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We have investigated the coherent mesoscopic transport
through a quantum dot (QD) embedded carbon nanotube ring
(CNR) by employing the nonequilibrium Green’s function
(NGF) technique. The Landauer-Biittiker- like formula is pre-
sented to calculate the differential conductance and current-
voltage characteristics. Due to the interference of the elec-
trons transporting in the two paths of CNR, the resultant
conductivity of electron through the system is determined by
the compound concrete structure of CNR-QD system. The
tunneling current appears quantum behavior obviously in the
small region of source-drain bias. The conductance is adjusted
by the gate voltage V; and the magnetic flux ¢. The reversal
resonance has been displayed versus the gate voltage, and it is
symmetric about Vy for the type I CNR, but it is asymmetric
for the type IT CNR. The phase inverse oscillations are also
presented for the different types of CNRs.
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The single-wall carbon nanotubes (SWCNs) provide
prospective applications on the electronic nano-devices
due to their electronic structures. One of the important
property is the metal-semiconductor transition for differ-
ent structures of SWCN [1,2], which has attracted much
attention both experimentally and theoretically. This
field opens up a new artificial laboratory to study one-
dimensional transport [3-8], such as the extensively in-
vestigated semiconductor quantum wire and hybrid de-
vice systems. The resonant tunneling behavior in the
SWCN based magnetic tunneling junctions is an exam-
ple of investigation, and the dynamic conductance in the
SWCN system responded by an ac field exhibits signif-
icant difference from the dc conductance [9]. The evi-
dence for the resonant transmissions has been observed
experimently in SWCN system [3]. As the two ends of
a SWCN connect to form a closed carbon nanotube ring
(CNR), the detailed carbon nanotube structure takes the
central role for the conducting behavior, since the CNR,
is quantized in both of the longitudinal and transver-
sal directions [10-13]. The conductance of CNR is quite
different even if for the type I and II armchair carbon
nanotubes, and the metal-semiconductor transition is as-
sociated with the external magnetic flux [10,14-17]. As
a pure carbon quantum dot is designed by introducing
pentagon-heptagon defects in a carbon nanotube, the en-

ergy difference, spatial confinement, and the number of
discrete levels can be modified [18]. However, for the
application point of view, it is more interesting to inves-
tigate the carbon nanotube based electronic device sys-
tem. In this letter, we study the mesoscopic transport
through the system with a quantum dot embedded in
one arm of the CNR. The quantum dot can be taken as
a nano-device applied with gate voltage, and the CNR
is connected to two electrodes. A static magnetic flux is
threaded through the CNR, which produces Aharonov-
Bohm-like effect. Due to the coherent interference and
back scattering in the ring, the resulting conductance is
quite different from the ring without the quantum dot.
We show that the different types of CNR, exhibit obvi-
ously diffferent behaviors with respect to the differential
conductance and current-voltage characteristics.

We consider the situation that the leads broaden im-
mediately at the connections to the CNR, and they are
large enough to be considered as equilibrium electron
reservoirs. A quantum dot with the energy E((i?j).g is em-
bedded in one arm of the CNR. The diameter ratio of
the nanotube d; to the diameter D; of mesoscopic ring
is much smaller than 1, i.e., k = d¢/D; << 1. The CNR
is described by the tight-binding Hamiltonian, and the
two normal metal leads are described by the free elec-
tron grand canonical ensembles. In the diagonalized rep-
resentation of CNR, the electronic properties can be de-
termined by the total Hamiltonian of the system which
is the summation of the sub-Hamiltonians and the tun-
neling interaction terms
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where a:rh,w (@ ko), c}mﬂ (cso,5¢), and d}g (dos) are
the creation (annihilation) operators of electron in the
two leads, the CNR, and quantum dot respectively, with
v € {L,R}. In the energy Fj; s of the CNR, § corre-
sponds to the conduction and valence bands, respectively
by choosing 6 = . R,s (k) is interaction strength of



electrons between the yth lead and CNR. V;Z(f]) (p=1,2)
is the interaction strength between the quantum dot and

ring. The interaction is associated with magnetic flux
¢ by V%) = Viijexp[2mi(p — 1)¢/do], where ¢o = h/e
is the flux quantum. We take the chemical potential of
the right lead pr as the reference of energy measure-
ment to ensure uy, — ur = eV, where V' is the voltage
between the two leads. Egj, = E((i?j).g — eV represents
the energy levels of quantum dot modified by the gate
voltage V;, appling to the quantum dot, where Eggo is
the jth energy level of isolated quantum dot. In the
Hamiltonian, o represents the spin index, however, for
this spin-degenerate system the magnetic field is shielded
in order not to affect the electron in the ring and quan-
tum dot. The energy of CNR is intimately associated
with the structure of concrete CNR. The CNR is formed
by rolling a finite graphite sheet from the origin to the
vectors Ry = myja; + mpas, and Ry = pja; + peay si-
multaneously. It is denoted by (mj,ma;p1,p2) as con-
vention [10], and it satisfies the periodical boundary con-
ditions along both of the longitudinal and transverse di-
rections. The armchair (m,m; —p,p) CNR possesses the
symmetry with armchair structure along the transverse
direction and zigzag structure along the longitudinal di-
rection. The two diameters for the armchair CNR are
d; = 3bm/w, D; = 3'/?bp/n, where b = 1.44A. In the
energy E(;,ﬂ of CNR, the indexes j, ¢ indicate the quan-
tized energy levels as j = 1,2,...,m and £ = 1,2,...,2p.
The armchair CNR is a metal as p = 3v (type I CNR)
with the zero energy gap E, = 0, while it is a semicon-
ductor with narrow energy gap as p = 3v = 1 (type II
CNR) where v is an integer. For the type II CNR, the
energy gap is determined by E; = 270 | 1 — 2(§) |, where
2(€) = cos(&) — 3'/2sin(¢), € = 3'/2b/ Dy, and v = 3.033
eV.

The current tunneling from one lead to the other is
determined by the Landauer-Biittiker-like formula [19],
which can be derived from nonequilibrium Green’s func-
tion (NGF) technique[20]
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The transmission coefficient T;(¢) contains the scatter-
ings from the quantum dot and CNR. We are interested
in the symmetric system in the wide-band limit where
the line-width I';, = ' = I'. The transmission coeffi-
cient is given by T, (e) = —I'Y_, s ImGj, ... (€) , where
G5y.mn(€) is the Green’s function of the CNR defined as

(b ) = =200t = ) {[Csmmn (1), by (#)]4)- The
Fourier transformed Green’s function of the CNR is given
BY Gl (€)= G5 (€)1 + 4082 (10/60) Xy | Ve 2
95.mn(€ )Gdlﬁg(e)], where G, , is the Green’s function of
the quantum dot. The derivation by NGF results in
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where K{°) . (¢) = {1 — [(€ = Bspnn) /T HImGYy ,(€) +
2[(e — Es, mn)/F]ReG ¢.0(€). The Green’s function of the
quantum dot is Gy, ,(€) = 1/[e — Eq,e; — 1" (€, ¢)], where
Hr(ea(b) = 425mn | w,mn |2 0032(7T¢/¢0)gg,mn(6)' The
Green’s function of the ring without the embedded quan-
tum dot is g5 ., (€) = 1/(€ — E5mn +iI), and Tr(r?ié( )
is the transmission coefficient of the system without the
embedded quantum dot Tr(r?r)w(e) =T?| g5 n(€) [>. The
quantum dot contributes a quantity to the total transmis-
sion coefficient due to the scattering procedure of electron
in the ring with the quantum dot. The first part of the
transmission coefficient Tr(m)w( ) describes the situation
that the electrons tunneling through the mesoscopic ring
without scattering with the quantum dot. As a result,
the total transmission of electron through the mesoscopic
system is determined by the interference of electron wave
functions in the ring, which include the incident elec-
tron wave functions and the scattering wave functions of
electron in the ring. The transmission is related to the
magnetic flux ¢. The scattering of electron caused by
the quantum dot takes its maximum value as ¢ = ngy,
and this contribution becomes zero as ¢ = (1/2 + n)dy,
(n = 0,£1,%2,...). The latter situation corresponds to
the effect that the electrons transport through the CNR
without the quantum dot completely. The resonant tun-
neling takes place in the Breit-Wigner form through each
channel of the CNR. The resonance channels for this case
are located at the energy levels of CNR € = Ej ;,,,,. How-
ever, as ¢ # (1/2 4+ n)¢o, the transmission of electron is
very complicated, the electrons transporting through the
two arms of CNR contribute to the conductance conse-
quently. The quantum dot opens the tunneling channels
at € = Eq 5+ Rell" (e, ¢), and the CNR also provides tun-
neling channels for electron to transport at € = Ej ;p.
What path the electron is favorite to choose depends on
the energy of electron in the leads. The contribution of
quantum dot to the current is also associated with the in-
teraction strengths Vp ;n. As Vi my is strong enough, the
quantum dot plays an important role to the mesoscopic
transport. As Vp ., = 0 the quantum dot is disconnected
to the CNR, and there is no contribution of the quantum
dot to the transport. As the levels of quantum dot and
CNR match with each other, the CNR and quantum dot
open the resonant tunneling channels, and interference
of electron coming from the two arms determines the re-
sultant conductance. The transmission coefficient T (¢)
is an even and periodic function of magnetic flux, i.e.,
Ta’(¢) = TJ(_¢)7 and Ta’(¢) = Ta’(¢ + ’I'L(ﬁo)
For the numerical calculations, we choose the param-
eters as I' = 3.033 meV, and V; ;,, = 3.033 meV for the
armchair (m,m;-p,p) CNR-QD system at zero tempera-



ture. The quantum dot is assumed to possess five sym-
metric levels By, = 0,+0.002579,0.0057,. We take
Go = 2¢?/h as the measurement scale of conductance,
and Iy = 2eyp/h = 2.35 x 10~% A as the scale of tun-
neling current. We consider the type I (5,5;-75,75) and
type II (5,5;-74,74) CNRs as examples, where the diam-
eter ratio d;/D; = 0.117, and the energy gap of type II
isolated CNR, E, ~ 0.147 eV. However, the calculations
contain main information for the two types of CNR as
d:/D; << 1. Figure 1 displays the differential conduc-
tance versus the source-drain bias at zero temperature.
The CNR possesses tunneling channels in a large region
of energy, but the quantum dot only opens several dis-
crete resonant levels for electron to tunnel. For the em-
bedded quantum dot, Rell" (e, ¢) acts as novel channels

in addition to E((i?zg. Therefore, the tunneling channels
in the quantum dot extend to a large region of energy
to overlap some tunneling channels of the isolated CNR.
This causes the degeneration of differential conductance
in a large region of eV.

We display the tunneling current and differential con-
ductance versus the source-drain bias eV in Fig. 2. The
current exhibits quantum steps obviously associated with
the structure of CNR. For the type I CNR, the conduc-
tance shows a resonant peak at V' = 0, which indicates
that there exists tunneling current as V' # 0. This sys-
tem is metallic in which the energy gap F, = 0, and it
signifies that the tunneling levels of QD and CNR match
each other at eV = 0. For the type II CNR, the conduc-
tance resonates at eV = £0.0257, £0.05y. This system
is a semiconductor with the energy gap F, ~ 0.147 eV.

The differential conductance dI/dV oscillating with re-
spect to the magnetic flux ¢ is presented in Fig. 3. The
conductance is a periodic and even function of ¢ with
period ¢g9. The magnitude of conductance is adjusted
by the gate voltage, and it shifts as the gate voltage in-
creases shown in (a). The magnitude and shape of oscil-
lation are strongly dependent on CNR. The zero-biased
differential conductance of type I CNR is large, and it
oscillates smoothly. This reflects the metallic Aharonov-
Bohm-like behavior. The differential conductance for the
type II CNR is quite different from that of type I CNR.
As eV =0, dI/dV is very small, and there exists abrupt
changes at ¢ = ¢9(1/2+n) (n =0,£1,+£2,...). For this
case the off-resonant tunneling through the quantum dot
dominates the mesoscopic transpot. As the source-drain
bias is nonzero, the conductance recovers the smooth os-
cillating behavior shown in diagram (b), but with the in-
verse phase oscillating structure compared with the zero-
biased conductance of type I system.

The differential conductance dI/dV versus the gate
voltage V, is depicted in Fig. 4 as ¢ = 0. Diagrams
(a) and (b) show the situations for the tpye I and type
IT CNRs with different source-drain biases eV = 0 and
eV = 0.025vy, respectively. The magnitude and behav-

ior of dI/dV versus V, are dependent on the structure
of CNR sensitively, and the inverse resonances are ob-
served. For the type I CNR system, the inverse resonance
is symmetric about eV, = 0, while for the type II CNR
system the inverse resonance is asymmetric. The inverse
resonance signifies that the quantum dot contributes a
negative resonant conductance to the total one.

In summary, the differential conductance and I-V char-
acteristics have been presented for the type I and I CNR
systems. The transport properties are strongly associ-
ated with the structure of CNR, and the tunneling cur-
rent appears quantum behavior obviously in the small
region of source-drain bias. The conductance is a peri-
odic function of ¢, and it is adjusted by the gate voltage.
The reverse resonance has been displayed versus the gate
voltage. The reverse resonance is symmetric about eV
for the type I CNR, but it is asymmetric for the type
IT CNR. The phase inverse oscillations are also observed
for different types of CNR, and the quantum dot plays an
important role in the mesoscopic transport. This system
can be taken as an interference CNRFET controlled by
the external magnetic flux and gate voltage.
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Figure Captions

Fig. 1, The differential conductance dI/dV versus
source-drain bias eV as V; = 0, ¢ = 0. Diagrams (a),
(b) are associated with the type I (5,5;-75,75) and type
IT (5,5;-74,74) CNRs, respectively.

Fig. 2, The I-V characteristics and differential conduc-
tance dI/dV versus source-drain bias eV as V; = 0 and
¢ = 0 corresponding to (a) and (b). The dotted and solid
curves are associated with (5,5;-75,75) and (5,5;-74,74)
CNRs, respectively.

Fig. 3, The differential conductance dI/dV versus
the magnetic flux ¢. Diagram (a) displays the con-
ductance of (5,5;-75,75) CNR at eV = 0 with the
solid, dotted and dashed curves corresponding to eV, =
0,0.0017p,0.002vy. Diagram (b) is the conductance of
(5,5;-74,74) CNR as eV = 0.025vy V,; = 0.

Fig. 4. The differential conductance dI/dV versus gate
voltage V;, as ¢ = 0. Diagrams (a) and (b) correspond to
the conductances of (5,5;-75,75) CNR with eV = 0 and
(5,5;-74,74) CNR with eV = 0.025y, respectively.



