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Abstract

The spectrum of a variable coefficients Rayleigh beam with boundary feedback

control is discussed in present paper. By using the asymptotic technique, the explicit

asymptotic formula of eigenvalues of the closed loop system is given. With help of

the result in [13], it is concluded that the closed loop system is a Riesz system. As

a result, the spectrum determined growth condition and exponential stability are

deduced. In particular, a conjecture in [3] is completely settled.
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1 Introduction

It is well known that the analysis of the eigenvalue problem of variable coefficient ordinary

differential equation with parameter is usually difficult because explicit solution formula

is hard to come by. However, in practice, we often have to consider this problem, for

instance, non-homogeneous material in engineering and smart material etc, which lead to

variable coefficient differential equations. In the present paper, we study one of the beam

models— non-homogeneous Rayleigh beam model under the boundary feedback control,

¶ This work is supported by an RGC grant of code HKU 7133/02P.
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the motion governed by partial differential equation:

ρ(x)
∂2u

∂t2
− ∂

∂x

(
Iρ(x)

∂3u

∂t2∂x

)
+

∂2

∂x2

(
EI(x)

∂2u

∂x2

)
= 0, 0 < x < 1, t > 0,

u(0, t) =
∂u

∂x
(0, t) = 0, t > 0,

EI
∂2u

∂x2
(1, t) + α

∂2u

∂x∂t
(1, t) = 0, t > 0,

∂

∂x

(
EI

∂2u

∂x2

)
(1, t)− Iρ

∂3u

∂x∂t2
(1, t)− β

∂u

∂t
(1, t) = 0, t > 0,

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x),

(1.1)

Here, u(t, x) is the transverse displacement and x, t stand respectively for the position and

time, and ρ(x) > 0 is the mass density, EI(x) > 0 is the stiffness of the beam, Iρ(x) > 0 is

the mass moment of inertia and α, β ≥ 0 are constant feedback gains that can be tuned.

Other details of this model can also be found in [1].

This problem was treated firstly in [2], in which the coefficients of the equation are

constants and the exponential stability of the system was obtained under the condition

α = 1, β ≥ 0. Recently, [3] consider the Riesz basis property of the same system. As

a result, the system satisfies spectrum determined growth condition. In this paper, we

assume that

ρ(x), Iρ(x), EI(x) ∈ C4[0, 1], (1.2)

and try to obtain the Riesz basis property and exponential stability of the system.

Here the main difficulty we encountered is to calculate asymptotic eigenvalues of the

system. Although there is a suitly complete method to calculate asymptotic fundamental

solution for instance see [10], it seems that the eigenvalue problem led from Rayleigh

beam is unfit this modality. To settle it, we employ the method of operator pencil used

in [7] [9] and [8] to obtain the asymptotic expansion of the fundamental solutions of the

eigenvalue boundary problem, and then use them to expand the characteristic determinant

and obtain asymptotic expansions for the eigenvalues.

The rest of the paper is organized as follows. In §2 we convert system (1.1) into an

evolution equation in an appropriate Hilbert space, then we prove that the evolutionary

system associates a C0 semigroup whose generator has compact resolvent. Therefore

the eigenvalue problem leads the eigenvalue boundary problem of an variable coefficient

ordinary differential equation. In order to solve the eigenvalue boundary problem, we

shall use a space-scaling transformation to derive an equivalent boundary problem that

is ready to expand asymptotically. In §3 an asymptotic distribution of the eigenvalues of

the system is obtained via expanding the characteristic determinant. In the last section,
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further property of semigroup and exponential stability of the system are indicated and

a conjecture in [3] is discussed and settled.

2 Basic State Space Setup and Eigenvalue Problem

We start our investigation by formulating the problem in the following Hilbert spaces:

V := {f ∈ H1(0, 1) | f(0) = 0},

endowed with norm

‖f‖2
V :=

∫ `

0

[ρ(x)|f(x)|2 + Iρ(x)|f ′(x)|2]dx

and

W = {f ∈ H2(0, 1) | f(0) = f ′(0) = 0, f ′(x) = df(x)/dx},

endowed with norm

‖f‖2
W =

∫ `

0

EI(x)|f ′′(x)|2dx.

Easy to see that

W ⊂ V ⊂ L2[0, 1] ⊂ V ′ ⊂ W ′,

where W ′ and V ′ are the dual spaces of W and V respectively.

Now we define linear operators A,D ∈ L(W,W ′) and B,C ∈ L(V, V ′) by

〈Aφ, ψ〉 =

∫ 1

0

EI(x)φ′′(x)ψ′′(x)dx, ∀ φ, ψ ∈ W, (2.1)

〈Dφ,ψ〉 = φ′(1)ψ′(1), ∀ φ, ψ ∈ W, (2.2)

〈Bφ, ψ〉 = φ(1)ψ(1), ∀ φ, ψ ∈ V, (2.3)

〈Cφ, ψ〉 =

∫ 1

0

[
ρ(x)φ(x)ψ(x) + Iρφ

′(x)ψ′(x)
]
dx, ∀ φ, ψ ∈ V. (2.4)

Lax-Milgram Theorem [6, pp.92] says that A (resp. C) is a canonical isomorphism of W

(resp. V ) onto W ′ (resp. V ′). With these operators, the equation (1.1) can be written

into a variational equation

〈Cutt, ψ〉+ 〈Au, ψ〉+ α〈Dut, ψ〉+ β〈But, ψ〉 = 0, ∀ ψ ∈ W. (2.5)

Let

H := W × V

with norm ‖(f, g)‖2
H = ‖f‖2

W + ‖g‖2
V . Then we can define a linear operator A on H by:

D(A) := {(f, g) ∈ H | g ∈ W,Af + αDg + βBg ∈ V ′} , (2.6)
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A(f, g) :=
(
g,−C−1(Af + αDg + βBg)

)
, ∀ (f, g) ∈ D(A). (2.7)

Thus, (2.5) can be formulated into an evolution equation in H as{
dY (t)

dt
= AY (t), t > 0, (where Y (t) = (u, ut))

Y (0) = Y0 = (u0, u1).
(2.8)

Lemma 2.1 Let A be defined by (2.6) and (2.7). Then A is a densely defined closed

dissipative operator with 0 ∈ ρ(A), and so A generates a C0 semigroup of contraction.

PROOF For any (f, g) ∈ D(A), we have

〈A(f, g), (f, g)〉 =

∫ 1

0

[
EI(x)g′′(x)f ′′(x)− ρ(x)C−1[Af + αDg + βBg]g(x)

]
dx

−
∫ 1

0

Iρ(x)(C
−1[Af + αDg + βBg])′(x)g′(x)dx

=

∫ 1

0

EI(x)g′′(x)f ′′(x)dx−
∫ 1

0

[Af + αDg + βBg]g(x)dx

= 〈Ag, f〉 − 〈Af, g〉 − α〈Dg, g〉 − β〈Bg, g〉

= 〈Ag, f〉 − 〈Af, g〉 − α|g′(1)|2 − β|g(1)|2.

So

Re〈A(f, g), (f, g)〉 = −α|g′(1)|2 − β|g(1)|2 ≤ 0.

To show that 0 ∈ ρ(A), we let (y, z) ∈ H and consider the resolvent equation

A(f, g) = (y, z).

So y = g and

z = −C−1[Af + αDg + βBg].

Therefore, for any ψ ∈ W ,

〈Af + αDg + βBg, ψ〉 = −〈Cz, ψ〉.

Substituting g = y into the above equation yields

〈Af, ψ〉 = −〈Cz + αDy + βBy, ψ〉, ∀ ψ ∈ W. (2.9)

Since for any ψ ∈ W , we have

〈Aψ,ψ〉 = ‖ψ‖2
W .

So from the Lax-Milgram Theorem, there exists a unique f ∈ W so that (2.9) holds and

0 ∈ ρ(A). The last assertion is a direct consequence from the theory of semigroup (cf.

[12, pp.3, Theorem 1.2.4] ). �
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Lemma 2.2 Let (f, g) ∈ H. Then (f, g) ∈ D(A) if and only if f ∈ W ∩H3 and g ∈ W
such that(
EI(x)f ′′(x)

)′∣∣∣
x=1

+Iρ

[
C−1(Af, αDg+βBg)

]′∣∣∣
x=1

−βg(1) = 0, EI(1)f ′′(1)+αg′(1) = 0.

From this we see that A−1 is compact.

PROOF The sufficiency is obvious. To prove the necessity, let (f, g) ∈ D(A) and

A(f, g) = (y, z) ∈ H. Then we have g = y ∈ W and

−C−1[Af + αDg + βBg] = z.

Since z ∈ V and C : V → V ′ is an isomorphism, so we have

Af + αDy + βBy = −Cz, in V ′ ⊂ W ′,

and hence ∫ 1

0

EI(x)f ′′(x)ψ′′(x)dx+ αy′(1)ψ′(1) + βy(1)ψ(1)

+

∫ 1

0

[
ρ(x)z(x)ψ(x) + Iρ(x)z

′(x)ψ′(x)
]
dx = 0, ∀ ψ ∈ W.

(2.10)

Now for any φ ∈ C∞
0 (0, 1), let ψ(x) =

∫ x

0
φ(s)ds and substitute it into (2.10) yields∫ 1

0

EI(x)f ′′(x)φ′(x)dx+ βy(1)

∫ 1

0

φ(x)dx

+

∫ 1

0

φ(x)dx

∫ 1

x

ρ(s)z(s)ds+

∫ 1

0

Iρ(x)z
′(x)φ(x)dx = 0

and ∫ 1

0

EI(x)f ′′(x)φ′(x)dx = −
∫ 1

0

[
βy(1) +

∫ 1

x

ρ(s)z(s)ds+ Iρ(x)z
′(x)

]
φ(x)dx = 0,

for all φ ∈ W . Thus(
EI(x)f ′′(x)

)′
= βy(1) +

∫ 1

x

ρ(s)z(s)ds+ Iρ(x)z
′(x) ∈ L2[0, 1]. (2.11)

Since EI ∈ C4[0, 1] (see. (1.2)), so we have f ∈ H3(0, 1) ∩W . In particular,(
EI(x)f ′′(x)

)′∣∣∣
x=1

= βy(1) + Iρ(x)z
′(x)

∣∣∣
x=1

.

Inserting g = y and z = −C−1(Af + αDg + βBg) into the above yields(
EI(x)f ′′(x)

)′∣∣∣
x=1

+ Iρ(x)
[
C−1(Af + αDg + βBg)

]′∣∣∣
x=1

− βg(1) = 0.
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Again, for φ ∈ V with φ(1) = 1, we let ψ :=
∫ x

0
φ(s)ds, and insert it into (2.10) and

to conclude from (2.11) that

EI(1)f ′′(1) + αy′(1) = 0.

Since g = y, the necessity is proven because

EI(1)f ′′(1) + αg′(1) = 0.

By Lemma 2.1, A−1 exists and is bounded on H. From The Sobolev Embedding

Theorem, A−1 is compact. �

We are now in a position to investigate the eigenvalue problem of A. Let λ ∈ σ(A)

and (φ, ψ) ∈ H be such that

A(φ, ψ) = λ(φ, ψ).

Then, ψ = λφ and φ satisfies
λ2ρ(x)φ(x)− λ2

(
Iρ(x)φ

′(x)
)′

+
(
EI(x)φ′′(x)

)′′
= 0, 0 < x < 1,

φ(0) = φ′(0) = 0,

EI(1)φ′′(1) + αλφ′(1) = 0,(
EIφ′′

)′
(1)− λ2Iρ(1)φ′(1)− βλφ(1) = 0.

(2.12)

Lemma 2.3 Let h1(x), h2(x) be two linearly independent solutions for the second order

linear homogeneous differential equation(
Iρ(x)φ

′(x)
)′
− ρ(x)φ(x) = 0, (2.13)

then we have

D := h1(0)h
′
2(1)− h′1(1)h2(0) 6= 0. (2.14)

PROOF. Assume not, then the following system of linear equations in t1 and t2{
t1h1(0) + t2h2(0) = 0,

t1h
′
1(1) + t2h

′
2(1) = 0,

is singular because the determinant of the coefficient matrix is h1(0)h
′
2(1)−h′1(1)h2(0) = 0.

So there exists a non-trivial solution, say
(

c1
c2

)
. Let z := c1y1 + c2y2, then z is a solution

of the following initial problem:{(
Iρ(x)z

′(x)
)′
− ρ(x)z(x) = 0,

z(0) = z′(1) = 0.

By the uniqueness theorem, z ≡ 0 and so y1 and y2 are linearly dependent, which contra-

dicts the assumption of the lemma. �
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Lemma 2.4 If α+ β > 0, then

Re(λ) < 0. (2.15)

PROOF. We go back to the eigenvalue equation (2.12). Multiplying φ̄, the conjugate

of φ, on both side of the first equation in (2.12) and integrating from 0 to 1 with respect

to x, we obtain

λ2

∫ 1

0

ρ(x)|φ(x)|2dx+ λ2

∫ 1

0

Iρ(x)|φ′(x)|2dx+ βλ|φ(1)|2

+αλ|φ′(1)|2 +

∫ 1

0

EI(x)|φ′′(x)|2dx = 0.

(2.16)

Write λ = Reλ+ iImλ, then

(
(Reλ)2 − (Imλ)2

) ∫ 1

0

(
ρ(x)|φ(x)|2 + Iρ(x)|φ′(x)|2

)
dx+ β(Reλ)|φ(1)|2

+α(Reλ)|φ′(1)|2 +

∫ 1

0

EI(x)|φ′′(x)|2dx = 0,

(2.17)

and

2(Reλ)(Imλ)

∫ 1

0

(
ρ(x)|φ(x)|2 + Iρ(x)|φ′(x)|2

)
dx

+β(Imλ)|φ(1)|2 + α(Imλ)|φ′(1)|2 = 0.

(2.18)

If Imλ = 0, then Reλ < 0 by (2.17). If Imλ 6= 0, then Reλ < 0 by (2.18) and the proof is

completed. �

To further simplify (2.12), we expand it to yield:

φ(4)(x) + 2
EI ′(x)

EI(x)
φ′′′(x) +

EI ′′(x)

EI(x)
φ′′(x)

− λ2

(
Iρ(x)

EI(x)
φ′′(x) +

I ′ρ(x)

EI(x)
φ′(x)− ρ(x)

EI(x)
φ(x)

)
= 0,

φ(0) = φ′(0) = 0,

EI(1)φ′′(1) + αλφ′(1) = 0,

EI(1)φ′′′(1) + EI ′(1)φ′′(1)− λ2Iρ(1)φ
′(1)− βλφ(1) = 0.

(2.19)

Introducing a space-scaling transformation

φ(x) := f(z), z :=
1

h

∫ x

0

(
Iρ(ζ)

EI(ζ)

)1/2

dζ, (2.20)

where

h :=

∫ 1

0

(
Iρ(ζ)

EI(ζ)

)1/2

dζ, (2.21)

7



then equation (2.19) can be rewritten as

f (4)(z) + a(z)f ′′′(z) + b(z)f ′′(z) + c(z)f ′(z)

− h2λ2
[
f ′′(z) + d(z)f ′(z)− e(z)f(z)

]
= 0,

f(0) = f ′(0) = 0,

b21f
′′(1) + b22f

′(1) + b23αλf
′(1) = 0,

b11f
′′′(1) + b12f

′′(1) + b13f
′(1)− λ2b14f

′(1)− βλf(1) = 0.

(2.22)

Let f ′ := df/dz, zx := dz/dx and

a(z) := 6
zxx

z2
x

+ 2
1

zx

EI ′(x)

EI(x)
, zx =

1

h

(
Iρ(x)

EI(x)

)1/2

, (2.23)

b(z) := 3
z2

xx

z4
x

+ 4
zxxx

z3
x

+ 6
zxx

z3
x

EI ′(x)

EI(x)
+

1

z2
x

EI ′′(x)

EI(x)
, (2.24)

c(z) :=
zxxxx

z4
x

+ 2
zxxx

z4
x

EI ′(x)

EI(x)
+
zxx

z4
x

EI ′′(x)

EI(x)
, (2.25)

d(z) :=
zxx

z2
x

+
1

h2z3
x

I ′ρ(x)

EI(x)
, e(z) :=

1

h2z4
x

ρ(x)

EI(x)
, (2.26)

b11 := z3
x(1)EI(1), b12 := 3zx(1)zxx(1)EI(1) + z2

x(1)EI
′(1),

b14 := Iρ(1)zx(1), b13 := zxxx(1)EI(1) + zxx(1)EI
′(1),

b21 := z2
x(1)EI(1), b22 := zxx(1)EI(1), b23 := zx(1).

(2.27)

If we replace λ by µ := hλ, then (2.22) changes to

f (4)(z) + a(z)f ′′′(z) + b(z)f ′′(z) + c(z)f ′(z)

− µ2
[
f ′′(z) + d(z)f ′(z)− e(z)f(z)

]
= 0,

f(0) = 0,

f ′(0) = 0,

b21f
′′(1) + b22f

′(1) + b23αh
−1µf ′(1) = 0,

b11f
′′′(1) + b12f

′′(1) + b13f
′(1)− h−2µ2b14f

′(1)− βh−1µf(1) = 0,

(2.28)

which is equivalent to equation (2.19). In summary, we have the following result.

Theorem 2.1 λ ∈ σ(A) iff equation (2.28) has a nonzero solution f(z) for µ := hλ. In

addition, the function φ(x) in the corresponding eigenfunction (φ, λφ) of A is given by

(2.20).
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3 Asymptotic Expressions of Eigenfrequencies

In this section, we shall obain asymptotic expansions for the eigenvalues of A. The main

trick is to treat the fundamental solutions of (2.28) first, and then use them to expand

the characteristic determinant of A and obtain the asymptotic eigen-frequency.

To begin, we use a standard technique of Naimark [10] and divide the complex plane

into four sectors

Sk :=

{
z ∈ C :

kπ

2
≤ arg z ≤ (k + 1)π

2

}
, k = 0, 1, 2, 3 (3.1)

and for each Sk, we will pick ω1 and ω2 (both square roots of −1) so that

Re(ρω1) ≤ Re(ρω2), ∀ ρ ∈ Sk. (3.2)

In particular, we will choose

ω1 := ei π
2 , ω2 := ei 3

2
π

in sector S0 and re-shuffle them in each the remaining sectors so that (3.2) holds. Writing

µ := ρω1 for ρ in each sector Sk, we have the following result on the fundamental solutions

of (2.28) from [8, Theorem 3] (see also [7]).

Lemma 3.1 In each sector Sk, for ρ ∈ Sk with |ρ| sufficiently large, the equation

f (4)(z) + a(z)f ′′′(z) + b(z)f ′′(z) + c(z)f ′(z) + ρ2
[
f ′′(z) + d(z)f ′(z)− e(z)f(z)

]
= 0 (3.3)

has four linearly independent fundamental solutions ys(z; ρ) (s = 1, 2, 3, 4) and they pos-

sess the following asymptotic expressions (for j = 0, 1, 2, 3)

y
(j)
s (z; ρ) = h

(j)
s (z) +O(λ−2

1 ), s = 1, 2, (3.4)

y
(j)
s (z; ρ) = (ρωs−2)

jeρωs−2x [y0(z) +O(ρ−1)] , s = 3, 4, (3.5)

y0(z) := e−
1
2

∫ z
0 (a(t)−d(t))dt. (3.6)

Here, h1(z) := h1(x(z)), h2(z) := h2(x(z)) are the two linearly independent solutions of

(2.2) after the transformation x(z) := z(x)−1. That is, they are two linearly independent

solutions of

f ′′(z) + d(z)f ′(z)− e(z)f(z) = 0.

From (3.4) and (3.5), we can obtain asymptotic expansion of the boundary conditions

of system (2.28). For brevity, we shall use the following notation in the sequel

[a]1 := a+O(ρ−1).
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Theorem 3.1 Denote the boundary conditions of the system (2.28) respectively by U1, U2,

U3 and U4. Then, for ρ ∈ S0 with |ρ| sufficiently large, we have the following asymptotic

expansions,

U4(ys; ρ) = ys(0; ρ) =

{
hs(0) +O(ρ−2) := [hs(0)]1, s = 1, 2,

1 +O(ρ−1) := [1]1, s = 3, 4,
(3.7)

U3(ys; ρ) = y′s(0; ρ) =

 xz(0)h′s(0) +O(ρ−2) := [xz(0)h
′
s(0)]1, s = 1, 2,

ρωs−2

(
1 +O(ρ−1)

)
:= ρωs−2[1]1, s = 3, 4,

(3.8)

U2(ys; ρ) = y′′s (1; ρ) +
b22

b21

y′s(1; ρ) + i
b23
b21
αh−1ρy′s(1; ρ)

=


ρ

(
i
b23

b21

αh−1xz(1)h′s(1) +O(ρ−1)

)
, s = 1, 2,

ρ2eρωs−2

(
y0(1)ω2

s−2 + i
b23
b21
αh−1y0(1)ωs−2 +O(ρ−1)

)
, s = 3, 4,

:=


ρ

[
i
b23

b21

αh−1xz(1)h′s(1)

]
1

, s = 1, 2,

ρ2eρωs−2

[
y0(1)ω2

s−2 + i
b23
b21
αh−1y0(1)ωs−2

]
1

, s = 3, 4,
(3.9)

U1(ys; ρ) = y′′′s (1; ρ) +
b12

b11

y′′s (1; ρ) +
b13
b11
y′s(1; ρ) + h−2ρ2 b14

b11
y′s(1; ρ)− iβh−1b−1

11 ρys(1, ρ)

=


ρ2

(
b14

b11

h−2xz(1)h′s(1) +O(ρ−1)

)
, s = 1, 2,

ρ3eρωs−2

(
y0(1)ω3

s−2 +
b14
b11
h−2y0(1)ωs−2 +O(ρ−1)

)
, s = 3, 4,

:=

 ρ2 [xz(1)h′s(1)]1 , s = 1, 2,

ρ3eρωs−2
[
y0(1)ω3

s−2 + y0(1)ωs−2

]
1
, s = 3, 4.

(3.10)

PROOF. The proof is just a direct substitution of the fundamental solutions (3.4)-

(3.5) into the boundary conditions and makes use of the fact that in (3.10),

b14

b11

=
Iρ(1)zx(1)

z3
x(1)EI(1)

= h2.

�

Since the zeros of ∆(ρ) are the eigenvalues of (2.1) (cf. [10, pp.13-15]), to estimate
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the eigenvalues, we substitute (3.7)-(3.10) into the characteristic determinant

∆(ρ) :=

∣∣∣∣∣∣∣∣∣∣
U4(y1, ρ) U4(y2, ρ) U4(y3, ρ) U4(y4, ρ)

U3(y1, ρ) U3(y2, ρ) U3(y3, ρ) U3(y4, ρ)

U2(y1, ρ) U2(y2, ρ) U2(y3, ρ) U2(y4, ρ)

U1(y1, ρ) U1(y2, ρ) U1(y3, ρ) U1(y4, ρ)

∣∣∣∣∣∣∣∣∣∣
(3.11)

and obtain the following asymptotic expansion for it.

Theorem 3.2 In sector S0, the characteristic determinant ∆(ρ) of the characteristic

equation (2.28) has an asymptotic expansion

∆(ρ) = −iρ5y0(1)xz(1)D
{
e−iρ (1− αγ) + eiρ (1 + αγ) +O(ρ−1)

}
, (3.12)

where γ :=
(
Iρ(1)EI(1)

)−1/2

, D :=
(
h′2(1)h1(0) − h′1(1)h2(0)

)
the nonzero determinant

defined in (2.3). Furthermore, the boundary problem (2.28) is strongly regular in the sense

of [9, p.259] iff the following condition holds:

1− α
(
Iρ(1)EI(1)

)−1/2

6= 0 (i.e. 1− αγ 6= 0). (3.13)

PROOF. In sector S0, with ω1 := i, ω2 := −i, we conclude that

U1(ys, ρ) = ρ3eρωs−2 [0]1, s = 3, 4, (3.14)

U2(ys, ρ) = ρ2eρωs−2

[
−y0(1) + (−1)s b23

b21
αh−1y0(1)

]
1

, s = 3, 4. (3.15)

Substituting (3.7), (3.8), (3.9), (3.10), (3.14) and (3.15) into the characteristic determi-

nant, we have

∆(ρ) =

∣∣∣∣∣∣∣∣∣∣∣

[h1(0)]1 [h2(0)]1

[xz(0)h′1(0)]1 [xz(0)h
′
2(0)]1

ρ
[
i b23
b21
αh−1xz(1)h′1(1)

]
1
ρ

[
i b23
b21
αh−1xz(1)h

′
2(1)

]
1

ρ2[xz(1)h′1(1)]1 ρ2[xz(1)h
′
2(1)]1

[1]1 [1]1

iρ[1]1 −iρ[1]1

ρ2eρω1

[
−y0(1)− b23

b21
αh−1y0(1)

]
1
ρ2eρω2

[
−y0(1) + b23

b21
αh−1y0(1)

]
1

ρ3eρω1 [0]1 ρ3eρω2 [0]1

∣∣∣∣∣∣∣∣∣∣∣
= −iρ5y0(1)xz(1)D

{
eρω2

[
1− b23

b21
αh−1

]
1

+ eρω1

[
1 +

b23
b21
αh−1

]
1

}
.

11



Combining with (2.20),(2.27), we have

b23

b21

=
zx(1)

z2
x(1)EI(1)

= h
(
Iρ(1)EI(1)

)−1/2

= hγ, (3.16)

which yields (3.12). The strong regularity defined in [9, Def.2.7] can be verified directly

from the fact that y0(1), xz(1) > 0 and (2.14),(3.13).

From [10, pp.56-74] we know that expression (3.12) also holds in the remaining sectors

Sk under the exact same arguments as in sector S0 and conclude that the set of eigenvalues

in sectors S1 and S3 are the same as those in S0 and S2. �

Theorem 3.3 Suppose that condition (3.13) is fulfilled, then the eigenvalues λk of the

problem (2.12) have the following asymptotic behavior

λk =
1

h

(
1

2
ξ0 + kπi

)
+O(k−1), k = ±1,±2, . . . , (3.17)

where h :=

∫ 1

0

(
Iρ(ζ)

EI(ζ)

)1/2

dζ and

ξ0 :=


ln
αγ − 1

αγ + 1
, αγ > 1,

ln
1− αγ

1 + αγ
+ πi, αγ < 1.

(3.18)

Also,

Reξ0 = ln

∣∣∣∣αγ − 1

αγ + 1

∣∣∣∣ < 0 and Reλk →
1

2h
Reξ0 < 0, k →∞. (3.19)

PROOF. Since equation (2.12) is equivalent to (2.22), in sector S0, we obtain from

(3.12) and (2.14) that equation ∆(ρ) = 0 becomes

e−iρ (1− αγ) + eiρ (1 + αγ) +O(ρ−1) = 0. (3.20)

Solving the equation with lower order terms,

e−iρ (1− αγ) + eiρ (1 + αγ) = 0,

we get solutions

µ̃k = iρk =
1

2
ξ0 + kπi, k = 1, 2, . . . , (3.21)

where ξ0 defined in (3.18). Applying Rouche’s theorem to (3.20), its solutions are

µk =
1

2
ξ0 + kπi+O(k−1), k = 1, 2, . . . . (3.22)
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In sector S2, we can use the same argument to the asymptotic eigen-distribution. First,

in order to satisfy (3.2), we take ω1 := −i and ω2 := i. Then equations (3.8)-(3.10) and

(3.14)-(3.15) change to (recall that µ = ρω1 = −iρ)

U3(ys; ρ) =

 [xz(0)h′s(0)]1, s = 1, 2,

(−1)siρ[1]1, s = 3, 4,
(3.23)

U2(ys; ρ) =


ρ

[
−ib23

b21

αh−1xz(1)h
′
s(1)

]
1

, s = 1, 2,

ρ2eρωs−2

[
−y0(1) + (−1)s b23

b21
αh−1y0(1)

]
1

, s = 3, 4,

(3.24)

U1(ys; ρ) =

 ρ2 [xz(1)h′s(1)]1 , s = 1, 2,

ρ3eρωs−2 [0]1 , s = 3, 4.
(3.25)

Thus we have,

∆(ρ) = iρ5y0(1)xz(1)D
{
eiρ (1− αγ) + e−iρ (1 + αγ) +O(ρ−1)

}
(3.26)

and the characteristic determinant ∆(ρ) = 0 becomes

eiρ (1− αγ) + e−iρ (1 + αγ) +O(ρ−1) = 0. (3.27)

So

µ̄k =
1

2
ξ0 − kπi+O(k−1), k = 1, 2, . . . . (3.28)

Hence, we can conclude from (3.22) and (3.28) that

µk =
1

2
ξ0 + kπi+O(k−1), k = ±1,±2, . . . . (3.29)

Since µ = hλ, so

λk =
1

h
µk =

1

h

(
1

2
ξ0 + kπi

)
+O(k−1), k = ±1,±2, . . . . (3.30)

Note that the set of eigenvalues in S3 and S4 are exactly the same as those in S0 and S2,

so all eigenvalues of A satisfy (3.30). The proof is then completed. �

All the above discussions can be summarized into the following result on the spectrum

of A.

Theorem 3.4 Let A be defined before. Then each λ ∈ σ(A) is an eigenvalue and is

simple when |λ| is large enough, and has asymptotic expression given by (3.30).
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4 Completeness of Generalized Eigenfunction Sys-

tem and Riesz basis

In this section we will discuss the completeness of the generalized eigenfunctions of A,

which is necessary for discussing of Riesz basis property of system (2.8). We begin with

the following lemma.

Lemma 4.1 Let A be defined as in (2.6) and (2.7) and λk (k = ±1,±2, . . .) be eigen-

values given in (3.17) and δ > 0. Then there exists a constant M > 0 such that, for any

λ ∈ ρ(A) with |λ− λk| > δ, k = ±1,±2, . . ., we have

‖R(λ,A)‖ ≤M |λ|2. (4.1)

PROOF. Let λ ∈ ρ(A) and (φ, ψ) ∈ H, we consider the resolvent equation

[λI −A](f, g) = (φ, ψ),

i.e., {
λf − g = φ,

λg + C−1(Af + αDg + βBg) = ψ.
(4.2)

Simplifying the second equation in (4.2), we have

λ
[
ρ(x)g(x)−

(
Iρ(x)g

′(x)
)′]

+
(
EI(x)f ′′(x)

)′′
=

[
ρ(x)ψ(x)−

(
Iρ(x)ψ

′(x)
)′]

with the boundary conditions f(0) = f ′(0) = 0,(
EI(x)f ′′(x)

)′∣∣∣
x=1

+ Iρ(x)
(
ψ(x)− λg(x)

)′∣∣∣
x=1

− βg(1) = 0

and

EI(x)f ′′(x)
∣∣∣
x=1

+ αg′(1) = 0.

Thus

g(x) = λf(x)− φ(x)

and f(x) satisfies the following equations:

λ2
[
ρ(x)f(x)−

(
Iρ(x)f

′(x)
)′]

+
(
EI(x)f ′′(x)

)′′
= F (x, λ), (4.3)

f(0) = f ′(0) = 0, EI(x)f ′′(x)
∣∣∣
x=1

+ αλf ′(1) = αφ(1), (4.4)(
EI(x)f ′′(x)

)′
(1)− λ2Iρ(1)f

′(1)− βλf(1) = −v(λ), (4.5)
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where  F (x, λ) :=
[
ρ(x)(ψ(x) + λφ(x))−

(
Iρ(x)[ψ

′(x) + λφ′(x)]
)′]

,

v(λ) := Iρ(x)
(
ψ(x) + λφ(x)

)′
(1) + βφ(1) = 0.

(4.6)

Let yj(x, λ)(j = 1, 2, 3, 4) be the fundamental solutions of the homogenous equation of

(4.3). Then any solution f(x) of (4.3)–(4.5) can be expressed by the formula (see [10,

pp.31, Theorem 2])

f(x, λ) =

∫ 1

0

G(x, ξ, λ)F (ξ, λ)dξ, (4.7)

where G(x, ξ, λ) is the Green’s function given by

G(x, ξ, λ) :=
1

∆(ρ)
H(x, ξ, λ) (4.8)

with

H(x, ξ, ρ) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(x, λ) y2(x, λ) y3(x, λ) y4(x, λ) η(x, ξ, λ)

U1(y1) U1(y2) U1(y3)(x) U1(y4) U1(η)

U2(y1) U2(y2) U2(y3)(x) U2(y4) U2(η)

U3(y1) U3(y2) U3(y3)(x) U3(y4) U3(η)

U4(y1) U4(y2) U4(y3)(x) U4(y4) U4(η)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.9)

η(x, ξ, λ) :=
1

2
sign(x− ξ)

4∑
j=1

yj(x, λ)zj(ξ, λ), (4.10)

zj(x, λ) :=
Wj(x,λ)

W (x,λ)
, W (x, λ) the Wronskian determinant of {y, y2, y3, y4} and Wj(x, λ) the

cofactors of yj(x, λ) in W (x, λ). Substituting (3.4)–(3.5) and (3.7)–(3.10) into (4.9) and

(4.10) respectively, we obtain that for λ ∈ ρ(A) with |λ| large enough, there exists a

constant M independent of x, ξ ∈ [0.1] so that

|H(x, ξ, λ)| ≤M |λ|5e|ρ|, ρω1 = hλ ∈ C
| ∂
∂x
H(x, ξ, λ)| ≤M |λ|6e|ρ|,

| ∂2

∂x2H(x, ξ, λ)| ≤M |λ|7e|ρ|.
(4.11)

Also, by (3.12) we have

|G(x, ξ, λ)| ≤M1,

| ∂
∂x
G(x, ξ, λ)| ≤M1|λ|,

| ∂2

∂x2G(x, ξ, λ)| ≤M1|λ2|,
(4.12)

where M1 is a constant which is independent of x, ξ ∈ [0.1]. From these, we obtain

estimates for f(x) and its derivatives, for j = 0, 1, 2,

|f (j)(x)| ≤
∫ 1

0

∣∣∣ ∂j

∂xj
G(x, ξ.λ)F (ξ, λ)

∣∣∣dξ ≤M1|λj|
∫ 1

0

|F (ξ, λ)|dξ. (4.13)
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Eventually, we have the following estimate on the resolvent operator

‖(f, g)‖2 =

∫ 1

0

EI(x)|f ′′(x)|2dx+

∫ 1

0

ρ(x)|g(x)|2 + Iρ(x)|g′(x)|2dx

=

∫ 1

0

EI(x)|f ′′(x)|2dx+

∫ 1

0

ρ(x)|λf(x)− φ(x)|2 + Iρ(x)|λf ′(x)− φ′(x)|2dx

≤
∫ 1

0

EI(x)|f ′′(x)|2dx+ |λ|2
∫ 1

0

[ρ(x)|f(x)|2 + Iρ(x)|f ′(x)|2]dx+ 2‖φ‖V

≤ M2|λ4|
[
‖φ‖2

W + ‖ψ‖2
v

]
,

(4.14)

where M2 is some constant. So ‖R(λ,A)‖ ≤M2|λ|2. The proof is then completed. �

Corollary 4.1 Let Γ(θ) be a ray with at original point and direction θ and assumptions

be given in Theorem 4.1, then estimates (4.1) for ‖R(λ,A)‖ are also true on the rays

Γ(−π/4), Γ(π/4) and Γ(π).

PROOF. From Lemma 2.4, Theorem 3.3 and the conjugate property for eigenvalues,

we obtain that there is no eigenvalue on the right complex half plan and ray Γ(π). Thus

we can choose rays Γ(−π/4), Γ(π/4) and Γ(π) and estimates are also true on them. �

Theorem 4.1 Let A be defined as in (2.6) and (2.7). If condition (3.13) is fulfilled, then

the generalized eigenfunctions of operator A are complete in Hilbert space H.

POOF. Let σ(A) = {λn, n ∈ N} and Pn be the Riesz projection associated with λn.

Denote

Sp(A) =

{
N∑

k=1

Pky, y ∈ H, ∀ N ∈ N

}
and

Q∞ = {y ∈ H; P ∗
k y = 0, ∀ k ∈ N} .

Easy to see that H has an orthogonal decomposition

H = Sp(A)⊕Q∞.

So the generalized eigenfunctions of operatorA are complete inH if and only ifQ∞ = {0}.
Now for any Z ∈ Q∞, R(λ,A∗)Z is an entire function on complex plane C valued

in H. Since ‖R(λ,A∗)‖ = ‖R∗(λ,A)‖ = ‖R(λ,A)‖, the conclusions of Lemma 4.1 and

Corollary 4.2 are also true. According to the Theorem of Phragmén-Lindelöf (see [15]),

we see that R(λ,A∗)Z is at most a polynomial of degree two in λ, that is,

(λI −A∗)−1Z = c0 + c1λ+ c2λ
2,
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then

Z = (λI −A∗)(c0 + c1λ+ c2λ
2)

= −c0A∗ + (c0 − c1A∗)λ+ (c1 − c2A∗)λ2 + c2λ
3.

Comparing coefficients, we see that

c0 = c1 = c2 = 0.

Therefore Z = 0 and Q∞ = {0}. �

To obtain the Riesz property of generalized eigenfunction system of A, we need the

following result from [13].

Theorem 4.2 Let X be a separable Hilbert space, and A be the generator of a C0 semi-

group T (t). Suppose that the following three conditions hold:

1) σ(A) = σ1(A) ∪ σ2(A) and σ2(A) = {λk}∞k=1 consists of only isolated eigenvalues

of finite multiplicity;

2) for ma(λk) := dimE(λk,A)X and E(λk,A) is the Riesz projector associated with

λk, we have

sup
k≥1

ma(λk) <∞;

3) there is a constant α such that

sup{Reλ | λ ∈ σ1(A)} ≤ α ≤ inf{Reλ|λ ∈ σ2(A)}

and

inf
n6=m

|λn − λm| > 0. (4.15)

Then the following assertions are true:

i) There exist two T (t)-invariant closed subspaces X1 and X2 such that σ(A|X1
) =

σ1(A), σ(A|X2
) = σ2(A), and {E(λk,A)X2}∞k=1 forms a Riesz basis of subspaces for X2.

Furthermore,

X = X1 ⊕X2.

ii) If sup
k≥1

||E(λk,A)|| <∞, then

D(A) ⊂ X1 ⊕X2 ⊂ X.

iii) X has the topological direct sum decomposition

X = X1 ⊕X2

if and only if sup
n≥1

||
n∑

k=1

E(λk,A)|| <∞.
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Combining Theorem 4.1, 4.2 together with Theorem 3.4, we have the following result.

Theorem 4.3 assume that (3.13) be fulfilled. Then system (2.8) is a Riesz system (in the

sense that its eigenfunctions form a Riesz basis in H) and hence it satisfies the spectrum

determined growth condition.

PROOF For system (2.8), from Theorem 3.3 and 3.4, we may take σ2(A) = σ(A),

σ1(A) = {∞}. Theorem 3.4 shows that conditions 2) and 3) in Theorem 4.2 are true.

Finally, Lemma 4.1 implies that X1 = {0}. Therefore, the first assertion of Theorem 4.2

says that there is a sequence of generalized eigenfunctions of A that forms a Riesz basis

for H. Since the spectrum determined growth condition is a direct consequence of the

existence of a Riesz basis, the proof is completed. �

As a consequence of Theorem 4.3, we have a stability result for system (2.8).

Corollary 4.2 Let condition (3.13) be fulfilled with α > 0 and β ≥ 0. Then the system

(2.8) is exponentially stable. The decay rate is given by

ω(A) = sup{Reλ : λ ∈ σ(A)} < 0,

which is negative.

PROOF. Theorem 4.3 ensures ω(A) = sup{Reλ, λ ∈ σ(A)}. Lemma 2.4 says that

Reλ < 0 provided λ ∈ σ(A) and Theorem 3.3 shows that imaginary axis is not an

asymptote of σ(A). Therefore sup{Reλ : λ ∈ σ(A)} < 0. �

Remark 4.1 The special case that ρ(x) = EI(x) ≡ 1 and Iρ(x) ≡ γ1 > 0 was discussed

in [2], [3]. In this constant case, expression (3.17) then becomes (for k = ±1,±2, . . .)

λk =
1
√
γ1

(
1

2
ξ1 + kπi

)
+O(k−1), (4.16)

with

ξ1 =

 ln
α−√γ1

α+
√

γ1
, α >

√
γ1,

ln
√

γ1−α

α+
√

γ1
+ πi, α <

√
γ1

(4.17)

and

Reλk →
1

2
√
γ1

ln

∣∣∣∣α−√γ1

α+
√
γ1

∣∣∣∣ < 0, k →∞. (4.18)

So the closer α to α∗ :=
√
γ1 the larger the damping rate for the system (1.1) which is the

conjecture made in [3]. However, we cannot achieve the largest damping rate by setting

the control gain α =
√
γ1 because then ∆(ρ) in (3.12) will never be zero and the eigenvalue

problem (2.12) is degenerate in the sense that there are no more eigenvalues except finite

number at all (cf. [14]).
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