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The Lyapunov stability theory for nonlinear time-varying dynamic system in Banach
space is given in present paper. The Lyapunov stable theorem and the Barbashin-
Krasovskii-LaSalle invariant set principle in classical theory are extended to infinite di-
mensional Banach space. Under the assumptions of the existence of solution and the
additive property of motions, sufficient and necessary conditions for uniform stable and
uniform asymptotic stable are obtained, the Lyapunov functions are explicit construc-
tured. This extension can be used in criterion of stability for the continuous and discon-
tinuous systems.
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1. Introduction

The need to study of stability to dynamic system is evident and it is interesting to
investingate the relation between stability of distributed parameter system and that of finite
dimension system. Saying a system is finite-dimensional system we mean the system is given
by ordinary differential equations, whose state is a vector in finite dimensional space and
the differential is only taken in time variable. By a distributed parameter system we mean
the state of system is a vector in infinite dimensional space. A direct example is a system
is governed by partial differential equation. Although these two type systems can be both
written into the following form in Banach space X:

ẋ(t) = F (t, x(t)), t > τ, (1.1)

they have essential differences. If X is finite dimensional, then F is a bounded operator
which maps bounded set to bounded set, and is simultaneously a compact operator too.
However when X is infinite dimensional space, the case becomes more complicated: F may
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be a bounded but compact, in particular, F may be an unbounded operator with some
boundary conditions, whose domain is not the entire space. Whatever X is of finite or
infinite dimensional, one need to study four aspects: the existence of solution of system in
some sense; the uniqueness of the solution; the stability of the solution (dependence upon the
initial data); and the robust stability of the system. Since our attention in this paper is the
stability of the system, we can assume without loss of generality that the system is uniquely
solvable for each initial point in some region of X, which is usually called solvable region of
the system. The stability of the system have many versions, such as Lyapunov stable and
Lagrange stable. Lyapunov stability has two main aspects: one is the system stability, which
means that solution (or trajectory) of the system depends upon initial data in some manner
in neighborhood of a fixed point, the other is the asymptotically stability of the system.
The asymptotic stability of the system is the ability of the system to regulate itself, over a
sufficiently long period of time, back to its equilibrium subject to a small influence. A system
is said to be robustly asymptotically stable if it can still do so undergoing random influences.
These properties are extremely important characters of the system.

In practice, in addition to (1.1), there are other forms of systems, such as time invariant
system

ẋ(t) = F (x(t)), t > τ, (1.2)

the time delay system
ẋ(t) = F (t, x(t), xt(t)), t > τ, (1.3)

where xt(s) is time delay term, the controlled system

ẋ(t) = F (t, x(t), u(t)), t > τ, (1.4)

where u(t) is control term and the stochastic system

ẋ(t) = F (t, x(t), w(t)), t > τ, (1.5)

where w(t) is a stochastic term,etc. Although these systems have different forms, which
come from various problems in practice, and have different physical or mathematical mean-
ings, our main concern is how to determine the stability and asymptotic stability of the
corresponding system. The basic tool for solving this problem is Lyapunov theory. How-
ever Lyapunov theory is founded on finite-dimensional space. It is necessary to extend this
theory to infinite-dimensional space in order to solve more problems. In fact, this work was
done for a linear autonomous system in the 1970’s, and obtained results have been exten-
sionally used in various researches. for new results on this aspect see Neerven (1996). For
the development on the extension of Lyapunov stability theory for linear non-autonomous
system, see Clark et al.(2000) and references therein. Since the extension of Lyapunov the-
ory in infinite-dimensional space has a surprising exception result, even for a linear system,
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that the spectrum determined growth condition does not always hold (see, Zabczk,1975),
the Lyapunov theory should need some substantial work in order to extend to nonlinear dy-
namical systems in infinite-dimensional space. It is well known that two difficulties occur
in the change of Banach space from a finite dimension to infinite dimension: one is loss of
the compactness of a bounded set, the other is presence of unbounded operator. Indeed, our
task is to overcome these difficulties and to extend the Lyapunov theory in finite-dimensional
space to in infinite-dimensional space. We retain the useful conditions of classical Lyapunov
theory, but aim to improve the unsuitable ones and give a new version of Lyapunov stability
theory in general Banach space.

The Lyapunov stability theory for a finite dimensional space is still an incomplete theory,
and in continual development. Since there are huge numbers of papers on stability of dynamic
system in finite dimensions, we mention only recent relevant works in this paper when we
need explain some results and conditions.

As mentioned above, our main goal in this paper is to give Lyapunov theory of nonlinear
dynamic systems on Banach space. Our attention concentrates on time-varying systems (1.1),
because the time invariant system (1.2) can be considered as a special case of time-varying
systems. In classical Lyapunov stability theory, in order to providing local and global stable
conclusions of an equilibrium point of a nonlinear dynamic system, Lyapunov’s direct method
usually requires that there exists a sooth (at least C1) positive definite function. This function
is called a Lyapunov function, with property that its derivative in time due to perturbations
in a neighborhood of the system’s equilibrium is always negative or zero, with strict negative
definiteness ensuring asymptotic stability. It is well known that continuous Lyapunov function
for stability may not exist (e.g., see Bacciotto & Rosier, 1998), even though X is a finite-
dimensional space. So more generic functions such as lower semi-continuous function or
discontinuous function is employed as a Lyapunov function (see Chellaboina, 1999 nad i
et al., 2000). Moreover, the system may be discontinuous, and the solution of the system
(called motion of the system in some papers) may also be discontinuous (e.g., see Biles &
Schechter,2000; DeLaubenfels & Vu Quoc Phong, 1997; Kunstmann,1998). Extension on
stability should include these basic facts.

The main contribution of this paper is presented in section 3 and section 4. In section 3 we
give the Lyapunov stability theory on Banach space. Some sufficient conditions satisfied by
the Lyapunov function are determined: these conditions can be used to guarantee uniformly
stability or uniformly asymptotic stability of the system. The advantage of our result lies
in that the Lyapunov function is allowed to be discontinuous, the solution is allowed to be
discontinuous, or even more weaker sense. Moreover, we show that these conditions not only
are sufficient but also necessary in the sense of local uniform stability and uniform asymptotic
stability. In the proof of necessity, the difficulty lies on the construction of the Lyapunov
function. In practice, the concrete model is usually obtained by linearization around an
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equilibrium of the system, and the stability of the system is settled by using energy estimates
obtained from standard energy multipliers, in which the Lyapunov function is the energy of
the system or the energy plus an addition energy factor. For the abstract dynamic system, all
these Lyapunov functions can be interpreted as an abstract measure of the system’s energy.
It is just this point of view that makes us give the proof of the necessity of the conditions
for the system uniform stability and uniform asymptotic stability. Thus all these stability
results are direct extensions of the Lyapunov theory in finite-dimensional space.

In section 4 we develop the Barbashin-Krasovskii-LaSalle invariant set theorem for ab-
stract nonlinear dynamic systems on Banach space. In the classical case (X is of finite-
dimensional), most invariant set theorem in literatures require the Lyapunov function candi-
date for the nonlinear system to be a C1 function with a negative definite derivative, In recent
years the lower semicontinuous Lyapunov functions have been employed, but the system is
usually required to satisfy some regularity condition such as the Lipschitz condition. In this
section all regularity assumption on the Lyapunov function and the system dynamics are
removed. In particular, sufficient and necessary conditions for uniform stability and uniform
asymptotic sability with respect to invariant set are derived. Furthermore, under these con-
ditions the global asymptotic stability with respect to the invariant set is proved. Obviously,
in the case that the Lyapunov function candidate is taken to be C1 or lower semicontinuous,
our results reduce to the standard invariant set theorem. Here two important work are worth
being mentioned: Pasino et al. (1994) and Ye et al.(1998). In these two papers, several types
of stability concepts for an invariant set are defined in arbitrary metric space. They have
derived sufficient and necessary conditions for uniform stability and uniform asymptotic sta-
bility with respect to invariant set. In particular, Passino et al.(1994) provided a real-world
applicable stability for a nonlinear dynamic discrete system. Although these two works are
given in finite-dimensional space, the conditions obtained can be used to study the Lyapunov
stability of both finite- and infinite-dimensional system, as shown in section 4. The difference
between our results and the results in Ye et al. (198) is the assumptions on continuity of
motions and the Lyapunov function. They removed the continuity of the motions but added
the continuity of the Lyapunov function along the trajectory of the system except on an
unbounded sequence. For the necessity they still assume the additive properties of motions.
Our results only require the additive properties of motions–indeed with a suitable change,
this assumption can also be removed. Moreover our conditions ensuring uniform asymptotic
stability is weaker than their conditions.

In section 5 we study the relative bounded-state stability of the system with respect to a
set D. Similar to the work in section 3 and 4, we give some sufficient and necessary conditions
for stability of the system. These results can be regards as an extension of Barbashin-
Krasovskii-LaSalle invariant set theorem: the difference between both lies in that the bounded
state-set may be not invariant with respect to the system. In the case that the set is bounded,
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the stability of the system is Lagrange stability.
In section 6 we give an example of nonlinear beam. Applying the result in sections 4 and

5, we show that the system is uniformly asymptotically stable.

2. Definitions and Notations

Let X be a real Banach space, IR be the set of real numbers, and D ⊂ X be the open
or closed set (region). Let ∂D, int(D),D be boundary, interior, and closure of the set D,
respectively. Denote by IR+ the positive parts of IR, and by || · || the norm of X. Denote by
B(x; δ) the open ball centered at x with radius δ.

In this paper, we consider the following abstract dynamic system in infinite-dimensional
Banach space: {

ẋ(t) = F (t, x(t)), t ≥ t0,

x(t0) = x0 ∈ D,
(2.1)

where x(t) ∈ D is the state of system, ẋ(t) denotes the derivative in time t and D is an open
subset of X with 0 ∈ D.

Definition 2.1 An abstract function x : I ⊂ IR → D is called a solution to (2.1) on the
interval I ⊂ IR if x(t) is defined on I and satisfies (2.1) in some sense for almost everywhere
t ∈ I.

Remark In definition 2.1, we only require that the abstract function x(t) satisfies 92.1)
in some sense, such as in the sense of B−norm:i.e., that there exists a bounded linear operator
B which is injective in X such that Bx(t) is a usually differentiable function whose derivetive
satisfies (2.1) for almost all t ∈ I. We also understand the solution x(t) in the sense of weak
topology or other general topology forms under which its derivative satisfies (2.1) for almost
all t ∈ I.

Since our goal in this paper is the study of stability of the system (2.1), we make the
following assumptions on the system (2.1).

Hypothesis 1 Let F be a map from IR+ ×D → X which satisfies following conditions:
(1) ∀t ∈ IR+, F (t, 0) = 0;
(2) for any (t0, x0) ∈ IR+ ×D, the system (2.1) has a unique solution x(t; t0, x0) in some

sense;
(3) for any 0 ≤ t0 ≤ t1 ≤ t2, when t ≥ t2, it holds that

x(t; t2, x(t2; t0, x0)) = x(t; t1, x(t1; t0, x0)) = x(t; t0, x0).

Condition (3) is usually called the semigroup property of the system or the additive
property of the motions (see, for example, Ye et al. 1998). In general, the uniqueness of the
solution of the system can determine the semigroup property with certain condition, but the
system cannot involve time delay.

5



Our assumption is the very basic for investigation, and we do not assume F is bounded or
unbounded. In particular, if F is a generator of a semigroup whether it is linear or nonlinear
on set D, the hypothesis is always satisfied. Moreover, in the definition of solution, we require
neither the continuity of the solution nor that (2.1) is satisfied, only saying that x(t) satisfies
(2.1) in some sense, such as x(t) can be a solution in the sense of Filipov (see Filipov, 1964;
Aubin & Cellina, 1984; Shevitz & Paden, 1994).

Definition 2.2 A subset Db ⊂ D is called bounded-state set of the system (2.1) if for
any (t0, x0) ∈ IR+ ×Db, the solution x(t; t0, x0) is bounded in X. Db is given by

Db = {x0 ∈ D | sup
t≥t0

||x(t; t0, x0)|| < ∞,∀t0 ∈ R+}.

A subset Dc ⊂ D is called compact-state set of the system (2.1) if for any (t0, x0) ∈
IR+ ×Dc, the set {x(t; t0, x0) | t ≥ t0} is a sequence compact set in X. The set Dc is given
by

Dc = {x0 ∈ D | ∀t0 ∈ IR+, {x(t; t0, x0), t ≥ t0} is a sequence compact set }.

Denote by Da the subset of D such that for any (t0, x0) ∈ IR+×Da, the solution x(t; t0, x0)
satisfies lim

t→∞
||x(t; t0, x0)|| = 0, i.e.

Da = {x0 ∈ D
∣∣∣ ∀t0 ∈ R+, lim

t→∞
||x(t; t0, x0)|| = 0}.

Da is called the attractive region of zero solution to (2.1).
It is easy to see the relation among these subsets

Da ⊂ Dc ⊂ Db ⊂ D.

Definition 2.3 Let X be a Banach space and D ⊂ X be a subset. ρD(x) denote the
distance from pint x to D, i.e.,

ρD(x) = ρ(x,D) = inf{‖x− y||; y ∈ D}.

the r-neighborhood of an arbitrary set D ⊂ X is denoted by B(D; r) = {x ∈ X; ρ(x, D) < r}
where r > 0.

Definition 2.4 A closed set M ⊂ X is called an invariant set with respect to the
system(2.1) if for each x0 ∈ M , it follows that for any t0 ∈ IR+, x(t; t0, x0) ∈ M, for all
t ≥ t0.

Definition 2.5 A point x0 ∈ X is called an equilibrium of the system (2.1) if the set
{x0} is an invariant set with respect to the system(2.1).

Definition 2.6 An invariant set D of the system is called uniform stable in the sense
of Lyapunov if for any ε > 0 there exists a δ > 0 such that when ρD(x0) < δ we have
ρD(x(t; t0, x0)) < ε,∀t ≥ t0;
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A set D is called attractive set of the system (2.1), if there is a δ > 0 such that, for each
x0 ∈ B(D, δ), we have lim

t→∞
ρD(x(t, t0, x0)) = 0.

A set D is called uniformlly asymptotically stable with respect to system (2.1) in the
sense of Lyapunov if it is uniform stable in the sense of Lyapunov and attractive.

The set D is globally asymptotically stable with respect to system (2.1) if D = X and,
for any x0 ∈ X, the solution x(t; t0, x0) satisfies lim

t→∞
||ρD(x(t; t0, x0))|| = 0.

In particular, if D = {0}, then we call the null solution to (2.1) is uniformly stable
(uniformly asymptotically stable, globally asymptotically stable, respectively) in the sense of
Lyapunov.

For the sake of brevity, we say uniformly stable and uniformly asymptotically stable as
the same as uniformly stable in the sense of Lyapunov and uniformly asymptotically stable
in the sense of Lyapunov, respectively.

Remark (1) The invariant set is automatically closed due to the definition of invariance;
(2) uniform stability and uniform asymptotic stability are always local stable properties, i.e.
with respect to some r-neighborhood; (3) the global asymptotic stability has no relation to
the stability: more precisely the set D is globally attractive.

Definition 2.7 y ∈ X is called a cluster point of the solution x(t; t0, x0) to (2.1)
if there exists an increasing time sequence {tn}∞n=1 with tn → ∞ as n → ∞ such that
lim

n→∞
x(tn; t0, x0) = y. Denote the cluster set of x(t; t0, x0) by ω(x0). Then ω(x0) ⊂ D.

For the sake of convenience, we introduce some notations of sets:

K = {α : IR+ → IR+is strict increasing continuous function with α(0) ≥ 0},

K0 = {α ∈ K | α(0) = 0}, K∞ = {α ∈ K | lim
s→∞

α(s) = ∞}, K∞0 = K0 ∩ K∞.

Obviously, K∞0 ⊂ K0 ⊂ K.

Definition 2.8 Let D ⊂ D be a subset and V be a function from IR+ × D ⊂ X to
IR+. V (t, x) is called positive definite on IR+ × D\D, if V (t, x) = 0,∀(t, x) ∈ R+ ×D, and
V (t, x) > 0,∀(t, x) ∈ IR+ ×D\D.

Definition 2.9 Let V be positive definite on IR+ × D\D. V (t, x) is called on D

continuous in x uniformly with respect to t if for any ε > 0 there exists a δ > 0 such that,
when ρD(x) < δ, it holds that V (t, x) < ε,∀t ∈ IR+.

Definition 2.10 Let D ⊂ D be a subset. Let (t0, x0) ∈ IR+×D and x(t; t0, x0) be the
solution to (2.1). We say that the system has a relative bounded-state with respect to D at
x0 (simplifying, D-bounded-state) if there exists η > 0 such that x(t; t0, x0) ∈ B(D, η), t ≥ t0

for each t0 ∈ R+. Define Drb(D) by

Drb(D) = {x0 ∈ D | sup
t0∈R+

sup
t≥t0

ρD(x(t; t0, x0)) < ∞}.
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The set Drb(D) is called the region of D-bounded-state of the system (2.1).
Definition 2.11 Let D ⊂ D be a subset. We say that the system (2.1) satisfies the

D-bounded-state global uniform stability property if for any η > 0 there exists M(η) > 0
such that for any initial pair (t0, x0) ∈ IR+ ×D, x(t; t0, x0) is the solution to (2.1), whenever
ρD(x0) < η, and we have

ρD(x(t; t0, x0) ≤ M(η).

In particular, D = {0} or D is bounded set, the system is called bounded-state globally
uniformly stable.

The system (2.1) is called of globally uniformly asymptotically stable with respect to D

if the system has D-bounded-state global uniform stability and for any (t0, x0) ∈ IR+ × D
the solution x(t; t0, x0) to (2.1) satisfies lim

t→∞
ρD(x(t; t0, x0)) = 0. In this case, we say D is

globally uniformly asymptotically stable with respect to the system.

3. Lyapunov stability theorem

In this section we give Lyapunov stability theorem for abstract nonlinear time-varying
dynamic system on Banach space X:{

ẋ(t) = F (t, x(t)), t > t0,

x(t0) = x0 ∈ D.
(3.1)

In order to avoiding repeats, we always assume the hypothesis in section 2 holds true. We
call it condition (H).

Condition (H) Let F be a map from IR+ × D → X satisfying following conditions: Let
F be a map from IR+ ×D → X which satisfies following conditions:

(1) ∀t ∈ IR+, F (t, 0) = 0;
(2) for any (t0, x0) ∈ IR+ ×D, the system (2.1) has a unique solution x(t; t0, x0) in some

sense;
(3) for any 0 ≤ t0 ≤ t1 ≤ t2, when t ≥ t2, it holds that

x(t; t2, x(t2; t0, x0)) = x(t; t1, x(t1; t0, x0)) = x(t; t0, x0).

Theorem 3.1 Let condition (H) be true. For (t0, x0) ∈ IR+ ×D, x(t) = x(t; t0, x0) is
the solution to (3.1). If there is a function V : IR+×D → R+ satisfying following conditions:

Condition (1) V is positive definite on D and continues in x at origin uniformly with
respect to t;

Condition (2) there exists α ∈ K∞0 such that α(||x||) ≤ V (t, x),∀(t, x) ∈ IR+ ×D;
Condition (3) for all t0 ≤ τ ≤ t, V (t, x(t)) ≤ V (τ, x(τ)).
Then the zero solution to (3.1) is uniformly stable.
Conversely, if the zero solution to (3.1) is uniformly stable, then we can define a function

V (t, x) on IR+ × B(0, δ) such that V (t, x) satisfies the conditions (1)–(3).
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Proof. Let ε > 0 be arbitrary such that B(0, ε) ⊂ D. By the condition (1) there exists
a δ > 0 such that for any (t, x) ∈ R+ × D, whenever x ∈ B(0, δ), V (t, x) < α(ε). For any
(t0, x0) ∈ R+ × B(0, δ), x(t; t0, x0) is the solution to (3.1) with initial pairs (t0, x0). Since
α ∈ K∞0 , α−1 ∈ K∞0 , by conditions (2) and (3), we have

||x(t; t0, x0)|| ≤ α−1(V (t, x(t; t0, x0)) ≤ α−1(V (t0, x0) < ε.

By the definition 2.6, the null solution to (3.1) is uniformly stable.
Now we assume that the zero solution to (3.1) is uniformly stable. Let Db be the bounded-

state set of the system (3.1) (see Definition 2.2). Then 0 ∈ int(Db). For each (τ, x0) ∈
IR+ ×Db, x(t; τ, x0) is the solution to (3.1) with initial pairs (τ, x0). We define a function V

on IR+ ×Db as follows:

V (τ, x0) = sup
t≥τ

||x(t; τ, x0)||, ∀x0 ∈ int(Db). (3.2)

It is easy to see that the function V (τ, x0) is well-posed and has finite positive value. The
uniqueness of solution implies function V is positive definite on IR+ × Db. Now we show
that V (τ, x0) continues in x at origin uniformly with respect to t. For any ε > 0, because
of the uniform stability of the system, there exists a δ > 0 such that whenever x0 ∈ B(0, δ),
||x(t; τ, x0)|| < 1

2ε,∀τ ∈ IR+. Thus as ||x0|| < δ, for ∀τ ∈ IR+, V (τ, x0) < ε. Therefore the
condition (1) holds. Noting that V (τ, x0) = sup

t≥τ
||x(t; τ, x0)|| ≥ ||x0||, the condition (2) is

satisfied with α(s) = s.
Finally for any t0 ≤ τ < s, and x0 ∈ Db, the solution function x(t; t0, x0) to (3.1) with

initial pairs (t0, x0), by the condition (H), satisfies x(t; s, x(s)) = x(t; τ, x(τ)) = x(t; t0, x0).
Thus we have

V (s, x(s)) = sup
t≥s

||x(t; t0, x0)|| ≤ sup
t≥τ

||x(t; t0, x0)|| = V (τ, x(τ)),

i.e. the condition (3) holds true. The proof is then complete.

In theorem 3.1, the function V is only continuous in x at origin uniformly with respect to
t and decreases along the trajectory of (3.1). Moreover the low-bound restrictive condition
(2) is needed, which is also a constraint condition at infinite. From the result of theorem 3.1
we see that the conditions (1)–(3) are sufficient and necessary conditions in bounded-state set
of the system (3.1) involving a neighborhood of the origin. Usually the function V satisfied
conditions (1)–(3) is called Lyapunov function. Under our definition, the class of Lyapunov
function is vast. In the proof of necessity, it is worth to point out that the Lyapunov function
V (t, x) defined by (3.2) is maximum of energy of the system (3.1).

We compare our result with that in Li & Soh (1999), in which the Lyapunov function
is given by V (t, x) = ρ2(x(t)), a sufficient and necessary condition for uniform stability was
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given. In fact, the function V (t, x) = ρ2(x(t)) is not sufficient to characterize the property of
the solution. Consider following example (see Tasso, 1999):

Nẍ + (D + G)ẋ + (K + F )x = 0, t > 0,

where x is an n-dimensional displacement vector, N is a positive symmetric matrix related
to the inertial of the system, D is a symmetric positive definite matrix describing damping
effects, K is the symmetric matrix due to potential forces, and G and F are skew-symmetric
matrixes related to gyroscopic and circulatory forces respectively:(

I 0
0 N

)(
ẋ(t)
ẍ(t)

)
=

(
0 I

K + F D + G

)(
x(t)
ẋ(t)

)
, t > 0

the state norm is
||X(t)||2 = 〈x(t), x(t)〉+ 〈ẋ(t), Nẋ(t)〉,

the energy norm is
||X(t)||21 = 〈x(t),Kx(t)〉+ 〈ẋ(t), Nẋ(t)〉,

and the Lyapunov function is

V (X(t)) =
1
2
[〈x(t),Kx(t)〉+ 〈(x(t) + ẋ(t)), N(x(t) + ẋ(t))〉+ 〈x(t), (D −N)x(t)〉].

Note that, even in the case of X being finite-dimensional, the conditions of Theorem 3.1
cannot be replaced by the following conditions:

(1) V : IR+ ×D → IR is positive definite continuous;
(2) there exist a sufficiently large T such that

V (t, x(t)) ≤ V (s, x(s)), ∀t > s > T.

Here is a counterexample: {
ẋ(t) = λx(t), t > 0,

x(0) = x0

with λ > 0. The unique solution is x(t) = eλtx0. Taking function V (x) = |x|e−|x|, then V is
positive definite continuous and for any x0 ∈ IR, x0 6= 0, for T (x0) = max{− ln |x0|/λ, 0}, as
t > s ≥ T (x0) , it holds true that V (x(t)) ≤ V (x(s)),∀t > s > T . But it does not guarantee
the null solution being uniformly stable.

Improving the conditions of Theorem 3.1, we can obtain following result.
Theorem 3.2 Let condition (H) hold and x(t) = x(t; t0, x0) be a unique solution of

the system(3.1)with initial pairs (t0, x0). If there is a function V : IR+ ×D → R+ satisfying
conditions:

Condition (4) There exist αk ∈ K∞0 , k = 1, 2, such that

α1(||x||) ≤ V (t, x) ≤ α2(||x||), ∀(t, x) ∈ IR+ ×D;
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Condition (5) There exists a continuous function Ψ : IR+ → IR+ with Ψ(0) = 0 such
that for all t0 ≤ τ ≤ t, V (t, x(t)) ≤ Ψ(V (τ, x(τ))).

Then the zero solution to (3.1) is uniformly stable.
Proof Let ε > 0 be arbitrary such that B(0, ε) ⊂ D. Denote ζ = α−1

1 (ε). Since Ψ is
continuous and Ψ(0) = 0, there exists η > 0 such that for any 0 < s < η, we have Ψ(s) < ζ.
Thus as V (τ, x0) < η, it holds that V (t, x(t)) ≤ Ψ(V (τ, x0)) < ζ. Set δ = α−1

2 (η). Then we
obtain from condition (4) that for any x0 ∈ B(0, δ),

V (τ, x0) ≤ α2(||x0||) < α2(δ) = η, ∀τ ∈ IR+,

and from left equality side of condition (4) and condition (5) we derive

||x(t)|| ≤ α−1
1 (V (t, x(t)) ≤ α−1

1 (ζ) = ε, ∀t ≥ t0.

Remark Condition (4) in Theorem 3.2 implies that V : IR+ × D → IR+ is positive
definite and continuous in x at origin uniformly with respect to t. If Ψ(s) = s, then condition
(5) is the same as condition (3) in Theorem 3.1. So Theorem 3.2 is a slight extension of
Theorem 3.1.

In the proofs of Theorem 3.1 and 3.2, we do not use any knowledge about the solution
x(t) except the additive property of the motions. It is not important whatever x(t) is a weak
solution or classical solution, x(t) can even be a solution in more general sense. Also, the
condition D being open set is not necessary. The results remain true on D provided that D
is an invariant set of the system (3.1).

Theorem 3.3 Assume that the conditions (1)–(3) in Theorem 3.1 are satisfied. Then
the null solution to (3.1) is uniformly asymptotically sable if and only if the following condition
is fulfilled

Condition 6 Let a ∈ (0, 1) fixed, there exists a δ > 0 such that for any ||x0|| < δ there
are a increasing time sequence {tn} with tn →∞ as n →∞ such that

V (tn+1, x(tn+1)) ≤ aV (tn, x(tn)), ∀n ≥ 0, (3.3)

where x(t) = x(t; t0, x0) is the solution to (3.1) with initial pairs (t0, x0).
Proof Sufficiency We need to prove only that the solution x(t) → 0 as t →∞ under

the condition (6). Firstly, it follows from condition (6) that V (tn, x(tn)) converges zero. Now
for any t > t0, we can find tn+1 and tn such that tn < t < tn+1, then from condition (3) in
Theorem 3.1 it follows lim

t→∞
V (t, x(t)) = 0. Using condition (1) of Theorem 3.1, we have that

lim
n→∞

α(||x(t)|) = 0, and because α(s) is increasing and α(0) = 0, we have lim
n→∞

||x(t)|| = 0.
Necessity Assume that the null solution to (3.1) is uniformly asymptotically stable. Let

a ∈ (0, 1) be fixed. Then there exists a δ such that whenever ||x0|| ≤ δ, the solution x(t; t0, x0)
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to (3.1) satisfies lim
t→∞

||x(t; t0, x0)|| = 0. Now with x0 fixed, since V (t, x) is continuous in x at
origin uniformly with respect to t, there exists a positive constant δ1 < δ such that whenever
||x|| ≤ δ1, V (t, x) ≤ aV (t0, x0),∀t ∈ IR+. Now we choose time t1 such that ||x(t1)|| ≤ δ1,
then V (t1, x(t1)) ≤ aV (t0, x0). For x(t1), condition (1) implies V (t1, x(t1)) 6= 0, otherwise
we are done. Using the uniform continuity of V at origin, there exists δ2 > 0 such that for
||x|| ≤ δ2, V (t, x) ≤ aV (t1, x(t1)),∀t ∈ IR+. Choosing t2 > t1 such that ||x(t2)|| ≤ δ2, we
have V (t2, x(t2)) ≤ aV (t1, x(t1)). So we can choose a increasing time sequence {tn} such that
V (tn+1, x(tn+1)) ≤ aV (tn, x(tn)),∀n ≥ 0. Therefore the condition (6) holds true.

Theorem 3.4 Assume that the conditions (4) and (5) in Theorem 3.2 are satisfied.
Further suppose that the function V satisfies

Condition (7) There exist function γ ∈ K∞0 and δ > 0 such that for any ||x0|| ≤ δ there
is a sequence {tn} with tn+1 > tn, t0 = 0, and tn →∞ as n →∞ such that

V (tn+1, x(tn+1)) < V (tn, x(tn))− γ(||x(tn)||), ∀n ≥ 0,

where x(t) = x(t, t0, x0) is a solution to (3.1).
Then the zero solution to (3.1) is uniformly asymptotically stable. In particular, if D = X,

then the system (3.1) is global uniformly asymptotically stable,
Proof Since the null solution is uniformly stable under the condition (4) and (5), we need

only to prove lim
t→∞

||x(t)|| = 0 when condition (7) is satisfied. Set xn = x(tn), condition (7)
implies that V (tn, xn) converges. Set v(x0) = lim

n→∞
V (tn, xn). We show first that v(x0) = 0.

This can be done by contradictory. In fact, if v(x0) > 0, then µ = infn ||xn|| > 0. Since γ(s)
is increasing function, i.e. γ(µ) ≤ γ(||xn||), we have

V (tn+1, xn+1) < V (tn, xn)− γ(||xn||) ≤ V (tn, xn)− γ(µ), ∀n ≥ 0,

thus
V (tn+k, xn+k) ≤ V (tn, xn)− kγ(µ), ∀k ≥ 0.

This implies that for sufficient large k, V (tn+k, xn+k) < 0. This is impossible for function V .
So we have v(x0) = 0.

Next we have lim
t→∞

||x(t)|| = 0. In fact, for any t > 0, we can find tn+1 and tn such that
tn < t < tn+1, then from the condition (5) in Theorem 3.2 it follows lim

t→∞
V (t, x(t)) = 0. Thus

we get from condition (4) that lim
t→∞

α(||x(t)||) = 0. By the fact that α(s) ∈ K∞
0 , we obtain

lim
t→∞

||x(t)|| = 0. So the null solution of the system (3.1) is uniformly asymptotically stable.
Finally, if D = X, the system is globally asymptotically stable. In fact, we have Db = X

in this case. This is because for any x0 ∈ X, x(t) = x(t; t0, x0) is a solution to (3.1), the
condition (5) implies V (t, x(t)) is bounded, hence ||x(t)|| is bounded by condition (4). As
just shown in previous proof, the condition (5) and (7) ensure the limit lim

t→∞
||x(t)|| = 0.

Therefore the system is globally asymptotically stable. The proof is then complete.
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With condition (2) or condition (4), we can show that if condition (6) holds true, then
condition (7) is true too. This can be seen from following inequality:

V (tn+1, xn+1) ≤ aV (tn, xn) = V (tn, xn)− (1− a)V (tn, xn) ≤ V (xn)− (1− a)α(||xn||).

So Theorem 3.4 is an extension of Theorem 3.3. Connecting the results of Theorem 3.3 and
3.4 we know that condition (7) is a sufficient and necessary condition for uniform asymptotic
stability. But we do not know whether the condition (4) is a necessary conditions for the
uniform asymptotic stability of the system with respect to the null solution. The main issue is
whether there exists an upper-bound function α2 ∈ K∞

0 such that V (t, x) ≤ α2(||x||),∀(t, x) ∈
IR+ × D. This is easily done in a neighborhood of origin (see Section 5). However we have
no way to determine this function on D or Db. If it is only required in a neighborhood,
then condition (4) is also a sufficient and necessary condition for uniform stability that is
equivalent to conditions (1) and (2).

In classical Lyapunov approach to uniform asymptotic stability of the null solution of a
dynamical system requires the existence of a positive definite, decreasing Lyapunov function
V (t, x), whose derivative along the solution of the system is negative definite. Narendra &
Annaswanmy (1987) showed that with condition V̇ (x(t)) ≤ 0, and if there exists a T ∈ IR+

such that
V (x(t + T ))− V (x(t)) < −γ(||x(t)||) < 0, ∀t ≥ 0,

where the properties of γ(s) is the same as that in Theorem 3.3, then the system is uni-
formly asymptotically stable with respect to the null solution. Aeyels & Peuteman (1998)
and Peuteman & Aeyels (1999) proved the uniform asymptotic stability by improving the
conditions to that there exists a T > 0 and a strictly increasing sequence of time tk with
tk+1 − tk < T such that

V (tk+1, x(tk+1))− V (tk, x(tk)) < −γ(||x(tk)||) < 0, ∀k.

Here we have not this restriction; further, we only require the inequality be true for sufficient
large tk.

4. Barbashin-Krasovskii-LaSalle invariant set principle

From the discussion in the previous section we see that the Lyapunov stability theorem
only give the stability of the null solution of a nonlinear time-varying dynamic system on
Banach space X. It is impossible to obtain the stability of other equilibrium points of the
system. In order to solve this problem, Barbashin-Krasovskii-LaSalle invariant set principle
provides a powerful tool for the stability of the nonlinear dynamic system. In this section we
give a new version of Barbashin-Krasovskii-LaSalle invariant set principle on Banach space.

Theorem 4.1 Let condition (H) hold true. Let D ⊂ D be an invariant set of the
system (3.1). For each (t0, x0) ∈ IR+ ×D, x(t) = x(t; t0, x0) is the solution to (3.1). Suppose
that there is a function V : IR+ ×D → R+ satisfying following conditions:
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Condition (8) V (t, x) is positive definite on D\D and continuous in x on D uniformly
with respect to t;

Condition (9) There exists α ∈ K∞0 such that α(ρD(x)) ≤ V (t, x)∀(t, x) ∈ IR+ ×D;
Condition (10) For all 0 ≤ τ ≤ t, V (t, x(t)) ≤ V (τ, x(τ)).
Then the system (3.1) is uniformly stable with respect to invariant set D.
Conversely, if the system (3.1) is uniformly stable with respect to invariant set D, then we

can define a function V (t, x) on IR+×B(D, r) such that V (t, x) satisfies conditions (8)–(10).
Proof Let ε > 0 and B(D, ε) ⊂ D be an ε-neighborhood of set D . Set

η = inf
x∈∂D\B(D,ε),t∈R+

V (t, x).

Then η 6= 0. Indeed, if η = 0, then there exists a sequence {(tn, xn)} such that V (tn, xn) → 0
as n → ∞. From condition (9) we get α(ρD(xn)) → 0. Because α(s) is strictly increasing,
α(ρD(xn)) → 0 implies that ρD(xn) → 0. This is contradiction with ρD(xn) ≥ ε.

Next, since V (t, 0) = 0 and V uniformly continues in x on D uniformly with respect to
t, there exist a δ ∈ (0, ε) such that when x ∈ B(D, δ), V (t, x) < η,∀t ∈ IR+. It follows from
condition (10) that for any x0 ∈ B(D, δ),

V (t, x(t; t0, x0)) ≤ V (t0, x(t0; t0, x0)) < η, t ≥ t0, (4.1)

where x(t; t0, x0) is solution to (3.1) with initial pairs (t0, x0). Now we show that x(t; t0, x0) ∈
B(D, ε), t ≥ t0. In fact, if it is wrong, since x0 ∈ B(D, δ) ⊂ B(D, ε), then there exists a t1

such that x(t1; t0, x0) 6∈ B(D, ε). Thus V (t1, x(t1; t0, x0)) ≥ η. This is a contradiction to
(4.1). So the system (3.1) is uniformly stable with respect to D.

Now we prove the second part of the theorem. Assume that the system (3.1) is uniformly
stable with respect to D. Let Drb be the relative bounded-state set of the system (3.1) with
respect to D. Then we have D ⊂ Drb and there exists a δ > 0 such that B(D, δ) ⊂ int(Drb).
For each (τ, x0) ∈ IR+ × Drb, x(t; τ, x0) is the solution to (3.1) with initial pairs (τ, x0). We
define a function V on IR+ × (Drb) by

V (τ, x0) = sup
t≥τ

ρD(x(t; τ, x0)), ∀(τ, x0) ∈ IR+ ×Drb. (4.2)

The function V (τ, x0) is wellposed and has finite positive value onDrb\D. Moreover, V (τ, x) =
0,∀(τ, x) ∈ IR+×D. By the uniform sability assumption, for any ε > 0, there is a δ > 0 such
that, as ρD(x0) < δ, the solution x(t; τ, x0) to (3.1) satisfies ρD(x(t; τ, x0)) < ε, for τ ∈ IR+.
Therefore V (τ, x0) = sup

t≥τ
ρD(x(t; τ, x0)) < ε,∀τ ∈ IR+. This means that V (t, x) continues in

x on D uniformly with respect to t. The condition (8) is satisfied.
From the definition of V (t, x), we know that V (τ, x0) ≥ ρD(x0). Hence condition (9) is

satisfied.
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Now for any t0 ≤ τ < s, and x0 ∈ Drb, x(t; t0, x0) is a solution to (3.1) with initial pair
(t0, x0). By the uniqueness of solution, we have

V (s, x(s)) = sup
t≥s

ρD(x(t; s, x(s; t0, x0)) = sup
t≥s

ρD(x(t; t0, x0))

≤ sup
t≥τ

ρD(x(t; t0, x0)) = V (τ, x(τ)), ∀s > τ > t0.

Therefore the condition (10) holds. The proof is then complete.
Remark In the proof of Theorem 4.1, we see that the proof of Theorem 3.1 is basically

not changed, only replaced the norm || · || by ρD(x). So we have no difficulty translating the
results of uniform stability for null solution to that of the system stability with respect to
the invariant set.

Theorem 4.2 Let condition (H) hold and x(t) = x(t; t0, x0) be a unique solution of
the system(3.1). If there is a function V : IR+ ×D → R+ satisfying the following conditions:

Condition (11) There exist αk ∈ K∞0 , k = 1, 2, such that

α1(ρD(x)) ≤ V (t, x) ≤ α2(ρD(x)), ∀x ∈ D, ∀t ∈ IR+.

Condition (12) There exists a continuous function Ψ : IR+ → IR+ with Ψ(0) = 0 such
that for all t0 ≤ τ ≤ t, V (t, x(t) ≤ Ψ(V (τ, x(τ))).

Then the system (3.1) is uniform stable with respect to invariant set D.
Proof The detail of proof is skipped.

Theorem 4.3 Assume that the system (3.1) is uniformly sable with respect to invariant
set D. Then the system (3.1) is uniformly asymptotically sable with respect to invariant set
D if and only if one of the following conditions is satisfied:

Condition (13) Let a ∈ (0, 1) be fixed, there exists a δ > 0 such that for any ρD(x0) < δ

there is an increasing time sequence {tn} with tn →∞ as n →∞ such that

V (tn+1, x(tn+1)) ≤ aV (tn, x(tn)), ∀n ≥ 0, (4.3)

where x(t) = x(t, ; t0, x0) is a solution to (3.1).
Condition (14) There exist function γ ∈ K∞0 and δ > 0 such that for any ρD(x0) ≤ δ

there is a sequence {tn} with tn+1 > tn, t0 = 0, and tn →∞ as n →∞ such that

V (tn+1, x(tn+1) ≤ V (tn, x(tn))− γ(ρD(x(tn)), ∀n ≥ 0, (4.4)

where x(t) = x(t; t0, x0) is a solution to (3.1).
Proof Sufficiency The sufficiency of the condition (13) and (14) is obviously by the

proof of Theorem 3.3 and 3.4.
Necessity of condition (14) Assume that the system (3.1) is uniformly asymptotically

sable with respect to invariant set D. By theorem 4.1, the condition (9) holds. Let α ∈ K0 be
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the function as in condition (9), then V (t, x) − α(ρD(x)) ≥ 0. According to the assumption
on the system, there exists a δ such that whenever ρD(x0) ≤ δ, the solution x(t; t0, x0) to
(3.1) satisfies lim

t→∞
ρD(x(t; t0, x0)) = 0. Now with x0 fixed, if x0 ∈ D, then x(t; t0, x0) ∈ D

and V (t, x(t; t0, x0)) = 0,∀t ∈ IR+, the required inequality holds. Since V (t, x) is continuous
in x on D uniformly with respect to t, if x0 6∈ D, then there exists a positive constant δ1 < δ

such that whenever ρD(x) ≤ δ1, V (t, x) ≤ V (t0, x0)− 1
2α(ρD(x0)),∀t ∈ IR+. Now we choose

time t1 such that ρD(x(t1)) ≤ δ1, and

V (t1, x(t1)) ≤ V (t0, x0)−
1
2
α(ρD(x0)).

If ρD(x(t1)) = 0, then we are done for any tk ∈ R+, k ≥ 2 with tk →∞ as k →∞. Otherwise,
V (t1, x(t1))− 1

2α(ρD(x(t1))) 6= 0, and there is a δ2 ∈ (0, δ1) such that whenever ρD(x) < δ2,

V (t, x) ≤ V (t1, x(t1))−
1
2
α(ρD(x(t1)), ∀t ∈ IR+.

Choosing t2 > t1 such that ρD(x(t2)) ≤ δ2, then we have

V (t2, x(t2)) ≤ V (t1, x(t1))−
1
2
α(ρD(x(t1)).

If x(t2) ∈ D, the time sequence can be arbitrary chosen for n ≥ 3 such that tn →∞(n →∞).
If x(t2) 6∈ D, the process of above description can be done by the same approach. So we can
always choose an increasing time sequence {tn} such that

V (tn+1, x(tn+1)) ≤ V (tn, x(tn))− 1
2
α(ρD(x(tn)), ∀n ≥ 0.

Therefore the condition (14) holds true.
The necessity of condition (13) can be proved by similar manner. The proof is then

complete.
Remark We can see from the proof of the above result that the time sequence {tk}

depend upon the initial pairs (t0, x0), i.e., tk = tk(x0). But we do not know whether there
exists a time T such that for t > T , ρD(x(t; t0, x0)) < ε,∀x0 ∈ B(D, δ).

Theorem 4.4 Let D = X and D be an invariant set of the system (3.1). Assume that
the condition (H) is fulfilled. If there is a function V : IR+ ×X → IR+ satisfying conditions
(11) (12) and (14), then the system (3.1) is globally uniformly asymptotically stable with
respect to invariant set D.

Proof We need only to prove that for each x0 ∈ X, the system (3.1) is globally
asymptotically stable with respect to the invariant set D under the conditions (14). Firstly,
we have Drb(D) = X by condition (12) and (11). Condition (14) implies that for each
x0 ∈ X, there exists a time sequence {tn} such that V (tn, x(tn)) converges to zero. Using
the condition (11) again, we get limn→∞ α1(ρD(x(tn)) = 0. Therefore, condition (12) ensure
that lim

t→∞
ρD(x(t)) = 0. This means that the system is globally asymptotically stable.
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In proof of theorem 4.4, we show only the set D is globally attractive. In general speaking,
the global attraction is not equivalent to global uniform asymptotic stability. However, under
our assumption, Theorem 4.4 is right.

5. Relative bounded-state global uniform stability

In this section, we discuss the D−bounded-state global uniform stability of the system
(3.1). Form the point of view of global uniform stability, both the null solution uniform
stability and the invariant set uniform stability are local D-bounded-state uniform stability.
The content of this section, however, is a global property of the system. We begin with the
equivalent formulations of D-bounded-state global uniform stability.

Theorem 5.1 The following statements are equivalent:
(1) System (3.1) has the D-bounded-state global uniform stability;
(2) There exists γ ∈ K∞ such that for any R > 0 and any initial pair (t0, x0) ∈ IR+ ×D,

x(t; t0, x0) is the solution to (3.1), whenever ρD(x0) < R, we have

ρD(x(t; t0, x0) ≤ γ(R).

(3) There exists α ∈ K∞ such that for any initial pair (t0, x0) ∈ IR+ × D, x(t; t0, x0) is
the solution to (3.1) and

ρD(x(t; t0, x0) ≤ α(ρD(x0)).

Proof (1) → (2). For ηn = n, n = 1, 2, · · ·, fixed, according to Definition 2.11, there
exists M(ηn) such that for any (t0, x0) ∈ R+ ×D with ρD(x0) < ηn, it holds that

ρD(x(t; t0, x0) ≤ M(ηn), ∀t ≥ t0, t0 ≥ 0.

Denote
Mn = sup

t≥t0

{ sup
(t0,x0)∈IR+×B(D,ηn)

ρD(x(t; t0, x0))},

Obviously, Mn ≤ M(ηn), and sequence {Mn} is increasing. Now we define a continuous
increasing function γ : IR+ → IR+ by

γ(s) =
{

Mn+1, s = n− 1,

Linear connected, n− 1 < s < n,
n = 1, 2, · · · .

Easily check that function γ satisfies the requirement in (2).
(2) → (3). For any x0 ∈ D\D, take R = 2ρD(x0) > 0. By the assumption, we have

ρD(x(t; t0, x0) ≤ γ(R) = γ(2ρD(x0)),∀t ≥ t0, t0 ≥ 0.

Set α(s) = γ(2s), then α ∈ K∞ is required.
(3) → (1). This is evident.

17



Remark The proof of Theorem 5.1 is modified from Andriano et al.(1997) (see, Propo-
sition 1 in Andriano et al.1997), in which X is finite-dimensional and the system is time
invariant. Its proof, however, is available for infinite-dimensional Banach space, and the
more generic metric space. Recent the literature (Bacciotti & Mazzi,2000) has also provided
a discussion for time-varying hybrid dynamical system.

If D is a bounded, then the D-bounded-state global uniform stability is called Lagrange
stability (see Andriano et al. 1997 and Bacciotti & Mazzi,2000). A characterization of
Lagrange stability can be deduced, for instance, from Arzarello & Bacciotti (1997). But
Bacciotti & Rosier (1998) showed that the continuous Lyapunov functions for Lagrange sta-
bility might not exist. The following theorem provides a sufficient and necessary condition
for global uniform stability.

Theorem 5.2 Assume that the condition (H) holds true. Then the system (3.1) has
D-bounded-state uniform stability property if and only if there exists functions α ∈ K∞

0 , β ∈
K∞ and a function V (t, x) : IR+×D → IR+ satisfying

α(ρD(x)) ≤ V (t, x) ≤ β(ρD(x)), ∀x ∈ D, ∀t ∈ IR+.

Proof Sufficiency Since α ∈ K∞0 , we have α−1 ∈ K∞0 . Thus for any (t0, x0) ∈ R+×D,
the solution to (3.1) satisfies

ρD(x(t; t0, x0)) ≤ α−1(V (t, x(t; t0, x0)) ≤ α−1(V (t0, x0)) ≤ α−1(β(ρD(x0))).

Taking γ = α−1 ·β, the above inequality implies D-bounded-state global uniform stability by
Theorem 5.1.

Necessity Assume that the system (3.1) has D-bounded-state uniform stability. Ac-
cording to Theorem 5.1, there exists a function γ ∈ K∞ such that

∀(t0, x0) ∈ R+ ×D, ρD(x(t; t0, x0)) ≤ γ(ρD(x0)), ∀t ≥ t0,

where x(t; t0, x0) is the solution with initial pair (t0, x0). Define a function V : IR+×D → IR+

by
V (t0, x0) = sup

t≥t0

ρD(x(t; t0, x0)), (t0, x0) ∈ R+ ×D.

Obviously
ρD(x0) ≤ V (t0, x0) ≤ γ(ρD(x0)), ∀t0 ∈ R+.

In particular,
V (t2, x(t2; t0, x0)) ≤ V (t1, x(t1; t0, x0)), ∀t2 > t1 ≥ t0,

provided x(t; t1, x(t1)) = x(t, t2;x(t2)) = x(t; t0, x0), t ≥ t2, which means the motion is addi-
tive.
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Up to now, we have explained the meaning of the upper-bound in conditions (4) and (11).
The existence of the upper-bound is used to ensure the uniformity of the relative bounded
state in ε-neighborhood of origin or the set D.

6. Example

In this section, we give a simple example for nonlinear time varying system, and simulta-
neously explain the constructure of Lyapunov function. There are many practice examples
such as Malek & Necas (1996) and Jaffars et al.(1998). However we hope to give a new result
in here.

Consider dynamics model for mechanical system is assumed to be described by a partial
differential equation of the form{

ρutt(x, t) + T (y(t))uxxxx(x, t) = 0, 0 < x < 1,

u(0, t) = ux(0, t) = 0, uxx(1, t) = 0,
(6.1)

mutt(1, t) + T (y(t))uxxx(1, t) = f(t), (6.2)

where m denotes the mass of the actuator at the end. ρ is the mass of beam and f(t)
denotes the boundary control input force. T (y(t)) denote the measurable function, and the
auxiliary variable y(t) is defined as follows:

y(t) =
∫ 1

0
u2

xx(x, t)dx, (6.3)

The standard Euler-Bernuolli beam is obtained by setting T (y(t)) in (6.1) equal to some
positive constant. We make the following assumption on T (y(t)):

(1) T (y(t)) is a strictly positive function which satisfies

T (y(t)) ≥ T0 (6.4)

where T0 is some positive constant, and
(2) the integral of T (y) over y(t) can be upper and lower bounded as follows:

α1y(t) ≤
∫ y(t)

0
T (y(s))dy(s) ≤ β1(y(t)) (6.5)

where α1 is a positive constant and β ∈ K∞0 .
Also, the input control force is defined by

f(t) = −muxxxt(1, t) + T (y(t))uxxx(1, t)−
[
ks +

1
2
T (y(t))

]
(ut(1, t) + uxxx(1, t)), (6.6)

where ks is a positive feedback gain. We define the auxiliary signal η(t) by

η(t) = ut(1, t) + uxxx(1, t). (6.7)
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Then equation (6.2) can be rewritten as

η̇(t) = −
[
ks +

1
2
T (y(t))

]
η(t). (6.8)

Thus we obtain the closed-loop system (6.1) and (6.8)
We introduce the state Hilbert space H = V 2

0 (0, 1)×L2(0, 1)× IR, with the inner product
induced norm:

||Y ||2 = ‖[f, g, η]‖2 =
∫ 1

0

[
|f ′′(x)|2 + |g(x)|2

]
dx + η2, ∀Y = [f, g, η] ∈ H

where V 2
0 (0, 1) = {f ∈ H2(0, 1) | f(0) = fx(0) = 0}.

System (6.1) is then written as an evolutionary equation in H:

d

dt
Y (t) = A(t)Y (t) = F (t, Y (t)) (6.9)

where Y (t) = [u(·, t), ut(·, t), η(t)] ∈ H and A(t) is defined by

A(t)[u(x, t), ut(x, t), η] =
[
ut(x, t),−T (y(t))

ρ
u(4)(x, t),−(ks +

1
2
T (y(t))η(t)

]
, (6.10)

with
D(A(t)) =

{
[f, g, η] ∈ H | f ∈ V 2

0 (0, 1) ∩H4(0, 1), g ∈ V 2
0 (0, 1),

f (2)(1) = 0, η = g + f ′′′
}
.

(6.11)

The energy function of the closed-loop system is given by

E(t) =
1
2

[ ∫ 1

0
ρ|ut(x, t)|2dx + m|ut(1, t) + uxxx(1, t)|2 +

∫ y(t)

0
T (s)ds

]
Lemma 6.1 Assume that the system (6.9) has unique solution Y (t) on IR+ for each

Y0 = (u0(x), u1(x), η0). Then the solution Y (t) is uniformly bounded. Therefore the null
solution to (6.9) is globally uniformly stable, i.e., there exists ν ∈ K∞ such that for any
R > 0, as ||Y0|| ≤ R, we have ||Y (t)|| ≤ ν(R).

Proof Set ν(||Y (0)||) =
√

max{ρ,m}||Y (0)||2+β(||Y (0)||)
min{ρ,m,α1} , where α1 and β ∈ K∞ are given in

(6.5). Evidently, ν ∈ K∞. First we have from (6.7) that

2E(t) ≥ min{ρ,m, α1}||Y (t)||2

and

2E(t) ≤ max{ρ,m}[
∫ 1

0
|ut(x, t)|2dx + |η(t)|2] + β(y(t)) ≤ max{ρ,m}||Y (t)||2 + β(||Y (t)||).

Noting that

dE(t)
dt = −T (y(t))ut(1, t)uxxx(1, t) + T (y(t))uxt(1, t)uxx(1, t)− [ks + 1

2T (y(t))]η2(t)

= −1
2T (y(t))[u2

xxx(1, t) + u2
t (1, t)]− ksη

2(t) ≤ 0,
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we have

||Y (t)|| ≤
√

2E(t)
min{ρ,m, α1}

≤
√

2E(0)
min{ρ,m, α1}

≤
√

max{ρ,m}||Y (0)||2+β(||Y (0)||)
min{ρ,m,α1} = ν(||Y (0)||).

According to (2) of Theorem 5.1, the null solution-bounded-state of the system (6.9) is
uniformly stable.

In order to fine the Lyapunov function of the system (6.9), we recall the constructing
procedure of the Lyapunov function in proof of theorem in previous sections such as Theorem
5.2, and note the fact that

min{ρ,m, α1}||Y (t)||2 ≤ 2E(t) ≤ 2E(0).

So, if a Lyapunov function V (t, Y ) exists, then it must satisfy the following inequality

||Y (t)|| ≤ V (τ, Y (τ)) ≤
√

2E(τ)
min{ρ,m, α1}

, ∀t ≥ τ

This means that
E(t)− min{ρ,m, α1}

2
V 2(t, Y (t)) ≥ 0.

Due to this motivation, we can define a function V (t, Y (t)) by

V (t, Y (t)) = E(t) + 2γEc(t) (6.12)

where
Ec(t) = ρ

∫ 1

0
xut(x, t)ux(x, t)dx

and γ is a positive constant.
Lemma 6.2 Assume that the system (6.9) has unique solution on IR+ for each

(u0(x), ut(x), η0) ∈ H. Then we can determine two functions νj ∈ K∞
0 , j = 1, 2, by choosing

γ such that for all t ∈ IR+ , such that

ν1(||Y (t)||) ≤ V (t, Y (t)) ≤ ν2(||Y (t)||),

where Y (t) = [u(x, t), ut(x, t), η(t)] ∈ H.
Proof Note that it always holds true that

−ρ

∫ 1

0
[|uxx(x, t)|2 + |ut(x, t)|2]dx ≤ Ec(t) ≤ ρ

∫ 1

0
[|ut(x, t)|2 + |uxx(x, t)|2]dx,

we have

min{ρ,m}
2

||Y (t)||2 − 2γρ

∫ 1

0
[|uxx(x, t)|2 + |ut(x, t)|2]dx ≤ V (t, Y (t))
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V (t, Y (t)) ≤ ν2(Y (t)) + 2γρ

∫ 1

0
[|ut(x, t)|2 + |uxx(x, t)|2]dx,

where ν(||Y ||) is given in the proof of Lemma 6.1. So we can choose γ such that

min{ρ,m}
2

− 2γρ ≥ min{ρ, m}
4

.

Now set
ν1(x) =

min{ρ,m}
4

x, and ν2(x) = ν(x) +
min{ρ,m}

4
x,

then νj ∈ K∞, j = 1, 2, and

ν1(||Y (t)|| ≤ V (t, Y (t)) ≤ ν2(‖Y (t)‖).

Theorem 6.3 Assume that the system (6.9) has unique solution on IR+ for each
(u0(x), ut(x), η0). And V (t, Y (t)) is defined by (6.12). Then the null solution of system (6.9)
is uniformly asymptotically stable.

Proof We can assume without loss of generality that Y (t) ∈ D(A(t)) is a classtical
solution. Then we have

dV (t, Y (t)
dt

=
dE(t)

dt
+ 2γ

dEc(t)
dt

,

where
dE(t)

dt
= −1

2
T (y(t))[u2

xxx(1, t) + u2
t (1, t)]− ksη

2(t),

dEc(t)
dt

= ρ

∫ 1

0
xutt(x, t)ux(x, t)dx + ρ

∫ 1

0
xut(x, t)uxt(x, t)dx.

Simple calculating shows that

ρ

∫ 1

0
xutt(x, t)ux(x, t)dx = −T (y(t))

[
ux(1, t)uxxx(1, t) +

3
2

∫ 1

0
|uxx(x, t)|2dx

]
,

∫ 1

0
xut(x, t)uxt(x, t)dx =

1
2

[
u2

t (1, t)−
∫ 1

0
|ut(x, t)|2dx

]
,

ux(1, t)uxxx(1, t) ≤ δu2
x(1, t) +

1
δ
u2

xxx(1, t) ≤ δ

∫ 1

0
|uxx(x, t)|2dx +

1
δ
u2

xxx(1, t).

Thus we obtain

dV (t, Y (t))
dt

= −1
2
T (y(t))[u2

xxx(1, t) + u2
t (1, t)]− ksη

2(t) + 2γ
[
− T (y(t))ux(1, t)uxxx(1, t)

−3
2
T (y(t))

∫ 1

0
|uxx(x, t)|2dx +

ρ

2
u2

t (1, t)− ρ

2

∫ 1

0
|ut(x, t)|2dx

]
≤ −1

2
T (y(t))

[
1− 4γ

δ

]
u2

xxx(1, t)−
[1
2
T (y(t))− γρ

]
u2

t (1, t)]− ksη
2(t)

−γT (y(t))[3− 2δ]
∫ 1

0
|uxx(x, t)|2dx− γρ

∫ 1

0
|ut(x, t)|2dx

]
.
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Choosing 0 < δ < 1 and γ > 0 such that

1− 4γ

δ
> 0,

1
2
T (y(t))− γρ > 0, (6.13)

for any Y0 ∈ H, as ||Y0|| ≤ R, according Lemma 6.1 we have

dV (t)
dt

≤ −ksη
2(t)− γT (y(t))

∫ 1

0
|uxx(x, t)|2dx− γρ

∫ 1

0
|ut(x, t)|2dx

≤ −min{ks, γT (y(t)), γρ}||Y (t)||2

≤ −min{ks, γT (R)), γρ}||Y (t)||2.

The stability result of the system (6.9) is followed from Theorem 5.2 and theorem 4.3.
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