for the definition), notably on questions of integra-
bility. There is however an essential difference in that we have to deal with a nilpotent Lie
algebra structure of the differential system, which is much more complicated than a G-structure
or a contact structure. The hypothesis on P enters in a crucial way in the proof. In fact, P is
associated to a long simple root if and only if the minimal G-invariant distribution on G/P is
spanned by varieties of minimal rational tangents.

With some oversimplification to streamline the comparison with earlier works the proof of
the Main Theorem breaks down into three steps. The first step, which parallels the first steps
of [HM1] and [Hwl1], is to show that the normalized space K, of minimal rational curves at a
generic point z of X, agrees with that of the model G/P. The proof of this step is a refinement of
arguments in [HM1] or [Hw1] requiring deeper knowledge of the geometry of Hermitian symmetric
spaces (as varieties of minimal rational tangents). The second step is to show that the variety
of minimal rational tangents C, C PT,(Xp), which is the image of K, under the tangent map,
agrees with that of the model as a projective subvariety. The third step is then to show that
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the differential system generated by the varieties of minimal rational tangents has the same
nilpotent Lie algebra structure as the model G/P. The second and the third steps are closely
intertwined and handled together in Section 3. Here new difficulties arise which were not present
in [HM1] or [Hw1]. As a matter of fact, while the third step is completely trivial for the Hermitian
symmetric case and is rather straightforward for the contact case, it is highly non-trivial in other
cases covered by the Main Theorem. An analogue of the third step is also the main obstacle in
extending the Main Theorem to the case when P is associated to a short root.

For the second step, in the Hermitian symmetric case it is enough to show that the varieties
of minimal rational tangents at the central fiber span the full tangent bundle; in the contact case
it is enough to show that they must span a distribution of codimension 1 (as on a generic fiber).
In both cases assuming the contrary we would have obtained an integrable distribution spanned
by varieties of minimal rational tangents, leading to a contradiction since X is of Picard number
1. Essential to this line of proof is the particular projective geometry of the variety of minimal
rational tangents of the model space G/P. For instance, in the model contact case, varieties of
minimal rational tangents span the contact distribution D, and are Legendrian subvarieties of
the projectivization of PD. From this it followed that any drop in the rank (when compared to
D) of the distribution W spanned by varieties of minimal rational tangents in the central fiber
X, would force W to be integrable by results from [HM1]. In other words, we relied on the fact
that the contact distribution in the model contact manifold is just short of being integrable.

In the situation of the Main Theorem and assuming that G/ P is neither Hermitian symmetric
nor of the contact type, the distribution D spanned by varieties of minimal rational tangents
on the model space can be very far away from being integrable. The problem is to prove that
the failure of integrability, in a sense to be made precise, is stable under deformation. Even on
the model space the differential system may have many levels, and jumps of simple numerical
invariants such as ranks of distributions are far from being enough to lead to contradictions. On
X, we have to consider the differential system obtained by augmenting W by taking successive
Lie brackets. The nilpotent Lie algebra structure associated to the differential system is precisely
the algebraic structure in which the failure of integrability is encoded. The novel point of the
proof of our Main Theorem is Proposition 6, which shows that a natural integrability condition
obtained in [HM1] coming from the deformation theory of minimal rational curves turns out to
be equivalent to the finiteness condition in the Serre presentation of the simple Lie algebra. This
is essentially a result on the model G/P and is expected to be useful in the study of geometry
of G/P itself, independent from the deformation problem.

In a sense, the main motivation for studying the Conjecture for us is that it is a good
testing ground for the study of Fano manifolds of Picard number 1 through minimal rational
curves. The problem of recovering the structure of a given Fano manifold of Picard number 1
from the information on the minimal rational curves is broader and of greater importance to us
than the Conjecture itself. From this perspective the study of the large classes of G/P in the
Main Theorem reveals that the deformation theory of rational curves provides a powerful tool
to unravel the algebraic structures of differential systems arising from distributions spanned by
varieties of minimal rational tangents. In the case at hand it provides a means of identifying
varieties of minimal rational tangents and recovering the complex structure of these rational
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homogeneous spaces. It is in this context that we believe that our result enhances the general
perspective in our geometric study of Fano manifolds as put forth in [HM1,2,3].

1 Rational homogeneous spaces associated to long simple
roots

In this section, we will review some basic facts about the rational homogeneous space associated
to a long simple root (see e.g. [Ya] or Section 2 of [HM2]).

Let g be a complex simple Lie algebra. Choose a Cartan subalgebra h and the root system
® C h* of g with respect to h. Fix a system of simple roots {as,...,} and a distinguished
choice of a simple root ;. Given an integer k, —m < k < m, we define ®; as the set of all roots
Zf;:l mqaq With m; = k. Here m is the largest integer such that ®,, # 0. For o € @, let g, be
the corresponding root space. Define

g0 = ho P g

aEPg

gr = P ga k#0.

acdy

The decomposition g = @j. _,, 8k gives a graded Lie algebra structure on g. Define

P = 80810 - O8mnm
1 = go
u=g:d0--dg_m

We say that p is the maximal parabolic subalgebra associated to the simple root «;.
u is the unipotent radical of p and p = u+ 1is a Levi decomposition. Let us remark that our
choice of p has signs of roots different from the choice in some references, e.g., [Ya]. We prefer
this choice because positive roots correspond to positive line bundles.

Each g;,1 < j < m, is an irreducible I-module. Let W C g; be the cone of highest weight
vectors of the irreducible I-module g;. Its projectivization PW C Pg, will be called the highest
weight variety. 1 has 1-dimensional center. The semi-simple part of 1 has rank [ — 1 and its
Dynkin diagram is obtained by removing «; from the Dynkin diagram of g. From this, one can
easily determine the highest weight variety in Pg;. We list the pairs (a;; PW) below. For the
numbering of simple roots, we will use the convention of [Ya].

o g = Al
(ai;Pi—l X Pl—i)

[ ] g = Bl
(05; Pic1 X Qoqoiy-1) for 1 < i <1 —1,(ay;Gr(2,1 - 2))




e g=0C
(i; Py X Pog_yy—q) for 1 <4 <1 — 1, (ay; v2(Pr-1))

o o= Dl
(@i; Pic1 X Qoqoiy—2) for 1 <4 <1 —2,(oy_1;Gr(2,1 - 2)), (ar; Gr(2,1 - 2))

e g=F;s
(al; GTII(5, 5)), (ag; GT(?), 3)), (a3; P1 X GT(Q, 3)), (a4; P, x Py x Pg)

e g=E
(a1; Gr1(6,6)), (ag; GT(3,4)), (a3; P1 X Gr(2,4)), (au; P1 x Py x P3), (as; P2 x Gr(2,3)),
(Oés; Pl X G’f‘”(5, 5))7 (O‘7; EG)

o g=Eg
(al; GT'II(7, 7)), (az; G’I"(3, 5)), (013; P1 X G'I"(?, 5)), (a4; P1 X P2 X P4), (O[5; P3 X GT(Q, 3)),
(ag; Py x Gril(5,5)), (ar; Py x Eg), (as; E7)

e g=F
(a1; GrlT1(3,3)), (ag; Py X v2(Py)), (a3; P1 X Py), (as; Gril(3,3))

o g = G2
(01;P1), (a2; v3(P1))

In the list, Qi denotes the k-dimensional smooth hyperquadric, Gr(k,l) denotes the Grass-
mannian of k-dimensional subspaces in (k + [)-dimensional vector space, Gr/(k, k) denotes the
orthogonal Grassmannian of k-dimensional isotropic subspaces in a 2k-dimensional orthogonal
vector space, Gr''T(k, k) denotes the Lagrangian Grassmannian of a 2k-dimensional symplec-
tic vector space, and Eg (resp. E;) denotes the Hermitian symmetric space with the group
Eg (resp. E7). va(Py) (resp. v3(Py)) denotes the 2nd (resp. 3rd) Veronese embedding of the
projective space. Except these Veronese embeddings of projective spaces, all other irreducible
Hermitian symmetric spaces are embedded in a minimal way and the product stands for the
Segre embedding coming from tensor product of the embeddings of each factor.

Now let G (resp. P) be a complex Lie group with Lie algebra g (resp. p ). The quotient
variety G/P is called the rational homogeneous space associated to the simple root «;.
The quotient map G — G/ P defines a P-principal bundle on G/P. The left action of P on the
reductive group L = P/U where U is the unipotent radical of P, induces an L-principal bundle L
on G/P. The Picard group of G/P is generated by an ample line bundle £. This line bundle £ is
homogeneous and is associated to L by a 1-dimensional representation of L. This representation
can be described as follows. Let a; be the simple root defining P. Let H,, € h be its coroot. The
center of the reductive group L = P/U has Lie algebra CH,,. Hence a Z-functional on ZH,,
induces a character of L, giving rise to a homogeneous line bundle on G/P. The line bundle £
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is the one associated to the functional having value 1 on H,,. It is well-known that £ is very
ample.

For example, when G/P = P;, g = sl; has a unique simple root and corresponding coroot.
A functional having value k € Z on the coroot gives rise to the line bundle O(k) on P;.

On our rational homogeneous space G/ P, we have rational curves which are lines under the
embedding defined by £. Let o; be the simple root defining P and H,, € h be its coroot. Let
Sq; C g be the subalgebra isomorphic to sl; such that s,, "h = CH,, and H,, is the coroot for
Sq,- The orbit of o € G/P under the subgroup S,, C G with Lie algebra s,, is a rational curve
and will be denoted by C,,. Note that the character of L defining £ has value 1 on H,,. Thus
C., is a line under the embedding of G/P defined by £. Under the natural identification of g;
as a subspace of the tangent space T,(G/P), H,, is a tangent vector of the line C,, at the point
o€ G/P.

So far all our discussions work for any simple root ;. But for the next Proposition we need
to assume that o; is a long simple root.

Proposition 1 If o; is a long simple root of g, then the Chow space of lines through the base
point o € G/ P is isomorphic to the highest weight variety PW C Pg;.

Proof. Each point w € PW can serve as the highest weight vector H,, under a suitable choice
of the Cartan subalgebra h and the Weyl chamber. Thus we have a line C,, whose tangent vector
at o is given by w. Thus PW is a subvariety of the Chow space of lines through o.

We claim that PW is an irreducible component of the Chow space. It suffices to show that
the dimension of the deformation of a line fixing a point on G/P cannot exceeds the dimension
of PW. The former is bounded by h°(Cy,, N ® O(—1)) where N is the normal bundle of the
line in G/P. Since the normal bundle is semi-positive, h°(Cy,, N ® O(—1)) = C,, - Kg/lp —2. To
calculate the anti-canonical degree of C,,, we use Grothendieck’s splitting theorem for principal
bundles on P; with reductive structure groups and associated vector bundles([Gr]).

Theorem (Grothendieck) Let O(1)* be the C*-principal bundle on Py corresponding to the
line bundle O(1). Let L be a reductive complex Lie group. Up to conjugation, any L-principal
bundle on P, is associated to O(1)* by a group homomorphism from C* to a mazimal torus of
L. If H is the coroot of sly, such a group homomorphism is determined by the image of H in
h, a fized Cartan subalgebra of L. Given a representation of L with weights p1,...,u € h*, the
associated vector bundle on Py splits as O(u1(H)) & --- & O(w(H)), where pj(H) denotes the
value of u; on the image of H in h.

Note that T,(G/P) can be naturally identified with g/p. So the Chern number of T(G/P) is
equal to the sum of Chern numbers of the vector bundles associated to the L-principal bundle L
via the representations of L on g1, . .., gn. Hence by Grothendieck’s theorem, the Chern number
of T(G/P) restricted to Cy, iS Ypes,u.-us,, B(Ha;). Since q; is a long root,

2 ifﬂ=a,-
B(Hy,)=4 1 iff#a;andf—-a;€®
-1 if#o;and B+ a; € .



From «; € ®;, the Chern number is

> B(Ha) = 2+#{BE€B U Udn,B+# 0, f— o € D}

BEDU---UD,,
-t{BedU---UP,,B#a;,f+ac d}
= 2+#{B€®,B—a; € Do}
= 2+ #{y € Dg,a+7v € Do}
= 2+ dim([go, Ha,))-

It follows that h°(Cy, N ® O(—1)) = dim([l, Hy,]). But dim([l, H,,]) is exactly the dimension of
PW. This proves that PW is an irreducible component of the Chow space of lines through o.

It remains to show that the Chow space of lines through o is irreducible. A line is determined
by its tangent vector at o. Thus if there exists a line different from C,,, its tangent vector will
be contained in T,(G/P) — PW. From Proposition 5.2 in [HM2], the closure of the P-orbit of
such a vector intersects PW. Since the limit of a family of lines is again a line, this implies that
the component PW is not smooth. However PW is homogeneous and h'(C,,, N @ O(-1)) =0
since N is semi-positive, so the Chow component PW is smooth, a contradiction. O

Remark 1 As complex manifolds, the rational homogeneous space associated to oy for g = B;
is biholomorphic to that associated to «; for g = D;y;. Also the rational homogeneous space
associated to a; for g = G, is isomorphic to Qs which is associated to a; for g = B3. Thus when
we study complex structure of G/P, these two cases can be regarded as rational homogeneous
spaces associated to long simple roots.

Remark 2 When ¢; is a short simple root, Proposition 1 does not hold. The Chow space
of lines through o contains, but is strictly bigger than, PW. It is not contained in Pg; and
excepting the cases mentioned in Remark 1, it is not homogeneous.

2 Rigidity of the normalized Chow spaces

Let us recall some basic facts from deformation theory of rational curves (cf. Section 2 of [HM1]
or [Kl]). Let X be a Fano manifold of Picard number 1 and z € X be a generic point. Let K;
be an irreducible component of the normalized Chow space of rational curves of minimal degree
through z. Then K, is a smooth projective variety. If the anti-canonical degree of members of
K, is p + 2, then K, has dimension p, and for a generic member C' of K,

TX)lc = O@)a[O1)Po O™ 17

Define the tangent map 7, : K, — PT,(X) by assigning the tangent vector at z to each member
of K, which is smooth at z. This is a generically finite rational map and its strict image is denoted
by C,, called the variety of minimal rational tangents at z. Suppose X is embedded in some
projective space Py and a minimal rational curve through a generic point z is a line in Py. Since
lines through z in Py are determined by their tangent vectors at z, 7, is an embedding. This
is the case for our G/P. In particular, when P is associated to a long simple root, Proposition
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1 implies that K, = C, & PW and 7, is an embedding described in the list of highest weight
varieties in Section 1.

We now go to the situation of the Main Theorem. Let 7 : X — A be a smooth projective
morphism from a complex manifold to the unit disc. Suppose the fiber X; := m~1(t) is biholo-
morphic to G/P associated to a long simple root for each ¢ # 0. Let us use the same symbol
L to denote the line bundle on X whose restriction to X; is equivalent to the line bundle £ on
G/P. Choose a generic point z € X, and a section 0 : A — X of 7 satisfying 7(0) = z. Let
p: Ko — A be the family of normalized Chow spaces Ks(;) of minimal rational curves through
o(t) in X;. Then p is a smooth projective morphism by the same proof as Proposition 4 in [HM1]
or Proposition 8 in [Hwl]. The goal of this section is to prove the following.

Proposition 2 The family p : K, — A is a trivial family, namely, its fiber at t = 0 is also
isomorphic to PW.

Proof. From the list of highest weight varieties in Section 1, we see that PW belongs to (at
least) one of the following.

(i) PW is an irreducible Hermitian symmetric space.

(ii) PW is the product of two projective spaces.

(i) PW = Sy x S; where S; = Py, and S, is a hyperquadric.

(iv) PW 2 S; x S; where S§; = Py, and S, is a Hermitian symmetric space of rank 2 with

For the case (i), Proposition 3 follows from the result of [HM1]. For the case (ii), Proposition
3 was proved in Section 3 of [HM1]. Thus we will only consider the cases (iii) or (iv). In these
case, either Sy is irreducible or the product of two projective spaces. Let (; be the hyperplane
line bundle on S; = P}, and ¢, be the ample line bundle on S, which is the generator of Pic(S,)
if S, is irreducible and is the tensor product of hyperplane bundles of each factor when S, is the
product of two projective spaces. Let ( = (; ® ;. We say that a curve on C, is a line (resp. a
conic), if it has degree 1 (resp. 2) with respect to (. Let & (resp. i, resp. & ) be the line bundle
on K, so that its restriction to p~(t) is ¢ (resp. (1, resp. (3) for t # 0.

Lemma 1 Let I, C Ky be a family of curves so that l; is a line on Sy X Sy = Ky for all
t #0. Then ly is irreducible and reduced as a cycle in Ky (o).

Proof. For t # 0, a line in K, corresponds to a family of lines in G/P passing through
a fixed point 0 € G/P, which span a surface of degree 1 with respect to £. Given a family
of rational curves l; C K, of degree 1 with respect to £, we have a corresponding family of
surfaces Ry C X; of degree 1 with respect to £. Since £ is ample on X, the limit Ry must be a
reduced irreducible surface. It follows that the limit [y is a reduced irreducible rational curve on
’Cg(g). O

Note that for any polarized projective manifold X and an integer N, there exists a non-empty
Zariski open subset X* C X with the property that for any irreducible rational curve C of degree
< N with respect to the given polarization, T'(X)|¢ is semipositive if C' contains a point of X*
(e.g. the argument of [KI] I1.3.11).



Lemma 2 Let y € K, () be a generic point. Let c; C Ko be a family of curves so that c; is
a conic on Sy X Sy = Ky for allt # 0 and co contains y. Then cy is either irreducible or has
two components of degree 1 with respect to &.

Proof. A conic on S; X S, can be degenerated to a union of two lines. Thus for ¢ # 0, a conic
on K, corresponds to a surface of degree 2 in X; with respect to £. By the same argument
as in Lemma 1, ¢y can have at most two components. Suppose it has two components ¢y and
co1. One of them, say cgo, contains y and we may assume T'(Ky())|co, iS sSemipositive from the
genericity of y. From H*(cgo, T(Ks(0))) = 0 and Kodaira’s stability ([Kd]), we have a family of
rational curves C; C Ky so that Cjy = coo. In particular, coo has positive degree with respect
to £&. Suppose that ¢y has degree > 1 with respect to £. Then the surface in X; corresponding
to C} is of degree > 1 with respect to £. It follows that the surface in Xy corresponding to cyo
has degree > 1 with respect to £ . This is not possible because the total degree of the surfaces
corresponding to ¢y U cp; is 2. Hence cyp has degree 1 with respect to £ and so does cg;. O

We have two foliations £ and F on K, so that the leaves of &| Kot # 0 (resp. F]| ICU(:)) are
the S;-factors (resp. Sp-factors ) of K¢ = S; x S;. They define meromorphic foliations on
’Ca(o).

Lemma 3 Let y € K,(0) be a generic point and p: A — K, be a section of p with u(0) =y.
Let P, be the E-leaf and Q; be the F-leaf through u(t) on Ko, t # 0. Then the limits Py and Qo
are irreducible and reduced as cycles in Ko(q).

Proof. Since P; and Q; has intersection number 1 for all ¢ € A, the reducedness of Py and Qg
are immediate if they are irreducible.

Suppose Py is reducible. We can choose two families of distinct points a4, 8; € P; so that ag
and [y lie on different components of Py. Since P, = Py for ¢t # 0, there exists a line |, C P,
joining a; and B;. By Lemma 1, the limit l; must be irreducible while oy, 8y € Iy, a contradiction.
Thus P, is irreducible.

To prove the irreducibility of @y, we consider the case (iii) and the case (iv) separately.

For the case (iii), we will use the following property of the hyperquadric Sa: given two generic
points A, B € S, the union of all conics passing through A and B covers S,. This is because
the tangent bundle of the hyperquadric splits as a direct sum of ((2)’s over a conic. Suppose
Qo is reducible. Choose two generic points Ay, By in one of the component of @y so that both
Ap and By are very general. Choose two families of points A;, By € @; converging to Ay and By.
Consider the union of all conics through A; and B;. By the above mentioned property of S,
the limits of these conics must cover Qp. Since @ is reducible, this means that for any family
of conics ¢; passing through A; and B, its limit is reducible and one of the component is a line
passing through Ay and By. The union of such lines must cover one component of ()y. By Mori’s
bend-and-break ([KIl] I1.5), this family of lines through Ay and By must degenerate to a union of
two rational curves. But this gives a contradiction to the degree of corresponding surface in X
as in the proofs of Lemma 1 and Lemma 2.

For the case (iv), we will use the following property of Hermitian symmetric space S, of rank
2: conics through a given point on S; cover S;. This is a consequence of the polydisc theorem
(Ch. 5 (1.1) in [MK]). If Qo is reducible, choose A;, B; € @ so that Ay and By are generic points




of distinct components of Qo. We may assume that Ag is a very general point. We can find a
family of conics ¢; C Q, containing A, and B;. The limit ¢y cannot be irreducible, and must be
the union of two irreducible curves of degree 1 with respect to £ by Lemma 2. Fixing Ay and
varying By, we get irreducible rational curves of degree 1 through Ao which cover a component
of Qo. Since Ag is very general, we may assume that these degree 1 curves through Ay are limits
of families of degree 1 curves through A; in K,y by Kodaira’s stability ([Kd]) as in the proof
of Lemma 2. Thus on Ko, we get a (dim(Sz) — 1)-dimensional family of lines through a fixed
point, but this is impossible because S, is not a projective space and k < dim(S;). O

Lemma 4 For a generic point y € Ky (), the E-leaf P through y and the F-leaf Q throughy
intersects transversally at y.

Proof. Suppose not. From the genericity of y, there exists a positive dimensional component
R of PN Q through y. Let P, (resp. Q;) be a family of leaves of £ (resp. F) with Py = P (resp.
Qo = Q). Choose two distinct points on R generically. Then there exist a family of lines I; on
P, so that [y contains these two points on R. We can choose a section of §; whose zero section
H is a hypersurface consisting of F-leaves so that @ C H. Since [y has degree 1 with respect to
& and contains at least two points of H, we see that l[p C H. This implies that lp C Q. From
the genericity of y, we can assume that [y passes through a generic point of Q. We know that &;
is big on Q because it is ample on Q;. On the other hand, ly - & = 0, a contradiction. O

We are ready to finish the proof of Proposition 2. From above, £ and F define two transversal
foliations at generic points of Ky(). So we get a direct sum decomposition of the relative tangent
bundle of p outside a codimension 2 set in K;. Then it extends to a direct sum decomposition
everywhere on K,, because the set of all possible direct sum decompositions of a given vector
space is an affine variety. It follows that the foliations £ and F on K, have no singularity. Since
Ko(0) is simply connected, K, is biholomorphic to the product of smooth deformations of S;
and S,. This finishes the proof when S, is irreducible by the result of [HM1]. When S, is the
product of two projective spaces, we apply the same argument as above to the family of leaves
Q:, as was done in Section 3 of [HM1], to conclude. O

3 Symbol algebra of the differential system

Let us recall some definitions in the theory of differential systems ( [Ya]). Given a distribution
D on a complex manifold X, define the weak derived system D* inductively by

D' =D
D* = D*'+[D,D*].

For a generic point z € X in a neighborhood of which D¥’s are subbundles of T'(X), we define
the symbol algebra of D at z as the graded nilpotent Lie algebra D; + D7/ Dl+...-+D!/D;™?
where r is chosen so that D™ = D".

When X is a Fano manifold of Picard number 1, choose a component K of the Chow spaces of
rational curves of minimal degree covering X. For each generic z € X, let K, be the subscheme




consisting of curves passing through z and C, C PT;(X) be the variety of minimal rational
tangents. Let V, C T,(X) be the linear span of C; and V be the meromorphic distribution
defined by V,’s. As an example, consider our G/P associated to a long simple root. We have the
L-principal bundle L on G/P induced by the P-principal bundle G — G/P. The L-module g;
induces a vector bundle D on G/P. By definition, since C, is nondegenerate in g, the distribution
YV for G/ P agrees with D. Moreover, it is easy to see that the symbol algebra of D is isomorphic
to g1+ + Em.

Remark 3 As mentioned in Remark 2, if G/P is associated to a short simple root, the
distribution V need not agree with the distribution defined by g;. For example, V is the trivial
distribution T'(G/P) when G is of type C (symplectic group) and P is associated to a short
simple root.

For any Fano manifold X of Picard number 1 and for any choice of K, the distribution V has
the following two properties.

Proposition 3 Let [,] : A2V, — T,,(X)/V, be the Frobenius bracket tensor at a generic point
z € X. Then for a generic smooth point v € C, and v' in the tangent space of C; at v, [v,v'] =0
when v and v' are regarded as vectors in V.

Proof. This is just a restatement of Proposition 10 of [HM1]. Section 4 of [HM1] was
presented under the assumption that C, is irreducible, but the proof of Proposition 10 did not
use this assumption. O

Proposition 4 At a generic point x € X, the symbol algebra of V has dimension n = dim(X).

Proof. By definition, the symbol algebra has dimension < n. If it is strictly less than n, V
is contained in an integrable distribution. This is a contradiction to the assumption that X is of
Picard number 1 by Proposition 2 in [Hw2]. O

Now let us go to the situation of the Main Theorem. Let K be a component of the Chow
space of X, parametrizing rational curves covering X, which are limits of lines on X;,t # 0. Let
75+ Kg = C; C PT,(X) be the tangent map at a generic z € Xy. Let V, C T;(X,) be the linear
span of C; and V be the meromorphic distribution defined by V,’s.

Proposition 5 At a generic point x € Xy, the symbol algebra of V is isomorphic to g +
-+ + g as graded nilpotent Lie algebras.

To prove Proposition 5, we need a characterization of the graded nilpotent Lie algebra g; +

-+ gm. We need the following Lemma which follows immediately from the proof of Serre’s
Theorem in [Hu, 18.3], using the fact that the subalgebra generated by {z;,1 < i < [} in the Lie
algebra L, constructed there is free (see also [Se, pp.48-49]). The latter fact is proved in [Bo,
Ch.8, 4.2] or [Ka, Theorem 1.2(b)].

Lemma 5 Let {a1,...,q} be a set of simple roots for g and < a;, a; > be the entries of the
Cartan matriz. Let {x;,y;, hi|]l <@ <1} be the generators of the Serre presentation of g as given
in [Hu, 18.1]. Then the subalgebra of g generated by {z1,..., i} is the quotient of the free Lie
algebra generated by {z1,...,x;} by the relations

(ad xi)—<aj,ai>+l(xj) =0
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fori#j.
Using Lemma 5, we get the following characterization of the graded Lie algebra gg+- - - + gm.

Proposition 6 Let n = Y} 2 n; be a graded Lie algebra generated by ny and n;, so that
ny = gy and Ny is isomorphic to g; as a go-module. Let W C n; be the highest weight cone for
the representation of go on ny. Assume that for any vector v € W, the Lie bracket of n satisfies
[v, (80, v]] = 0. Then n is a quotient of the graded Lie algebra go + - - - + gm.

Proof. Let m C gy be the subalgebra generated by {z;,7 # k} where o4 is the long simple
root defining p. Consider the subalgebra n’ = m+n; +---+n; of n. As an abstract Lie algebra,
n’ is generated by {z;,1 < i < (}. It satisfies all the relations

(ad xi)—<aj,ai>+l(xj) =0

for i # j. In fact, if 7 # k and 7 # k, this relation is just one of the Serre relations for gg. If
j = k, this relation concerns the action of m on n;, which we assumed to be equivalent to the
action of m on g; for which the relation is just one of the Serre relations. When ¢ = k and
< aj,a >= 0, this follows again from the action of m on n;. Since o4 is a long root, the only
remaining case is when ¢ = k and < «;, oy >= —1, for which the relation is just

[xkv[xkaxj” = 0.

But this is satisfied from the assumption that [v,[go,v]] = 0 for any v € W. It follows from
Lemma 5 that n’ is a quotient of the subalgebra of g generated by {zi,---,z;}, which implies
Proposition 6. O

Now we have the following characterization of the graded Lie algebra g; + -« + gm.

Proposition 7 Let W C g; be the cone of highest weight vectors as a go-module and F(g;)
be the graded free Lie algebra generated by g,. We consider the ideal I of F(g;1) generated by
the relations [v, [0, v]] = 0 for allv € W. Let us denote the quotient graded algebra F(g1)/I by
n;+ny+---. Then ny; +ny+--- is isomorphic to the nilpotent graded Lie algebra g1+ -+ gm.

Proof. go-action on g; induces a gg-action on the tensor algebra of g; as a derivation, making
go + F(g1) into a graded Lie algebra whose 0-degree part is exactly go. Since the ideal I is
invariant under the action of gg, go + n; + nz + --- becomes a graded Lie algebra. Setting
ny = go, we can apply Proposition 6 to identify ny + no + -+ with g1 + -+ - + gn. O

Now we are ready to finish the proof of Proposition 5.

Proof of Proposition 5. Choose a section 0 : A — X of 7 : X — A so that z = ¢(0) is a
generic point of Xog = 7~1(0). The family X, of normalized Chow spaces of minimal rational
curves through o is a trivial family of PW by Proposition 2. For ¢ # 0, the tangent map
Tot) : Koty = PTo(t)(X¢) is an embedding into PD,(;) = Pg, given by a complete linear system
of the line bundle ¢ on K, defined in Section 2. Thus 7,() is a rational map defined by a
subsystem of this complete linear system. Namely, 75(g) is induced by a projection g; — V. Let
W' C V, be the image of the highest weight cone W C g; under the projection. Then PW’ = C,,
the variety of minimal rational tangents at x.
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Consider the free lie algebra F(V,) generated by V, and let J be its ideal generated by the
relations given by [v,v'] where v is a smooth point of W’ and v’ is a vector in the tangent
space of the cone W’ at v. Then the quotient graded Lie algebra F(V;)/J is a quotient of
g, + -+ + gm by Proposition 7 because J contains the image of I under the natural graded Lie
algebra homomorphism F(n;) — F(V,). From Proposition 3, the symbol algebra of V at r is
a quotient algebra of F(V,)/J, thus a quotient algebra of g; + - - + gn. If the symbol algebra
is not isomorphic to g1 + - -+ + g, it has dimension strictly smaller than n = dim(G/P), a
contradiction to Proposition 4. O

Our Main Theorem follows from Proposition 5 via the works of Tanaka and Yamaguchi ([Ta]
and p.479 of [Ya]. See also 3.10 of [Mo] for a more general treatment). Let us briefly summarize
their works. Let G/ P be a rational homogeneous space associated to a simple root. Assume that
G/P is not a symmetric space or a homogeneous contact manifold. Given a differential system
D on a complex manifold whose symbol algebra at a generic point is isomorphic to g1+ - - + gm,
there exists a natural holomorphic P-principal bundle P over an open neighborhood U of a
generic point with a canonical choice of g-valued 1-form w, called the Cartan connection, so that
if the Maurer-Cartan equation dw + %[w,w] = 0 holds, then there exists a biholomorphic map
of U to an open subset of G/P which sends the distribution D to the distribution D on G/P
induced by g;. The construction of w given in [Ta] or 3.10 of [Mo] can be carried out when we are
given a family of complex manifolds with a family of differential systems whose symbol algebras
are isomorphic to g; + -+ + gm.

Proof of Main Theorem. From [HM1] and [Hwl], we may assume that G/P is not a sym-
metric space or a homogeneous contact manifold. By Proposition 5, we are given a family of
meromorphic distributions V; on X whose symbol algebra at a generic point of X; is g1+ -+gm
for all t € A. We can apply the construction of [Ta] or 3.10 of [Mo] to a family of neighborhoods
U, of z € X, to get a P-principal bundle P over U := Uicald; with the Cartan connection w on
P. Since the Maurer-Cartan equation holds for ¢ # 0, it holds also for ¢ = 0. Thus there exists
a biholomorphic map from Uy to an open subset of G/P sending V to D. From the upper-semi-
continuity of h°(X;, T'(X})), the Lie algebra aut(Xj) of infinitesimal automorphisms of X, has
dimension > dim(g). By Corollary 5.4 of [Ya], the Lie algebra of infinitesimal automorphisms of
Uy preserving V) is isomorphic to g. Thus aut(X,) = g and the isomorphism is induced by the
biholomorphism from Uy to an open set in G/P. In particular, G acts on X, with the isotropy
subgroup at a generic point isomorphic to P, implying Xo = G/P. O
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