UPPER BOUNDS ON N-DIMENSIONAL KLOOSTERMAN SUMS

TODD COCHRANE, MING-CHIT LIU, AND ZHIYONG ZHENG

ABSTRACT. Let p™ be any prime power and Kn(a,p™) be the n-dimensional
Kloosterman sum

P P }
Kn(a,p™)= Y -+ 3 epm(zi+ -+ +2n +aF1F5 - %n),

zy=1 Tp=1
where the z; are restricted to values not divisible by p. Let m,n be positive
integers with m > 2 and suppose that p7||(n+ 1). We obtain the upper bound

|Kn(a,p™)| < (n 4 1,p — 1)p3 PR3~ pmn/2 for odd p. For p = 2 we
obtain the same bound, with an extra factor of 2 inserted.

1. INTRODUCTION

Let p be a prime, m,n be positive integers, a be any integer and Ky, (a,p™) be
the n-dimensional Kloosterman sum

N
(1.1) Ka(a,p™) =) - D epm(@1 4+ +2n + aT1T7 . Z5),
Ty==1 zp=1
plz123..%n

where the overline denotes multiplicative inverse (mod p™). If p|a it is easily seen
that K,(a,p) = (—1)" and that K,(a,p™) = 0 for m > 2 (see Theorem 3 of [9]),
and so we may always assume that p { a. Deligne [4], appealing to his deep work
on the Weil conjectures established in the case m = 1 that

(1.2) |Ka(a,p)| < (n+ 1)p™/%.
There is also an elementary upper bound,

. a1
(1.3) |Kn(a,p) <p%,

due to Mordell [7) and Smith [9], which is sharper than (1.2) for n > ,/p. The
reader is referred to the paper of Smith for a historical discussion on the estimation
of the Kloosterman sum.

For a general value of m > 1 Smith [9] proved that for odd p we have

(1.4) |Kn(a,p™)| < (n+ 1)p°F.

The same argument that was used by Smith to prove (1.3) can also be used to
obtain the upper bound

ntli)m

(1.5) |Kn(a,p™)| <p 2
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Dabrowski and Fisher [3] (Example 1.17) obtained an extra savings in the special
case that p=n+ 1

P, ifm=2;
(1.6) |Kn(a,p™)| < p/?p™F, ifm=3orm25;
p-p3, ifm=4

See also the work of Ye [10] for an application of (1.6).
Here, we take the work of Smith one step further and establish an upper bound
that sharpens (1.4), (1.5) and (1.6).

Theorem 1.1. Let p be a prime, n be a positive integer and suppose that p||(n+1).
(a) If p is odd then form > 2,

(1.7) |Kn(a,p™) < (n+ 1,p— 1) ptminCum=Dprm/2,
(b) If p =2 then for m > 2,
(1.8) ‘o | Kl 97)| £ 2 s mimbrm=Zlgnm/t,

In Proposition 2.1 we state a more precise version of this theorem for the case of
odd p. When (n+1,p—1)is bounded by a constant we deduce from (1.7) the
upper bound

(1.9) | Kn(a,p™)| < V™2,

which is a best possible type of upper bound. Indeed, by Proposition 2.1, it follows
that if n+ 1 = p? then for any m > v 4 2 we have

|Kn(l,p™)| = VnF+ 1p"™/2.

It is reasonable to conjecture that (1.9) holds in general, even when m = 1, but
this is no doubt a very difficult problem. h

9. Proor oF THEOREM 1.1

We take up the case of odd p in this section and deal with p = 2 in section 3.
The theorem is deduced from the following result of Smith [9].

Theorem 2.1. Let p be an odd prime and a an integer not divistble by p.
(i) Suppose that m is even. Then by Theorem 4 of [9] we have

Pl

(21} Kp(a,p™) = p*m/? Z epm (nu + a@").

uttl=g ui;niod p?)
(ii) Suppose that m > 3 is odd. Let B = (m—1)/2. Ifpt(n+1) we have by
Theorem 5 (i) of [9] that Kn(a,p™) is a sum of (n+1,p— 1) complex numbers of
modulus p*™'? and so
(2.2) |Kn(a,p™)| < (n+1,p— l)p”mf'z.
If pl(n + 1) then by Theorem § (i) of [9],

(2.3) Kula,p™) = plnm+1)/2g Z epm (nu + a@"),

u=1
u™tl=g (mod Plan

where 0 is a complez number of modulus one.
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(We note that the value of ¢ in Smith’s paper should be corrected to read 6 =
en—1(P)xp (9N (a)).)

In the course of proving Theorem 1.1 we actually establish the more precise
result,

Proposition 2.1. Let n be a positive integer, p an odd prime and suppose thal
pYl(n+1).
(i) If a is not an (n+1)-th power (mod p?*1) and m > v+2 then Ky (a,p™) = 0.
(it) If a is an (n+1)-th power (mod p'*!) and m > 2 then K, (a,p™) s a sum
of (n+1,p— 1) complex numbers, each of modulus phmi2pdmin{y,m—2}

The values of the complex numbers in part (ii) may be calculated explicitly using
the method here together with the results of Smith [9]. This may give one hope of
making a further savings in the constant (n + 1,p — 1) on the right-hand side of
(1.7).

We start with the following elementary lemma, which follows from the standard
criterion for an element to be an (n + 1)-th power in a cyclic group.

Lemma 2.1. Suppose that p is an odd prime with p¥||(n+ 1) and pfa. If a is an
(n+1)-th power (mod p7*!) then a is an (n+1)-th power modulo any power of p.

The next lemma is an easy application of the method of critical points for esti-
mating exponential sums. If f(z) is a polynomial over Z and p* is the largest power
of p dividing all of the coefficients of f'(z) then the set critical points A associ-
ated with the sum S5 := Ei:l epm (f(z)) is just the set of zeros of the congruence
p~tf'(z) =0 (mod p). The basic result we need here is that if m > ¢ 4 2 then

(2.4) = z B
aEA

where S, is the same sum as S with z restricted to the residue class a (mod p);
see eg. Theorem 2.1 of [2] or Loh [6] or Ding [5]. Also, if a is a zero of multiplicity
one then

mtpt
(2.5) |Sal = p™2*.
When p = 2 the same result holds provided that m > ¢+ 3.

Lemma 2.2. (a) Let p be an odd prime, a,b be integers with p{ b and f(z) be a
polynomial with integer coefficients. Then for m > 1 we have

8
(2.6) 1> " epm (b2 + cz + pf(e))| = ™2

T=1
(b) If p=3 and 31 b then for any a, f(z) and m > 1 we have

m

P
(2.7) |Z epm(aﬁ + bz 4 e +pf(z))| = pm/'z'

o=l

Proof. When m = 1, the two sums are just quadratic Gauss sums (replacing z°
with = in part (b).) For m > 2 the critical point congruence associated with each
of the sums is just 2bz + ¢ = 0 (mod p), and thus there is a single critical point of
multiplicity one. The result follows from (2.4) and (2.5). O
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The case of even m. We proceed now to the proof of the Theorem 1.1 and
Proposition 2.1. Suppose first that m is even. Let n+ 1 = p'd with p{d and let
U be the set of residues u (mod p™/2) satisfying u"*! = a (mod p™/?). Then by
(2.1) we have the immediate upper bound

(2.8) |Kn(a,p™)| < p™™2U| < p™ 2 (p% (p—1),n +1).

Ifv =0 or y>m—2then (1.7) follows immediately from (2.8). Also, if y =0 we
see by (2.1) that K,(a,p™) = 0if a is not an (n + 1)-th power (mod p) and that
K, (a,p™) is a sum of (n+ 1,p — 1) complex numbers of modulus p*™/? if a is an
(n + 1)-th power (mod p). Here we have used Lemma 2.1.

Suppose next that 1 <y < 2. If a is not an (n+ 1)-th power (mod p7t1) then
by (2.1) it follows that K, (a,p™) = 0. Suppose now that a is an (n+ 1)-th power
(mod p?*!). Then by Lemma 2.1 a is an (n + 1)-th power modulo any power of p.
We first note that (2.1) may be written in the manner

(2.9) » Bpla, 7™ = pPrd Z epm (nu + ™),
uel

since, for u € U, the value of nu + au” (mod p™) depends only on the value of u
(mod p™/?). To see this, let

(2.10) k= (¢(p™) — 1)n.
In particular,
(2.11) P H|(n + k).

Let u be any integer satisfying u*! = a (mod p™/?), and let @ denote a multi-
plicative inverse of u (mod p™). Then

a@**'p™2 = p™?  (mod p™),
and so
n(u -+ p™%) + a(u + pm/?)"

= nu+np1n/2 +aﬁ"(l+'ﬁpm/2)k

(mod p™)

M

k
nu+npm/2+a'ﬁ“(1+kﬁpm/2+(z)uzpm+...} (mod p™)
=nu+au® (mod p™).

We partition U into (d,p — 1) subsets as follows. Start by observing that the
congruence "' = a (mod p) has (d,p — 1) distinct solutions ai,...,@@p-1)
(mod p), each of which can be lifted to a solution (mod p™). We may assume that
representatives have been chosen so that each o; satisfies the congruence " *! = a
(mod p™). Put j = 2 — . In particular j > 1. Fori=1,2,. ;o (dyp—=1); et

Ui ={ai+pt:t=1,2,...p"}.

Then (viewing the elements of U, U; as residue classes (mod p™?)) U is the
disjoint union of the sets U; and we have by (2.9)

p—1,d

(p=1,d)
K, {a;p™)=p"™? Y &5
g1
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where
,

Si = epm (nlas +P/t) + alai + p11)")
1

In what follows let o = o; and S, = S; for a typical value ¢, and let k be as defined
in (2.10). Thus

-1

i

p'T
(2.12) Sa = epm(falt)),
t=1
where
(2.13) fa(t) = n(a+ pt) + a(a + pit)™.

The theorem will be proved if we can show that |S,| = p7/2.
Now for any integer t,

(Faph" = (L+ @/t (mod p™).
Also, .
(2.14) pl(k 1),
and e@™ = « (mod p™). Thus,
falt) = na + np't + a1 1+apit))” (mod p™)
k

—na-l-npji%-a(l%—apjf) (mod p™)

= na + np’t + a(l + kap't + ( ) pHt? + (’;)Qapath +...) (mod p™).

Using (2.11) we obtain

(2.15)
- (%) 2,2 o 52 (F), 308 o g "
Jal)y = (n+ Do+ o )P t“+@ 5 )P t +-~::Zart, (mod p™)
r=0
say. Put
(2-16) Ua:gg?ordp(ar)a gul(t) =977 falt).

Now, since p7||(k — 1) we have ord,(az) = 2j 4+ v and for any r > 3
E\
ordy (ar) = ordy ()79 2+ = oxdy ()

If p>3orp=23andj>1it follows that ord,(ar) > 2j + v for r > 3. Thus
o = 2§+, and since m — (25 ++) = v, we can write

p’Y

pY
Zﬁpm va (ga(t)) = epm((n + Lo Zepv Qakk

t* + ph(t)),

for some polynomial h(t) € Z[t]. By Lemma 2.2 (a) we have |S,| = p7/2, and the
result follows, If p = 3 and j = 1 then the same conclusion can be made using
Lemma 2.2 (b).

Suppose finally that 2 < 5. If a is not an (n + 1)-th power (mod p™/?) then
by (2.1), Kn(a,p™) = 0. Suppose that a is an (n + 1)-th power (mod p™'?).
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Let ay,...,0(4p-1) be distinct values (mod p), each satisfying the congruence
z"*! = a (mod p™/?). Then U can be written as a disjoint union of the sets
Ui={a;+pt:t=1,2,...,p7 71},
and we have
(p—1,d)
Kp(a,p™) = Y. S,
=1
where S; = zueu.- epm (nu+au™). Let a = oy, S ='G; for a typical value i. Now,
since a@" = a (mod p™/2) we can write

aa" = a + pp™?,

for some integer p. Then
)
p3

Sa= 3 epmlfalt)),
) t=1
where

fa(t) = na + npt + (a + pp™?) (1 +apt))" (mod p™)

= na + npt + (e + pp™?)(1 + @'t)*  (mod p™)
(2.17) = (n+ Do+ pp™? + kpap3+it + (o + pp %)@ (§)p*t?
+(a+pp3)@B )P +... (mod p™)

(e o]
= E at’.
r=0

We consider two cases. If a is not an (n+1)-th power (mod p**!) then ord,(p)+
m/2 < v+ 1 and so

ordp(a1) =ordy(p) + 1+ m/2 < v+ 2 = ordy(a2).

It follows that 0, = ord,(a;) and that g, is linear (mod p), where o, and go
are as defined in (2.16). Thus forany p > 2and m > v+ 2, S, =0. fais an
(n + 1)-th power (mod p’*!) then 6o = 7 + 2 and we may assume (by Lemma
2.1) that a®*! = a (mod p™). If ¥ > m—2 then we just get |So| =pF~1. Ifp>3
and ¥ < m — 2 then

Memy—2

Sa = epm((n+1)a)p"* "% Y- epm-~—=<?ik%—lt2 +ph(2)),
t=1
for some polynomial h(t) € Z[t]. It follows from Lemma 2.2 that |S,| = p?/2. The
case p = 3 can be dealt with in a similar manner using Lemma 2.2 (b).

The case of odd m. Suppose now that m > 3 is odd, say m = 28 + 1. Again
write n + 1 = p"d with p{ d. If ¥ = 0 then (1.7) is an immediate consequence of
(2.2) . Indeed, if a is not an (n + 1)-th power (mod p) then by Theorem 3 of [9],
Kn(a,p™) =0, and if a is an (n + 1)-th power (mod p) then by Theorem 1.2 (ii),
K,(a,p™) is a sum of (n + 1,p — 1) complex numbers of modulus p™™/2.

Suppose that v > 1. Set

U={u:1<u<p’,u"*' =a (modp’*!)}.
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By (2.3) we have the immediate upper bound

(2.18) | Bl 57| < p0P U2 T =g D M g 1) m 4 1))

If ¥y > m—2or v =1 then (1.7) follows from (2.18). Moreover, if v = 1, then
Proposition 2.1 also follows immediately from (2.3).

Suppose now that 2 <+ < 4. If @ is not an (n + 1)-th power (mod p7), then U
is empty and K, (a,p™) = 0. If ais an (n+ 1)-th power (mod p7) then we proceed
as above. Let ay,..., g p-1) be distinct (n + 1)-th roots of a chosen so that each
a; satisfies o T = a (mod ™). The trick for dealing with the sum in (2.3) is to
note that for u € U, the value of nu+ a@" (mod p™) depends only on the value of
u (mod p?). Indeed, if u"*! = a (mod p?) then setting k = n(p™ ' (p—1)—1) we
have

n(u+p’) +a(u+p?)"
=n u+pﬂ a(u+pP)*  (mod p™)
= nu+ np? + a(uf + ku*"1pP)  (mod p™), (since p|(k — 1))

= nu+ au® + pPu(l — au*h)

n+k)

(mod p™)
=nu+au® +pPn(l —u (mod p™)
=nu+ au® (mod p™).
Set j=2tl 4 >1 Fori=1,...,(d,p—1), let
Ui={a;+pt:t=1,2,...,p71}.
Then viewing the sets U, U; as residue classes (mod p”), we see that U is a disjoint
union of the sets U/;. Thus by (2.3) we have

(dﬁpfl)
(2.19) |En(a,p™)| =pl"™ 02 37 gy,
51
where
P! ‘
S5 = epm (n(ai + p't) + a(a; + pit)").
t=1
Let &« = a3, So = 5;. Now,
falt) == no + np"t + a@™ (1 + apit)”
= (n+ a4+ (n+ k)p't + 2a(k — 1)kp*t® +
This time the multiplicity of p dividing the t? coefficient is 2j +~. Since m — (27 +
v) = v — 1 it follows as above that |S,| = p™¥, and the theorem follows.
Finally, suppose that 3+ 1 < 4. If a is not an (n + 1)-th power (mod pf+!)

then U is empty and K,(a,p™) = 0. I[f a is an (n+ 1)-th power (mod p”*!) then
we set

O = {aypt 1 1= 1,8, p72,
where the a; are distinct (n+1)-th roots of @, (mod p). Then IV (viewed as residue
classes (mod p?)) is the disjoint union of the sets U;. Let o = a; and

Zep’“ fa

t=1
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where
fa(t) = (n(a + pt) + a(a +pt)".
Write
ad® = a + ppPt,
for some integer p. If a is not an (n+1)-th power (mod p"*!) then ord, (p)+8+1 <
¥+ 1 and so
ordp(a;) < v+ 2 = ordp(az) < ordy(a;), fori> 3.

It follows that o4 = ordp(a;), and that g, is linear (mod p). If 0o > v — 1 then
|Se| = pP~! and p'/?|S,| = p%~!. If 04 < v —1then Sy =0. If a is an (n + 1)-th
power (mod pYt!) then as above we obtain that |S,| = p¥

3. THE CASE p=2

Theorem 1.1 (b) is*deduced from the following result of Smith (9], his Theorem
4 and Lemma 5 combined.

Theorem 3.1. Let m,n be positive integers with m > 2 and suppose that
27||(n +1). Then
(i) If m is even then

2m/2
(3.1) Kn(a,2™) = 2% Z eqm (nu + a@").
T yntizg (mod 2"‘/2) E
(i1) If m is odd and v = 0 then |Kp(a,2™)] = 2™"/2.
(iii) If m is odd and vy = 1 then, letting = (m — 1)/2,
28
(3.2) |Kn(a,2™)| =275 3" eym(nu+am”)|.
u=1
28((unt ~a)
(iv) If m is odd and ~ > 2 then, letting f = (m — 1)/2,
28
(3.3) |Kn(a,27)| =27%] 37 egm(nu+aw).
2ﬁ+112‘,‘=n1+1_a)
We need also the following lemmas. For any odd integer a and positive integers

s, A let N,(a, A) denote the number of solutions of the congruence u* = a (mod 2*).
The first lemma is elementary; see eg. [8] Corollary 2.44.

Lemma 3.1. Suppose that a is odd and A > 1.

(i) If s is odd then N,(a,)) = 1.

(ii) If s is even then Ny(a,)) = (25,2*~1) ifa = 1 (mod 2(2s,2*~1)), and equal
to zero otherwise.

We deduce easily the following analogue of Lemma 2.1.

Lemma 3.2. Let a be odd and suppose that 27||(n+1). If a is an (n+1)-th power
(mod 27+2) then a is an (n + 1)-th power modulo any power of 2.
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Lemma 3.3. Let a be an odd integer and H(x) be any polynomial over Z. Then
for any m > 1 we have

gm

(3.4) 1> eam(an? + 22H (2))| < 27,
z=1

and consequently
o

(3.5) |Z€2m+l (az® + 22H(z))| < 2™/2.
r=1

Proof. We note that if z = y (mod 2™) then
ar® +22H(z) = ay® + 2°H(y) (mod g
and thus (3.5) is an immediate consequence of (3.4). The critical point congruence
for the sum in (3.4) is just z = 0 (mod 2) and thus there is a single critical point,
of multiplicity 1. THe inequality in (3.4) then follows from (2.4) and (2.5) for
m > 4. For m = I the inequality is trivial. For m = 2 it is well known that
Zizl eq(ax?) = 2(1 +i%), while for m = 3 we have
8
Z eg(a:c2 +4H(z)) = 4(—1)H(1)eg(a).
z=1

L

Lemma 3.4. Let a be any integer, b, c,d be odd integers and H(z) be any polyno-
mial over Z. Then for any m > 1 we have

om
(3.6) |chm(a:c+b$2—i—2cz3+2dr4+22H(1‘))| < 275
z=1

Consequently, if a is even then

-
(3.7) 1> egmar(az + bz’ + 2c2® + 2dz* + 22H (x))| < 27
e=

Proof. We note that the inequality in (2.6) is trivial for m = 1,2,3. If 4 { a then
there are no critical points associated with the sum and so the sum is zero for m > 4.
If 4|a then the critical point congruence for the sum in (3.6) is just z(z +1) = 0
(mod 2), and thus there are two critical points, each of multiplicity one. The result
follows from (2.4) and (2.5) for m > 4. O

We turn now to the proof of Theorem 1.1 when p = 2. Suppose first that v = 0,
that is, n + 1 is odd. Then for any A, the congruence u”*! = a (mod 2*) has a
unique solution. It follows from parts (1) and (ii) of Theorem 3.1 that |K,(a, 2™)| =
9™/? Henceforth we may assume that ~ =il

The case of even m. Suppose first that m is even. By Lemma 3.1 and Theorem
3.1 (1) we have the immediate npper bound

(3.8) |, T GRiBELS L), gmnri2,

The upper bound in (1.8) follows trivially if ¥ > m — 4. Thus we may assume that
1 <+ <m—5 and that m > 6. We first consider the case that 1 <y < 3 -

Then by Lemma 3.1, the congruence u**! = a (mod 2™/2) has either no solution,
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in which case |K,(a,2™)| = 0, or 27! solutions. Suppose that the latter holds.

Then by Lemma 3.2 a is also an (n + 1)-th power (mod 2™). Let o be a fixed

value satisfying o' = a (mod 2™). Then the set of solutions of the congruence

u+! = ¢ (mod 2™/?) (regarded as residue classes (mod 2™/2)) may be written
{2 7t+a:1 <t <27}

Since the value of nu+a@” (mod 2™) in the sum (3.1) depends only on the value

of u (mod 2™/?) we may write

(3.9) Kaln, 2°) =225 4. 87),

where, setting j = 7 — 7,

27
(3.10) 5= " epm (n(zft + @) + a(Pt £ a) ) .

=1

Set k = (2~ —1)n and f(t) = n(27t + o) +a(2t + a) . Then, since 27||(k—1)
and a@" = o (mod 2™) we have for any value of ,
(3.11) ) =n(2t+a) + a(l + 2at)*  (mod 2™)
(3.12) = (n+ Da+a2™ 712 + Z a;t"  (mod 2™),
r>3

say, where ay = kkzjla and the coefficients a, satisfy

k
(3.13) ords(a,) = ords (1) +rj, forr>3.

Now ordg(az) =y — 1435 > 25+ v+ 1 (since j > 2) and for r > 4,
ordy(ar) > v+ 1—ords(r)+rj>y+1-r+rj>2j+y+1=m—-v+1.
Therefore we may write
ft) = (n+ Da+a2m 7 12 4 9Pt H#)  (mod 2™)
for some polynomial H (t) with integer coefficients. It follows from Lemma 3.3 that,
27
S+ = 1D epvir (ant? + 22H(2))| < 272
t=1
The same upper bound holds for S~ and the theorem follows.

Next we consider the case that %t — 1 <y < m—5. Then, assuming that a is an
(n + 1)-th power (mod 27™/2), we may write the set of solutions of the congruence
u?t! = a (mod 27/?) as

(2t4+a:1<t <2571},
where « is a fixed value satisfying a”t! = a (mod 2™/?).

As with the case of odd p we write

ad” = o + p2™/?,

for some integer p. Letting f(t) = n(2t + o)+ a(2t + «) , we have by Theorem 3.1
(i) that
Z_
Ko (0, ) =202 N ™ eqmilf{E)).

t=1
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Now, expanding f(t) as above, we see that
f(t) = a0+ a:12F 1t 4 02712 4 032743 4 0 271 L 273 H (1) (mod 2™),

for some integers a,, 0 < r < 4, with a3, a3, a4 odd, and polynomial H(t) over Z.
Let é denote the multiplicity of 2 dividing the coefficient of ¢. Note, § > 2 + 1. If
d <y +1then K,(a,2™) =0. If § > v+ 1 then we obtain
2%
|Kn(a,2™)] = 2m0/? Z egm-v—1 (@it + at? + 2a3t3 + 2a4t* + 4H(1))|,

t=1
for some integer a}. If ¥ = 2t — 1 then a} is even and so by inequality (3.7) of
Lemma 3.4 we obtain

|Kn(a,2™)| < 2.27/29mn/2,

If y > 2 then, by (3’.6) we obtain
|Ka(a,2™)] < 2P - F9RHEE — g. 9 gmn/2,

This completes the proof of the theorem for the case of even m.

The case of odd m. Suppose that m > 3is odd. If y¥ = 1 then we trivially have
from Theorem 3.1 (iii) that |K,(a,2™)| < - 225 for there are at most two values
of u satisfying the constraints on the sum. Indeed if a is not an (n + 1)-th power
(mod 2P) then the sum is zero, and if a is such a power then, provided 8 > 3, there
are precisely four distinct (n + 1)-th roots of a (mod 2#) of which exactly two are
roots (mod 2°*1). If =1 or 2 the assertion is also trivial.

Suppose now that v > 2. By Theorem 3.1 (iv) we have

o8
(3.14) |Kn(a,2™)| = 2757 > eam(nu+amn)|.

u=1
2041 (u™+ —a)
If v > m — 2 then by Lemma 3.1,
lK (a 2m)‘ < 98- 12 2——I2mn/2 — 2%mm('y m—-2)2mn/2

Suppose now that 2 < ¥ < m—3 and that a is an (n+ 1)-th power (mod 2°+1!).
If 2< v < f—1 then by Lemma 3.2, a is also an (n + 1)-th power (mod 2™) and
the set of solutions of the congruence u™*! = a (mod 2°+!) is given by

{21+ 1<t <27},
where o satisfies a”*! = a (mod 2™). By Theorem 3.1 (iv) we can write
|Kn(a,2™)| = 225 |S* + 57|,

where St are as given in (3.10) with j = 8+ 1 — «. The proof of the theorem
follows as above. If ¥ > £ then the set of solutions is given similarly by

{2t+a:1<t <21},

where o is a fixed value satlsfymg a™*t! = a (mod 2°*!). The theorem again
follows as above.
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