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Abstract 

Transmissible spongiform encephalopathies (scrapie, BSE, Kuru) develop as CNS 

diseases after long incubation periods, and many of which may arise following the 

consumption of infected material. The infectious agent is thought to be a mis-folded 

form (PrPSc) of a normal host protein (PrPC), which is relatively resistant to 

proteolytic degradation and which serves as a template, directing host PrP to 

accumulate in the misfolded form. Animal experiments have shown that CNS disease 

is preceded by a period in which the agent accumulates in secondary lymphoid organs 

(Peyer’s patches, lymph nodes, spleen), particularly follicular dendritic cells in the B 

cell areas of these organs. How the agent is transmitted from the intestinal lumen to 

the FDCs is largely unknown.  Dendritic cells (DCs, cells quite distinct from FDCs) 

are cells that are specialised to acquire antigens from peripheral tissues and to 

transport them to secondary lymphoid organs for presentation to T and B 

lymphocytes. We have shown that DCs can acquire PrPSc from the intestinal lumen 

and deliver it to mesenteric lymph nodes.  In this review we discuss the different 

stages involved in the migration of PrPSc from the intestine to FDCs and consider the 

different stages and barriers involved in this process. We conclude that transport of 

the causative agent, using PrPSc as a biomarker, from the intestine to FDCs is a very 

inefficient process, which may help to account for the apparent low frequency of 

individuals who have consumed infected material that go on to develop clinical 

disease. 
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1. Introduction: Prions and the oral transmission of TSE 

 

The oral route of infection has been implicated in the pathogenesis of transmissible 

spongiform encephalopathy (TSE), a disease that targets clinically the central nervous 

system (CNS). Spread of the disease, both naturally and experimentally, by ingestion 

of the infectious agent has been described in a variety of species ranging from 

domestic, as well as wild-life, animals to man [1-10]. The likelihood of spread of the 

bovine form of TSE (BSE) [11] to human (nvCJD) through the food-chain [6] has 

aroused long-lasting public health anxiety with adverse economical and political 

consequences, both in the UK and abroad for the last decade [12-14]. Due to the long 

incubation period of the illness, infected individuals may remain asymptomatic for 

years.  It remains still highly uncertain as to how risky it has been, or how safe it is 

now, to eat beef or even meat from other animals likely to carry and pass on the 

mysterious ‘mad cow’ disease [7, 15].   
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The disease has also led to the proposition of a novel mechanism of infectivity: that is 

an infectious agent (TSEA) possibly devoid of nucleic acid. This was first indicated 

by its refractoriness to UV irradiation [16]. It is also complicated by the many other 

unusual physical and biological properties of the molecules including, most 

worryingly, its extraordinary resistance to conventional sterilization procedures. The 

exact nature of the etiologic agent has been, and still is, a focus of scientific debate. 

Although the possible causal agent being an “unconventional slow virus” (Virino 

Theory) [17] is not excluded [18], live virus of this kind has not been isolated. The 

lack of specific immune response to the puzzling agent [19], and the absence of 

inflammatory cell infiltrate in the affected brains, seem to suggest otherwise [20, 21].  

 

PrPSc, also known as ‘scrapie-associated prion protein’, is an abnormally folded, self-

encoded protein (PrPC) that co-purifies with TSE infectivity [22, 23]. The molecule is 

now considered to be the crucial, if not the only agent (Protein Theory), responsible 

for the infection [24]. Structurally, PrPSc is rich in β-sheets, in contrast to the α-helix-

rich PrPC, and is insoluble in many detergents. The current hypothesis suggests that 

the pathogenesis involves a key step of prion protein conversion and replication in 

which PrPSc converts the normal protein, PrPC, into the abnormal form [25]. The agent 

replicates in this way by a post-translational alteration of the tertiary structure 

(conformational change), but not amino acid sequence, of the host-encoded protein, 

turning it into a highly self-aggregating, protease-resistant pathological isoform [26, 

27]. The “Protein only” theory [28, 29] is supported by evidence from transgenic and 

knockout studies that mice devoid of PrP (Prnp-/-) are totally resistant to the disease 
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[30], although it is not impossible that the protein is an intermediate yet indispensable 

molecule merely mediating neuropathology [18]. 

 

2. The immune system in prion diseases 

 

A long incubation period preceding the neurological symptoms is common to all 

TSEs. Much evidence indicates that TSEA replication as described above is essential 

for the development of clinical disease and that such replication occurs, at least 

primarily, in the immune system.  

 

In spite of the lack of any signs of an immune response, it has been known for a long 

that the immune system plays a crucial role in TSE pathogenesis [31]. Splenectomy of 

mice before infection significantly prolongs the incubation period of the disease after 

peripheral inoculation [32, 33], as does genetic asplenia [34], but athymia and 

neonatal thymectomy have no effect [33]. Severe combined immunodeficient (SCID) 

mice lacking mature T and B lymphocytes fail to develop the disease [32], but 

become susceptible after reconstitution with normal splenocytes [35]. 

Immunosuppressive drugs can prolong the incubation time of the disease [36], 

whereas stimulation of the lymphoid systems with mitogens enhances disease 

susceptibility [37].  

 

Following peripheral infection, PrPSc is detected in the spleen, lymph nodes and other 

lymphoid tissues long before CNS involvement [38-40]. The spleen however may not 

be the main organ involved in infection via the oral route, infectivity being found first 

in the Peyer’s patches [39]. This suggests that the gut-associated lymphoid tissues 
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(GALT) may serve a similar processing and replicative function for intestinally-

routed inocula. Early accumulation of PrPSc in GALT, including mesenteric nodes, 

has also been described in sheep with scrapie, a natural TSE infection. At a later stage 

and to a lesser extent, the agent spreads to other systemic or non-gut-associated 

lymphoid tissues including the spleen [41-44]. Interestingly splenic PrPSc 

accumulation is not detectable in cows naturally infected with BSE [45], but is 

evident in experimental animal models including BSE-infected mice[46] and sheep 

[47].  

 

Thus peripheral lymphoid organs are important and perhaps indispensable in the 

transmission and development of the neurodegenerative disease. It is now believed 

that in most infectious forms of TSE, not only must the infectious agent transit 

through, but also replicate in the lymphoreticular compartment before invading the 

central nervous system [31]. Kaeser and colleagues showed recently that optimal 

prion replication requires PrPC expression by both stromal and haematopoietic 

compartments [48]. The questions then become: (1) what cell type(s) in the lymphoid 

organs that may support replication and propagation of prions; and (2) how exactly do 

these infectious proteins travel from their sites of penetration (e.g. gut) to sites of 

replication (lymphoid organs) thence into the CNS. A good understanding of these 

processes is obviously very important in early diagnosis as well as the development of 

new strategies for treatment and even prevention of the disease. 

 

3. Follicular dendritic cells as the site for prion propagation 
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The cell type(s) likely to be involved in propagation of prions are thought to be of low 

density [49], long-lived and mitotically quiescent cells [50]. Follicular dendritic cells 

(FDCs) in the germinal centres of lymphoid organs or tissues display all these 

characteristics, and they are also strong PrP-expressing cells [51]. They have been 

long suspected to be the main cell type targeted by the TSE agents. In studies by 

many different groups, FDCs [31, 43, 51-53] as well as some macrophages or 

macrophage-like cells [41, 43, 54, 55] are reported to be sites of PrPSc accumulation 

soon after peripheral infection. It has been suggested that FDCs can capture prions 

through their complement receptors [56, 57], a similar cellular interaction described 

previously for the retention of HIV viruses by the cells [58]. The cell-free conversion 

of PrPC to PrPSc in the presence of PrPSc [59] suggests it is also possible that PrP may 

act as an autoligand. 

 

Based on findings from several genetically modified mouse models, however, other 

groups of investigators argued that B cells [60], and possibly other unidentified cells 

[61], might be also crucial in peripheral prion transmission. The authors demonstrated 

that mice devoid of B, but not T, cells were resistant to disease inoculation via 

peripheral routes, while the animals remained equally sensitive to infection by 

intracerebral injection [62]. The same group reported subsequently that PrP 

expression in B lymphocytes was not required for prion neuroinvasion, since 

immunological constitution with haematopoietic precursors from PrP knock-out 

donors restored sensitivity to disease induction [60]. One explanation may be that B 

cells are not directly involved in replication but rather transport of the agents. 

Alternatively, the lack of B cells or B cell products may prevent FDC maturation and 

differentiation [63, 64]. By using chimeric mouse models mismatched in PrP status 
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between FDCs and other cells of the immune system, Brown and colleagues showed 

that replication of prions in the spleen depends on PrP-expressing FDCs rather than 

on lymphocytes or other bone marrow-derived cells, and that the contribution of B 

cells is related to their ability to induce the functional maturation of FDCs [65]. The 

role of FDCs in TSE pathogenesis, at least acting as the primary sites for prion 

replication, is once again emphasized and largely comfirmed. 

 

4. Entry and transport of orally-acquired TSEA 

 

An important question is how do FDCs acquire TSE agents following intestinal 

delivery, since FDCs are resident cells in B-cell follicles of organized lymphoid 

tissues (i.e. not peripheral tissues). TSE agents must first cross the intestinal epithelial 

barrier and be transported via lymphatics to the draining mesenteric nodes, or via the 

blood stream to the spleen (which lacks afferent lymphatic drainage). Transport of 

whole proteins or particles across intact epithelium is very inefficient. Thus it seems 

unlikely that passive transport across the epithelium and random distribution via the 

blood or lymph would suffice to deliver sufficient infective material to the lymphoid 

organs to initiate an infection.  

 

Intestinal epithelium consists of a continuous sheet with individual cells joined by 

tight junctions. It forms an effective barrier to the movement of molecules and 

particles into the underlying connective tissues. The seal is however by no means 

complete, and it is possible that small amounts of macromolecules do transverse the 

epithelial barrier by transcytosis. In Peyer’s patches and intestinal lymphoid follicles, 

the overlying epithelium is specialized to facilitate the transport of macromolecules 
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and particles, and their delivery to lymphocytes and antigen presenting cells (APC) 

including DC. This transport is mediated by M cells, specialized epithelial cells that 

have poorly developed microvilli and that are able to rapidly transcytose tracers such 

as horse-radish peroxidase and fluorescent latex particles to the subjacent areas of the 

patch [66]. The ability of M cells to transport particles and macromolecules has been 

‘hi-jacked’ by a number of intestinal pathogens to enable them to across the epithelia 

barrier [67-72].  

 

5. Migrating intestinal dendritic cells transport PrPSc from the gut 

 

It is important not to confuse follicular DC with the ‘conventional’ DC also known as 

the ‘Steinman’ DC [73, 74]. As compared in Table 1, the two types of cells share 

almost nothing except their ‘dendritic’ morphology. FDCs are long-lived cells that 

retain immune complexes on their surface for years and present them to B cells [75]. 

They are probably not haematopoietic. In contrast the ‘Steinman’ DC is a short-lived 

bone-marrow-derived cell found both in peripheral tissues and in the T cell areas of 

lymphoid organs. In peripheral tissues, they are actively endocytic [76] and in some 

circumstances are macropinocytotic, facilitating uptake of large amount of solutes and 

small particles [77]. The main function of these cells is to acquire antigens in 

peripheral tissues and transport them, via draining lymphatics, to secondary lymphoid 

organs [78]. DCs present processed antigen, as small peptides in association with 

MHC molecules, primarily to T cells, although they can also present intact antigens to 

B cells [79]. Some DCs are found to express the normal PrP protein [80, 81]. 

Importantly, unlike FDCs, DCs are actively migratory. 
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Intestinal DCs are bone marrow-derived cells of the ‘conventional’ DC type, which 

migrate from the intestinal wall to draining mesenteric nodes. The area of PP 

underlying the dome is rich in DCs, macrophages and lymphocytes [82, 83]. DCs 

have also been described in the lamina propria (LP) [84]. Unlike tissue macrophages 

[85], DCs spend only a short time (2-4 days) in the intestinal wall, and migrate 

continuously to mesenteric lymph nodes via lymph. They have been shown to carry 

antigens acquired from the intestinal lumen [86], and apoptotic enterocytes [87].  

These migrating cells are therefore in a unique position to transport prions from the 

gut. Andreoletti and colleagues have shown that in naturally infected sheep, PrPSc 

deposits are found in association with a population of CD68-positive cells in the dome 

area and B follicles of PP before being detected in FDCs [43]. CD68 is a macrophage 

marker but it is also expressed at low level on some DCs [88, 89]. By using thoracic 

duct cannulation of mesenteric lymphadenectomized rats, we have shown that 

intestinal DC but not T or B lymphocytes could indeed acquire PrPSc from the 

intestinal lumen and transport them in lymph towards the mesenteric nodes within 

hours of oral infection (Fig.1) [90].  

 

It is yet to be determined if DCs acquire PrPSc after it has been internalised by M 

cells, or by direct uptake across the mucosal epithelium, as recently shown for the 

transport of apoptotic intestinal epithelial cells [87] and bacteria [91]. At least some 

DCs are known to leave PP and arrive in mesenteric nodes, and Szakal and Tew have 

previously shown a cell population in the cortex of lymph nodes which can transport 

immune complexes from the subcapsular sinus, where DCs are frequently found, to 

FDCs [92]. Whether and how DCs release prions for uptake by FDCs remains 

unknown, but DCs can release intact antigen in vivo for recognition by B cells . 
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Release of cellular contents after cell death (DCs normally die within 3 days after 

reaching lymph nodes) is another possibility. It is of course also possible that oral 

TSE agents, once transported to ileal PP, probably via M cells, can reach and replicate 

on FDCs in situ, subsequently travelling to the CNS via enteric nerve endings [54, 93-

95]. However we have shown that they can also travel quickly to mesenteric nodes by 

hijacking intestinal DCs as a Trojan horse [90].  

 

6. Natural barriers for oral prion entry?  

 

In the experiment described above in which we could show PrPSc in DCs after 

intestinal delivery, we were unable to show that they contained infective material 

[90]. This probably reflects the sensitivity of the assay given that only a small number 

of cells could be injected into each mouse used in the assay, and of those DCs 

injected, only a small proportion (usually 0.5-5%) had acquired detectable amounts of 

PrPSc. A rough estimate suggests that only about one in ten thousand molecules given 

intestinally can be recovered from the DCs travelling in the thoracic duct lymph over 

a period of 16 hours. The efficiency of oral infection in animal models is generally 

very low in that ten times as much agent needs to be given orally compared to direct 

intra-cerebral inoculation [10]. Aucouturier and colleagues have demonstrated, using 

RAG knockout mice, that infected CD11c+ splenic dendritic cells (conventional DCs) 

alone, injected systemically (i.v.), are sufficient for prion propagation and 

transmission to the CNS [96]. The mice developed clinical disease without 

accumulation of prions in the spleen. This implies that CD11c+ dendritic cells can 

transport prions from the periphery to the CNS by a route not involving any additional 

lymphoid element.  
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An alternative explanation for the low efficiency of oral infection is that there may 

exist strong natural barriers for the pathogen in the gut, including possibly the gastric-

intestinal enzymes, and the cellular enzymatic activities in DCs. -As shown in Figure 

1, the PrPSc detected in the DC lysate appears to have been modified in some way and 

the characteristic three-band molecular signature after PK-treatment is not seen. This 

may be due, at least in part, to antigen processing in the DCs, since we have also 

demonstrated in vitro uptake of prion proteins by DCs leads to denaturation of the 

protein, followed by a time-dependent reduction in PrPSc detectable by 

immunoblotting (Fig.2) [90, 97]. This might sound surprising, as PrPSc is widely 

regarded as a protease-resistant molecule. The PrPSc fingerprints that identify prion 

strains are judged by the resistance of PrPSc to Protease K (PK), although its relative 

resistance to other proteases such as trypsin has also been demonstrated [98]. PK is 

however a fungal enzyme extracted from a mould (Tritirachium alnum). The enzymes 

in the cellular compartment and particularly gastro-intestinal tract are complex and 

identification of those responsible for PrPSc degradation may be of therapeutic 

significance.  It is also essential of course to determine whether the reduced immuno-

reactivity detected in DCs also correlates with diminished infectivity as previously 

reported for macrophages [99, 100]. 

 

These findings suggest that apart from the physical barrier formed by intestinal 

epithelium mentioned above, intracellular and possibly gastric-intestinal enzymes 

may be able to degrade prions – providing a natural barrier for prion entry that seems 

to have been largely overlooked previously. This barrier may explain the relative 

inefficiency often observed for oral/intragastric inoculation with TSE agents [10]. It 
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may also explain why despite many people in the UK consuming infected beef only a 

very limited number of people have so far developed nvCJD and why a decline in 

nvCJD cases [101] rather than an epidemic as previously predicted [102, 103] appears 

to be the current trend. Nevertheless, whereas transmission of BSE to human (causing 

nvCJD), and of scrapie to laboratory animals, via the oral route seems to have been 

relatively inefficient, transmission of BSE to cattle appears to have occurred much 

more readily, as this was the mode of transmission that led to the epidemic of BSE. 

Furthermore, as mentioned above, splenic PrPSc accumulation or replication does not 

appear to be necessary in the BSE-cattle transmission. An interesting and important 

question one may ask is therefore does this imply that cattle are somehow lacking in 

such degradative enzymes. 

 

7. Inflammation - “danger” in another way? 

 

The conclusion to be drawn from above findings is that the transmission of prion 

disease, especially via the oral route, may depend critically on a balance between 

clearance and propagation of the agent in the host. The normal intestinal immune 

system displays a balance in which pro-inflammatory and anti-inflammatory cells and 

molecules are carefully regulated to promote immunity against harmful invading 

pathogens while avoiding responses to self tissues and harmless dietary components 

[104]. The lack of inflammatory response in oral TSE infection may prevent the 

activation of macrophages whose phagocytic, enzymatic as well as phago-lysosomal 

fusion activities can be up-regulated by inflammation, speeding up the clearance 

process of the agent. It has been shown recently that the prion protein fragment 106-

126 is a chemoattractant for monocyte-derived immature but not mature DCs [105, 
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106], and on which the receptor has also been identified [105]. This might mean that 

the initial migration of immature DCs towards PrPSc can be regulated by the agent 

itself in the absence of overt inflammation. On the other hand the prion fragment can 

also enhance subsequent monocyte production of proinflammatory cytokines [105]. 

Inflammation stimulates the migration and maturation of DCs, which facilitates the 

transport of prion, and it is known that antigen processing is down-regulated in mature 

DC. The effects of inflammation may therefore alter the balance of prion uptake, 

retention and transport by DCs in several different ways, depending possibly on the 

stages of their transmission, DC maturation, and perhaps selectivity in the 

inflammatory mediators involved. It would make sense that the observed effects of 

immunosuppressive drugs on TSE susceptibility [36] could be due to their actions on 

the inflammatory machinery rather than the specific (B/T cells) immune system [107]. 

 

8. Therapeutic and preventive prospects 

 

As described above recent evidence has indicated a role of DCs in delivering and 

possibly propagating prions following oral inoculation. One should remember 

however that the main function of DC is to initiate immune responses. Prion-infected 

animals can develop normal immune responses, both humoral and cellular, to 

conventional antigens or mitogens [108, 109] but the absence of immune reaction to 

PrPSc is not surprising as it differs from the PrPC molecule only in tertiary structure. 

The fact that PrPC is a host-encoded protein and the immune system is presumably 

already tolerized to the molecule explains the lack of response.  
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However it is quite possible that although T cells are tolerized, B cells are not. This is 

because the mode of antigen recognition by T and B cells is quite distinct. T cells can 

recognize only processed antigen as peptides in the context of MHC molecules. Since 

PrPSc and PrPC share the primary structure (amino acid sequence, Diagram A), in 

theory, no T cell response would be expected, as reactive T cells would have been 

deleted in the thymus or tolerized in the periphery. However, the conformational 

changes of the protein may create new (foreign) epitopes (Diagram B) for B cells, 

which recognize native, unprocessed antigen. This implies that a B cell response may 

be potentially inducible providing that alternative T cell help can be offered. 

Encouraging findings have recently suggested a role for anti-prion molecules in 

disease prevention in a transgenic (mu chain anti-PrP) mouse model (Prnp knockout) 

[110]. This could provide an opportunity and rationale for novel therapeutic strategies 

in vaccine design by delivery of synthetic peptides with purpose-built T cell epitopes 

(Diagram C) attached to known B cell epitopes [111] leading to T-B, or DC-T-B (see 

below and Diagram D), collaborative responses. Efforts to identify such new B and T 

cell epitopes will rely on a good understanding of the 3-D structure not only for PrPC 

[112] but, more importantly, for PrPSc , yet to be obtained. 

 

Finally, DCs are a heterogeneous population of cells. DCs with immunogenic and 

tolerogenic properties have been shown in human and a variety of animal models 

[113, 114]. In addition some DC subpopulations can retain intact antigen more 

efficiently than others. Identification and characterization of particular DC subsets 

that are responsible for transmitting the disease, that are mediating immunity against 

the causal agents, and their responses to inflammatory stimuli may also prove to be 

informative. Although the transport of prions by DC is an early event of the infection 
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and hence is not likely to be a suitable site for intervention, potential therapeutic 

approaches may still be focused on how specific immunity to the agents can be 

effectively induced. These professional APC can be employed as a vector to deliver 

the ‘modeled vaccine’ mentioned above (Diagram D). In summary, a better 

understanding of all these aspects in prion pathogenesis could lead to rational 

immuno-manipulation strategies aimed at preventing the replication and spread of the 

infectious agents to the CNS. 
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Table 1: Dendritic cells and follicular dendritic cells are distinctive cell types 

 

Cell:  Follicular dendritic cell  Dendritic cell 

 

Ontogeny: Obscure, non-haemopoietic  Bone marrow-derived, haemopoietic 

 

Distribution: Secondary lymphoid organs  Peripheral tissues, secondary   

(B cell follicles)    lymphoid organs (T cell areas) 

 

Life-span: Long (years)    Short (days - not Langerhans cells) 

 

Functions: Antigen presentation (B cells -  Antigen presentation (peptides to T 

as immune complexes)   cells on MHC) 

 

Migration: Non-migratory, resident  Actively migratory 
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Figure Legends 

Figure 1.  Intestinal DCs transport PrPSc to mesenteric nodes via lymph. Lymph 

was collected 8 to 16 h after intestinal injection of mouse scrapie-associated fibrils 

(ME7 SAF). Conspicuous PrP+ cytoplasmic inclusions were detected by 

immunocytochemistry in a small proportion of DCs (a) but not B (b) or T (c) 

lymphocytes in the thoracic duct lymph of mesenteric lymphadenectomized rats. (d) 

Control DCs from PBS-injected animals. Magnification x1000.  

(e) Immunoblot analysis of pooled cell lysates (1x106 cells per lane) from SAF-

treated rats confirmed the presence of PrPSc in lymph DCs (lane 4) but not in T or B 

lymphocytes. SAF equivalent to 2 or 4 µg of infected brain tissue was loaded in lanes 

5 and 6, respectively. Treatment of samples in the presence (+) or absence (-) of 

proteinase K (PK) before electrophoresis is indicated. In all panels, PrP was detected 

using the PrP-specific polyclonal antiserum 1B3. 

(Huang et al. JGV 2002; 83:267-271) 

 

Figure 2. DCs acquire and process PrPSc following in vitro culture with SAF. 

Bone marrow-derived DCs (BMDC, 1x106 cells) were cultured in the absence 

(BMDC alone) or presence of SAF (equivalent to 10 mg infected brain tissue) for the 

times indicated. Immunoblots show the accumulation of detergent-insoluble, 

relatively proteinase K-resistant PrPSc within BMDC lysates. Treatment of lysates in 

the presence (+) or absence (-) of proteinase K (Pk) is indicated. SAF was incubated 

in medium alone as a control. Following Pk treatment, a typical three-band pattern 

was observed between molecular mass values of 20 and 30 kDa, representing 

unglycosylated, monoglycosylated and diglycosylated isomers of PrP (in order of 
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increasing molecular mass). SAF equivalent to 50 µg infected brain tissue and/or 

BMDCs equivalent to 104 cells were loaded per lane. 

(Huang et al. JGV 2002; 83:267-271) 

 

Figure 3: Modeling T cell epitopes for inducing DC-T-B cell collaborative 

responses against PrPsc. Schematic representations of the primary sequence (A) and 

tertiary structure (B) of PrPsc, and the purpose-built synthetic new epitope for T cell 

recognition (C). Cellular interactions, antigen presentation and recognition by DC, B 

and T cells after encountering the natural B cell epitope (b d f) and the synthetic T 

(and B) cell epitope (b’d’f’) are depicted in (D).  

 

 

 








