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Disruption of Sertoli-Germ Cell Adhesion Function in
the Seminiferous Epithelium of the Rat Testis Can be
Limited to Adherens Junctions Without Affecting the
Blood-Testis Barrier Integrity: An In Vivo Study
Using an Androgen Suppression Model
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During spermatogenesis, both adherens junctions (AJ) (such as ectoplasmic specialization (ES), a testis-specific AJ type at the Sertoli
cell-spermatid interface (apical ES) or Sertoli—Sertoli cell interface (basal ES) in the apical compartment and BTB, respectively) and
tight junctions (TJ) undergo extensive restructuring to permit germ cells to move across the blood—testis barrier (BTB) as well as the
seminiferous epithelium from the basal compartment to the luminal edge to permit fully developed spermatids (spermatozoa) to be
sloughed at spermiation. However, the integrity of the BTB cannot be compromised throughout spermatogenesis so that postmeiotic
germ cell-specific antigens can be sequestered from the systemic circulation at all times. We thus hypothesize that AJ disruption,
unlike other epithelia, can occur without compromising the BTB-barrier, even though these junctions, namely TJ and basal ES, co-
existside-by-side inthe BTB. Using an intratesticularly androgen suppression-induced germ cell loss model, we have shown that the
disruption of AJs indeed was limited to the Sertoli-germ cell interface without perturbing the BTB. The testis apparently is using a
unique physiological mechanism to induce the production of both TJ- and AJ-integral membrane proteins and their associated
adaptors to maintain BTB integrity yet permitting a transient loss of cell adhesion function by dissociating N-cadherin from B-catenin
at the apical and basal ES. The enhanced production of T proteins, such as occludin and ZO-1, at the BTB site can supersede the
transient loss of cadherin-catenin function at the basal ES. This thus allows germ cell depletion from the epithelium without
compromising BTB integrity. It is plausible that the testis is using this novel mechanism to facilitate the movement of preleptotene
and leptotene spermatocytes across the BTB at late stage VIl through early stage IX of the epithelial cycle in the rat while maintaining

the BTB immunological barrier function.
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Cell junctions are ubiquitous structures in multi-
cellular organisms serving an array of biological func-
tions. These include adhering cells to form specialized
epithelia, sensing the environment, and Qprov1d1ng the
means for cell-cell communications (for*“reviews, see
Alberts et al., 2002; Braga, 2002; Perez-Moreno et al.,
2003; Mruk and Cheng, 2004a). In virtually all the
epithelia found in mammals including the skin, collect-
ing tubules in the kidney, the respiratory tract, and the
intestine, tight junctions (TJ) are located at the apex of a
cell epithelium, furthest away from the basal lamina, to
be followed by cell—cell actin-based adherens junctions
(Ads) that form the adhesion belt, underneath of which
lies the cell-cell intermediate filament-based desmo-
somes, these structures are referred to as the junctional
complex (for reviews, see Alberts et al., 2002; Braga,
2002; Perez-Moreno et al., 2003; Lee and Cheng, 2004b;
Mruk and Cheng, 2004a,b). Because of this intimate
relationship between these junctions, a disruption of
AdJs can impair the TJ-barrier function and vice versa in
many epithelia, such as those found in keratinocytes,
which is a generally accepted cell physiological phenom-
enon (Troxell et al., 1999; Man et al., 2000; Gassler et al.,
2001; Venkiteswaran et al., 2002; Guo et al., 2003).
Interestingly, in the seminiferous epithelium of mam-
malian testes, such as rats, TJ, AJ, and desmosomes are
not distinctly separated from one another to form the
junctional complex, instead TJ co-exists side-by-side
with two testis-specific AdJ types called basal ectoplasmic
specialization (ES) and basal tubulobulbar complex
(TBC), forming the blood—testis barrier (BTB), which
lies adjacent to the basement membrane, a modified
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form of extracellular matrix; whereas other AdJs, such as
apical ES, are found between round/elongating/elongate
spermatids and Sertoli cells in the seminiferous epithe-
lium (for reviews, see Russell and Peterson, 1985; Dym,
1994; Vogl et al., 2000; Toyama et al., 2003; Mruk and
Cheng, 2004b; Siu and Cheng, 2004a,b). Unlike other
TdJ-barriers such as the blood-brain, the blood-epididy-
mal, and the blood—retinal barriers, BTB must physi-
cally open to facilitate the migration of developing
preleptotene and leptotene spermatocytes, which are
in micrometers in diameter, at late stage VIII through
early stage IX of the epithelial cycle (Russell, 1977) while
maintaining the BTB integrity so that postmeiotic germ
cell antigens can be sequestered from the systemic
circulation. Furthermore, extensive AJ restructuring
between Sertoli and germ cells occur during spermato-
genesis to facilitate the timely migration of developing
germ cells across the seminiferous epithelium in the rat

Contract grant sponsor: National Institutes of Health (NICHD);
Contract grant numbers: U01 HD045908, U54 HD029990;
Contract grant sponsor: CONRAD Program (CICCR); Contract
grant number: CIG 01-72.

*Correspondence to: C. Yan Cheng, Population Council, 1230
York Avenue, New York, NY 10021.
E-mail: y-cheng@popcbr.rockefeller.edu

Received 8 December 2004; Accepted 20 January 2005

Published online in Wiley InterScience
(www.interscience.wiley.com.), 00 Month 2005.
DOI: 10.1002/jcp.20377



2 XIA ET AL.

testis without compromising the BTB integrity. As such,
the testis must have a mechanism in place that
regulates the TdJ-barrier integrity at the BTB while
permitting AdJ restructuring. We hypothesize that
Sertoli-germ cell AJ disruption in the seminiferous
epithelium, unlike other epithelia, does not lead to a
disruption of the TdJ-barrier function. To test this
hypothesis and to address this intriguing cellular
physiology phenomenon pertinent to spermatogenesis
regarding the functional interrelationship between TJ
and AdJ in the seminiferous epithelium, we have used an
androgen suppression-induced Sertoli-germ cell AJ
restructuring model.

Testosterone is one of the most important regulators
of spermatogenesis and it is also one of the prime targets
for hormonal male contraception (for reviews, see
McLachlan et al., 2002b; Kamischke and Nieschlag,
2004). In previous studies, an increase in endogenous
testosterone in the systemic circulation using testoster-
one and estrogen implants in adult rats can lead to a
suppression of intratesticular testosterone, inducing
depletion of spermatids (from step 9 and beyond) from
the seminiferous epithelium (McLachlan et al., 1994;
O’Donnell et al., 1996). Although the detailed mechan-
ism of this spermatid sloughing is still unclear, it was
shown to involve Sertoli-germ cell AJ disruption, in
particular, at the apical ES (O’Donnell et al., 2000;
McLachlan et al., 2002a,b). As such, this model was used
to assess if a disruption of AJs that led to spermatid loss
would compromise the BTB integrity. Recent studies
have identified three putative ES-associated protein
complexes in the rat testis crucial to ES dynamics,
including the cadherin/catenin, the nectin/afadin, and
the integrin/laminin protein complexes (for areview, see
Lee and Cheng, 2004b). We therefore sought to inves-
tigate the loss of spermatids from the epithelium during
intratesticular androgen suppression, is mediated via
changesin protein—protein interaction in the ES protein
complex. These are the subjects of this report.

MATERIALS AND METHODS

Animals

Male Sprague-Dawley rats weighing between 250 and 280 g
were purchased from Charles River Laboratories (Kingston,
MA). The use of animals for studies reported herein was
approved by the Rockefeller University Animal Care and Use
Committee, with Protocol Numbers 00111 and 03017.

Preparation of steroid implants

Androgen and estrogen implants were prepared by filling
testosterone (Cat. #T-1500) or estradiol-17p (Cat. #E-8875)
(Sigma, St. Louis, MO) to ethylene and vinyl acetate (EVA)
tubing (Elvax 770, 9% VA; 2.15 mm ID x2.4 mm OD,
DuPont®®). Earlier studies have estimated that implants using
EVAhad asteroid (e.g., MENT, 7a-methyl-19-nortestosterone)
release rate of 90 pg/cm/day in vivo (in humans) when placed
under the skin (Noe et al., 1999; von Eckardstein et al., 2003)
versus ~30 pg/cm/day for Silastic implants (Kincl et al., 1968;
Robaire et al., 1979). Both ends of the EVA tubing were sealed
by heat. T implants were either 3 or 4 cm in length; E implants
were 0.4 cm in length. Empty implants, 4 cm, without any
steroid, were also prepared that served as vehicle controls.

Experimental design

Rats were randomly assigned to three groups with three rats
for each time point in each group as follows. Group I: rats
received one 3-cm T and one 0.4-cm E implants on day 0; Group
II: TE implants were administered in rats on day 0 and
removed on day 28, and rats were allowed to recover
spontaneously (i.e., natural recovery); Group III: TE implants
were administered on day 0 and removed on day 28, and four

4-cm T implants were inserted to the same site to permit rapid
recovery. All implants were inserted subdermally to the dorsal
side of adult rats. About three rats per time point in Group I
were terminated on day 4, 8, 12, 20, and 28; in Group II, rats
were terminated on day 29, 35, 42, 49, and in Group III, on day
29, 30, 42, 49. Controls included rats without any implants but
terminated on day 0, 12, 28, 42, and rats received TE implants,
but replaced with 4 x4 cm empty implants on day 28, and
terminated on day 29 and 35 thereafter.

Animal surgery

Animal surgery was performed with rats under anesthesia
using Ketamine HCI (Ketaset, Fort Dodge Animal Health, Fort
Dodge, IA) at 75 mg/kg b.w. administered via i.m. Hair at the
surgical area were removed, and cleansed by scrubbing 70%
alcohol and Betadine (2x each). A small insertion site of
~2.5 cm was opened, and implants were carefully inserted
subcutaneously. Prior to their use, implants were briefly
cleansed by immersing into 70% alcohol for decontamination.
For TE treatment, one 3-cm T implant and one 0.4-cm E
implant were embedded; and for recovery under high T
condition, 4 x 4 cm T implants were embedded under the same
site after TE implants were removed on day 28. For rats that
underwent spontaneous natural recovery (SR), no implants
were used after TE implants removal. Surgical site was
stitched and was removed on day 7 after operation.

Preparation of samples

Rats were terminated at specific time points by CO,
asphyxiation and body weights were recorded. Testes with
epididymides attached were removed and photographed.
Testes were weighed and snap frozen in liquid nitrogen, and
stored at —80°C until use.

Lysates preparation and immunoblottings

Lysates were prepared essentially as earlier described using
a lysis buffer (10 mM Tris, 0.15 M NaCl, 2 mM PMSF, 2 mM
EDTA, 2 mM N-ethylmaleimide, 1% NP-40 [vol/vol]l, 1 mM
sodium orthovanadate, 0.1 pM sodium okadate, and 10%
glycerol [vol/vol]) (Lee et al., 2003; Lui et al., 2003c; Siu et al.,
2003b) and protein estimation was carried out using the
Coomassie blue dye-binding assay (Bradford®*, 1976) with
BSA as a standard. For subsequent co-immunoprecipitation
(Co-IP) experiments, lysates were prepared in the same lysis
buffer. Antibodies and the sources of antibodies used in this
study were summarized in Table 1. Immunoblottings were
carried out using ~150 pg protein from each sample for SDS—
PAGE as previously described (Lee et al., 2003; Lui et al.,
2003c; Siu et al., 2003b; Wong et al., 2004) using 7.5%—-12.5% T
SDS polyacrylamide gels (Laemmli, 1970). All samples within
an experimental group were processed simultaneously to
eliminate interexperimental variations.

Immunochistochemistry

Immunohistochemistry was performed essentially as pre-
viously described (Siu et al., 2003b). Frozen testes were
embedded in OCT compound (Sakura Finetek USA, Inc.,
Torrance, CA) and sectioned at 7 um in thickness using a
microtome in a cryostat (Hacker, Fairfield, NJ) at —20°C,
mounted onto poly-L-lysine coated slides and stained for JAM-1
with a Histostain-SP™ kit (Zymed Laboratories, South San
Francisco, CA). Sections were counterstained by hematoxylin
as described (Siu et al., 2003b; Siu and Cheng, 2004c). Sections
were examined under an Olympus BX-40 microscope (Olym-
pus Corp., Melville, NY) and photographed using an Olympus
DP70 12.5 MPa Digital Camera. All images were acquired
using the QImaging QCapture Suite (Version 2.6) Software
Package from Quantitative Imaging Corp. (Burnaby, BC,
Canada) and analyzed with Adobe PhotoShop (Version 7.0).
Controls included the use of normal rabbit serum, rabbit IgG,
or PBS to substitute the primary antibody.

Immunofluorescent microscopy

Fluorescent microscopy was performed essentially as pre-
viously described (Lee et al., 2003, 2004; Siu et al., 2003b; Siu
and Cheng, 2004c). Fluorescein isothiocyanate (FITC)- and
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TABLE 1. Summary of primary antibodies used for different immunological experiments

Antibody against Working
Vendor target protein Animal source Catalog # Lot # Usage dilution
Santa Cruz Biotechnologies Actin Goat?® sc-1616 D052 1B 1:1,000
(Santa Cruz, CA) Claudin-11 Goat sc-13641 Al162 1B 1:200
N-cadherin Rabbit sc-7939 J1502 1B 1:200
IP 1:40
E-cadherin Rabbit sc-7870 C212 1B 1:200
a-catenin Rabbit sc-7894 G3003 1B 1:200
B-catenin Rabbit sc-7199 L0203 1B 1:200
IP 1:40
Nectin-3 Goat sc-14806 K261 B 1:100
Laminin-y3 Goat sc-16601 G032 1B 1:200
Zymed Laboratories, Inc. Occludin Rabbit 71-1500 30979485 1B 1:200
(South San Francisco, CA) IF 1:100
JAM-1 Rabbit 36-1700 30979650 B 1:250
THC 1:100
IF 1:250
ZO-1 Rabbit 61-7300 30175033 1B 1:250
Z0-1-FITC Mouse, monoclonal 33-9111 30879018 IF 1:100
N-cadherin Mouse, monoclonal 33-3900 30778768 IF 1:100
B-catenin Rabbit 71-2700 30477187 IF 1:100
Phospho-Tyr Mouse, monoclonal 13-6600 40186105 1B 1:500
Sigma-Aldrich (St. Louis, MO) l-afadin Rabbit A0349 012K4875 1B 1:1,000
BD Transduction Laboratories Integrin-p1 Mouse, monoclonal 610468 8 1B 1:500

(San Diego, CA)

IB, immunoblotting; IHC, immunohistochemistry; IF, immunofluorescent microscopy.
2All primary antibodies used in this study were polyclonal antibodies except otherwise specified.

Cy3-labeled goat anti-rabbit IgG were used to co-localize N-
cadherin and B-catenin in the seminiferous epithelium of rat
testes. A FITC-conjugated ZO-1 antibody and a Cy3-labeled
goat anti-rabbit IgG were used to co-localize JAM-1 (or
occludin) with ZO-1 to assess the integrity of the BTB during
androgen suppression-induced germ cell loss from the epithe-
lium as described (Wong et al., 2004). Frozen sections were
obtained in a cryostat and prepared as described above. All
samples from different rats within an experimental group,
such as during androgen suppression-induced germ cell loss
from the epithelium, were processed simultaneously with 3—4
cross-sections per slide so that all samples could be placed on
2—3 slides. This step is essential to eliminate interexperi-
mental variations in particular differences in antibody incuba-
tion time, staining conditions and subsequent color
development. Sections were treated with 10% normal goat
serum (Zymed, Cat. #01-6201, diluted in PBS) and incubated
with the corresponding primary antibody pair at room
temperature overnight. Sections were then washed in PBS to
be followed by incubation with fluorescein-labeled secondary
antibody pair. Sections were subsequently mounted in Vecta-
shield with DAPI [4/, 6-diamidino-2-phenylindole, dihy-
drochloride] (Vector Laboratories, Burlingame, CA), and
viewed under an Olympus BX-40 microscope equipped with
fluorescent optics.
Image analysis

To estimate the diffusion of proteins (e.g., N-cadherin and -
catenin) from the site of its localization in the testis during
androgen suppression-induced germ cell loss from the epithe-
lium, assessing changes in protein—protein association besides
Co-IP, fluorescent images of N-cadherin and B-catenin from
fluorescence microscopy were acquired and photographed at
the same magnification and parameters. At least 50 tubules
from testes of two different rats were randomly selected and
examined as follows. First, fluorescent images were photo-
graphed and printed using an Epson 890 Inject printer at
1,440 x 720 dpi resolution on Epson Photo papers. Second, the
diffusion of a target protein staining, such as N-cadherin, from
its arbitrary site of origin is defined as the distance (in mm)
from the BTB site near the basement membrane to the edge of
visible staining away from the BTB in a treatment group, or
control testes. Thus, the relative diffusion (RD) of a target
protein during treatment = distance of the target protein dif-
fused away from BTB at specified time point/the distance in
control testis (mean) at the same time point. The magnification

(or the absolute distance) used in our measurement did not
interfere RD results because they were being canceled out in
the numerator and denominator.

Co-IP and an assessment of Tyr-phosphorylation
content of B-catenin

About 500—1,200 pg protein lysates from each sample were
used for Co-IP studies to assess changes in protein—protein
interactions during androgen depletion-induced germ cell loss.
All samples within an experimental group were processed
simultaneously to eliminate interexperimental variation.
Co-IP was performed as described (Lee et al., 2003, 2004).
In brief, lysates were pretreated with 1% (vol/vol) IgG for at
least 1 h with agitation using a rotator (GlasCol, Terre Maute,
IN) at 24 rpm. Thereafter 10 pl Protein A/G-PLUS agarose
(Santa Cruz Biotechnology, Inc., Santa Cruz, CA) was added
and incubated for another hour. After a brief centrifugation
(1,000¢, 5 min) to remove non-specifically interacting proteins
in the pellet, supernatant was collected and incubated with the
corresponding primary antibody of a target protein overnight
with agitation at 4°C. Thereafter, 20 ul Protein A/G-PLUS
agarose was added, and incubated for 2 h to precipitate
immunocomplexes. Immunocomplexes were washed four
times with Co-IP buffer by gentle resuspension and centrifuga-
tion. The resultant complexes were denatured in SDS-sample
buffer and resolved by SDS—PAGE. Target proteins were
visualized by the corresponding antibodies. Scaled-up Co-IP
(~1,200 pg protein per sample) was carried out to assess Tyr-
phosphorylation content of B-catenin. In short, about 1/3 of the
immunoprecipitated proteins in the scaled-up Co-IP using an
anti-p-catenin antibody as the precipitating antibody were
resolved by SDS—PAGE, electroblotted onto nitrocellulose and
probed with an anti-phospho-Tyr antibody. Immunostained
protein band on the blot that had the same electrophoretic
mobility as of B-catenin (~92 kDa) was identified. Because (-
catenin protein levels were induced during androgen suppres-
sion-induced germ cell loss, measures were taken to correct for
the increasing B-catenin protein level as follows. First, the
same amount of SDS sample buffer was added to each sample
to extract immunocomplexes from the scale-up Co-IP experi-
ment. Second, only 1/3 of this IP product was resolved by SDS—
PAGE and the B-catenin protein levels were estimated by
densitometric scanning of the protein blot. Third, based on this
semi-quantitative scanning data, the same amount of B-
catenin that was immunoprecipitated between samples within
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the treatment group was resolved on another SDS—polyacry-
lamide gel. Fourth, after phospho-Tyr immunostaining, this
same blot was stripped and reprobed with a B-catenin antibody
confirming the level of B-catenin was indeed uniform in all
samples within the treatment group. As such, any changes in
phospho-Tyr level in B-catenin is the result of putative changes
in its phosphorylation status.

Statistical analysis

Different parameters (e.g., body and testis weights, steady-
state levels of different target proteins interpolated from
densitometrically scanned results after normalized against f3-
actin) from samples within an experimental group were
compared between samples at different times versus controls
and/or between pairs of samples at other time points by
ANOVA using Honest Significant Test (HST) with the JMP IN
software package (Version 4, SAS, Inc., Cary, NC).

RESULTS
Changes in testes weight and size, and body
weight during androgen suppression-induced
germ cell loss from the seminiferous epithelium

The treatment regimen that was used to induce AJ
disruption, causing germ cell loss from the seminiferous
epithelium by suppressing the endogenous T level via
TE implants and the subsequent recoveries, is shown in
Figure 1A. A progressive and significant loss in testes
weight was detected following TE implants insertion at
the time of germ cell loss (Fig. 1B, part a). By the time TE
implants were removed (see solid arrow), testes weight
had decreased to about half of normal testes and this
trend continued for several additional days. During
recovery, either spontaneously or under high T condi-
tion, testes weight recovered rapidly and was similar to
normal rat testes within 3 weeks (Fig. 1B, part a). Such
changes of testes weight were consistent with changes in
testes size (Fig. 1C). For instance, testis length along the
longitudinal axis decreased from ~20 mm (control) to
~15 mm (29D) after ~4 weeks of T suppression, and
returned to the size virtually indistinguishable from
normal testes in both recovery groups (Fig. 1C). The
body weights of these rats also gained steadily from
~300 to ~420 g in control groups when housed with
access to food and water ad libitum (Fig. 1B, part b). The
rate of body weight gaining was significantly smaller
than controls after TE implants were placed under the
skin; however, body weights were rapidly recovered in
both recovery groups and the differences found between
treatment groups and control rats were negligible at the
end of the experimental period (Fig. 1B, part b).

Did the androgen suppression induced-germ cell
loss from the seminiferous epithelium disrupt the
BTB integrity?

Selected TdJ-integral membrane proteins and
adaptors were upregulated in androgen suppressed
rat testes. Three TdJ-integral membrane proteins:
occludin, claudin, and JAM; and an adaptor known to
exists at BTB: ZO-1, were examined. An increase in the
protein levels of occludin, JAM-1 and ZO-1, but not
claudin-11, was observed beginning on day 20 after TE
implants (Fig. 2A,B), reaching a peak of almost three- to
fivefold versus control rats on days 28—30 at the time
spermatids (step 8 and beyond) were depleting from the
epithelium (see below). Thereafter, the protein levels of
occludin, JAM-1, and ZO-1 declined gradually when
implants were removed on day 28 to permit recovery,
and returned to their normal level by day 49 when the
epithelium was fully recovered (Fig. 2A,B).

BTB integrity was not compromised during
androgen suppression-induced germ cell loss from
the epithelium. The above immunoblot data have
illustrated that occludin and ZO-1 levels in the testis
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Fig.1. A-C: A study of using TE implants to suppress intratesticular

androgen levels to deplete germ cells from seminiferous epithelium
and its effects on testes and body weight, and testis size in adult rats.
A: The treatment regimen that was used in studies in this report. B:
This figure shows changes in testes weight (a) representing organ pair
(g) from each animal (n=3 for each time point). Changes in body
weight were shown in part (b). On day 0 (the date when surgery was
performed), rats received TE implants. On day 28, TE implants were
removed in one group of rats and replaced with 4 x 4 cm T implants
(T4) (—TE + T4 implants). In another group of rats, TE implants were
removed and rats underwent naturally spontaneous recovery (SR)
without any implants (—TE implants/SR). Open arrow indicates when
TE implants were administered; closed arrow indicates when TE
implants were removed to allow either androgen-induced (T4
implants) or spontaneous recovery. Each data point is the mean + SD
SD of three rats. ns, not significantly different from control as
determined by ANOVA; * significantly different, P <0.05; (C, a-g)
shown®herein are representative photographs of testes with epidi-
dymides displaying changes in their sizes during treatment and
recovery. The labeling used here is applicable to all other figures in
this report. T, testosterone; E, estrodiol-17.
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were induced by the TE-implants mediated androgen
suppression (Fig. 2A-L), yet this did not give any
indication if the site of BTB had been disrupted. A recent
study using fluorescence microscopy to co-localize
occludin and ZO-1 to the epithelium has proven to be a
novel tool to assess the BTB integrity (Wonget al., 2004),
it was therefore used in this study. Both occludin and
Z0O-1 were localized to the same site in the basal
compartment consistent with their localization at the
BTB site (Fig. 3A-D), forming an almost continuous
superimposable immunoreactive ring in the epithelium
of a normal rat testis (Fig. 3A—C). This pattern of
localization persisted in testes on day 20 (Fig. 3E-G)
and 29 (Fig. 3I-K) at the time of extensive spermatids
loss from the epithelium (see Fig. 4) except that there
was an increase in fluorescence of occludin or ZO-1
versus control testes (Fig. 2E—G,I-K vs. A-C), illus-
trating the BTB integrity had not been compromised,
consistent with results of immunoblots that illustrate an
increase in protein levels (Fig. 2).

Study using JAM-1 to further validate that BTB
remained intact during androgen suppression-
induced germ cell loss from the seminiferous
epithelium. To further validate the above observa-
tions, the study was extended to another TdJ-integral
membrane protein at the BTB namely JAM-1, since an
increase in JAM-1 protein was detected during andro-
gen suppression-induced germ cell loss (Fig. 2). Immu-
nohistochemistry was preformed in normal rat testes in
which JAM-1 appears as reddish-brown precipitates at
the basal compartment of the epithelium, consistent
with its localization at the BTB (Fig. 4A). JAM-1 was
found to be a stage-specific protein, being highest at
stages IX—XIV, but lowest at stages IV-VI. At stages
IV-VI, the staining of JAM-1 at the BTB site diminished
greatly (seeinset Iin Fig. 4A). Some JAM-1 staining was
also found in the interstitium surrounding the endothe-
lial cells of the microvessel, illustrating it is also used as
a Td-integral membrane protein in vascular TdJ-barrier
(Fig. 4A). Positive (Fig. 4A, part e) and negative (Fig. 4A,
part d) controls were also included to assure the staining
shown in Figure 4 was specific for JAM-1.

(Continued)

We next performed an additional immunohistochem-
istry experiment to examine the pattern of JAM-1 in the
testis during androgen suppression-induced germ cell
loss from the epithelium (Fig. 4B). Consistent with the
immunoblotting data shown in Figure 2, JAM-1 staining
at the basal compartment was indeed greatly induced.
The insets shown in different parts in Figure 4B were at
lower magnification, corresponding to the selected time
points of the androgen suppression regimen (See
Fig. 1A). This result illustrates that amidst the
progressive shrinkage of the seminiferous tubules
(Fig. 4B, parts ¢, d vs. part a), the reddish-brown
immunoreactive JAM-1 signals also gradually intensi-
fied, yet this protein continued to maintain an almost
uninterruptive ring consistent with the data of occludin
shown in Figure 3. This immunohistochemistry also
implicated that the BTB integrity had been maintained
during androgen suppression-induced germ cell loss
from the epithelium (Fig. 4B).

Since JAM-1 was shown to interact with ZO-1 in other
epithelia (Bazzoni et al., 2000), we sought to use
fluorescence microscopy to co-localize JAM-1 and ZO-1
at the site of BTB in control testes as well as in testes by
29D after TE implants at the time of germ cell loss (see
Fig. 4B). As shown in Figure 4C, parts a—d, the merged
images of JAM-1 and ZO-1 was not entirely yellowish for
all tubules because JAM-1 was not expressed uniformly
at all stages of the epithelial cycle (Fig. 4C vs. A).
Nonetheless, JAM-1 that was co-localized with ZO-1
always maintained a non-interruptive ring at the BTB
site in the seminiferous epithelium during androgen
suppression-induced germ cell loss (Fig. 4C—g).

What is the mechanism(s) by which androgen
suppression induces germ cell loss from the
seminiferous epithelium?

Changes in ES-associated protein levels during
androgen suppression-induced germ cell loss from
the seminiferous epithelium. Three ES-structural
protein complexes have been identified in the apical
ES of rat testes (for reviews, see Cheng and Mruk, 2002;
Toyama et al., 2003; Lee and Cheng, 2004a,b; Mruk and
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Fig. 2. A, B: A study by immunoblotting to assess changes in TdJ-
associated proteins in the rat testis during androgen suppression-
induced germ cell loss and its recovery. A: Immunoblotting results in
which lysates of testes containing ~150 pg protein from each sample
within an experimental group were resolved by SDS—PAGE, and the
blots were probed with different primary antibodies. Immunoblot data
were arranged into two groups: androgen depletion induced by TE
implants and the two recovery groups. In the recovery phase, the
column labeled as 30/35D represents recovery under high T condition

Cheng, 2004a,b; Siu and Cheng, 2004a,b): the cadherin/
catenin complex, the nectin/afadin complex, and the
integrin/laminin complex. Thus, these proteins were
selected to examine changes in their levels during
androgen suppression-induced germ cell loss to assess
AdJ disruption (Fig. 5). All cadherins and catenins were
induced in the testis during androgen suppression-
induced germ cell loss, which declined thereafter in both
recovery groups and returned to control levels
(Fig. 5A,B). N-Cadherin, o-catenin, and p-catenin,
apparently sharing a common pattern of changes in

on day 30 or spontaneous recovery on day 35. The bottom part is the
same blot as those shown above, but reprobed with an anti-actin
antibody to assess equal protein loading. B: These are densitome-
trically-scanned data using immunoblots such as those shown in (A).
All data were normalized against B-actin to account for uneven protein
loading and the level of a target protein in control rats was arbitrarily
set at 1. Each data point is the mean +SD of three rats. ns, not
significantly different from control as determined by ANOVA; *,
significantly different, P < 0.05; **, significantly different, P < 0.01.

protein levels, were induced by almost four- to fivefold of
the control by days 28—30 after TE treatment (Fig. 5A).
A noted exception is E-cadherin, which protein level was
reduced after TE treatment, but returned to that of
normal testes at the end of recovery (Fig. 5A,B). 1-Afadin
and integrin-B1 protein levels (Fig. 5A,B) displayed a
pattern similar to N-cadherin, a-catenin, and B-catenin
which were induced during germ cell loss but subsided
thereafter during recovery. Like E-cadherin, nectin-3
protein level declined when spermatids were depleted
from the seminiferous epithelium during TE treatment
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Fig. 3. A-L: An assessment of the BTB integrity in rat testes by
immunofluorescent microscopy during androgen suppression-induced
germ cell loss from the seminiferous epithelium. A-D, control testes;
E—H, testes of rats with TE implants for 20 days (20D/+TE); I-L,
testes of rats terminated on day 29 in spontaneous recovery group

and returned to the level of normal testes in the recovery
phase (Fig. 5A,B). Laminin-y3 showed no obvious
changes in its protein level (Fig. 5A,B).

N-cadherin and B-catenin diffuse away from the
BTB site, dissociating from each other during
androgen suppression-induced germ cell loss from
the epithelium. Most of the AdJ-associated proteins
examined displayed a pattern of induction during germ
cell loss from the epithelium, such as cadherins,
catenins, afadins, and integrin-B1 (see Fig. 5A,B). For
those that were downregulated, such as E-cadherin and
nectin-3, their losses may have weakened adhesion
between Sertoli and germ cells, leading to germ cell loss
from the epithelium. The observation that an induction
of AJ-proteins can still lead to a loss of cell adhesion
function is unexpected (see Figs. 4B and 5). We
hypothesize that such an induction may be a physiolo-
gical response of the epithelium in the testis to the
declining endogenous testosterone level, trying to retain
the depleting spermatids. To investigate how these
germ cells lost their ability to adhere to the epithelium,
we performed two additional experiments. First, we
sought to examine the pattern of distribution of N-
cadherin and B-catenin in the seminiferous epithelium
using fluorescence microscopy during androgen sup-
pression-induced germ cell loss (Fig. 6A). In control rat
testes, N-cadherin and B-catenin co-localized to the
same site in the basal compartment consistent with
their localization at the BTB (Fig. 6A, parts a—d).
Interestingly, there was evidence that a thickening of
the belt-like fluorescent immunostaining of both N-
cadherin and B-catenin had occurred during germ cell
loss induced by androgen suppression using TE
implants (see white square bracket in Fig. 6A, parts a,
e, 1, and m); and this staining became diffused from the
BTB site. Figure 6B summarized the result of an
analysis quantifying the RD of N-cadherin and B-
catenin from BTB in epithelium during androgen
suppression-induced germ cell loss versus control rats,
illustrating a significant increase in protein diffusion.
Second, we speculated that such an increase in the
diffusion of N-cadherin and B-catenin away from the

(29D/-TE/SR). A, E, I: ZO-1 staining (FITC-conjugated, green). B, F,
J: Occludin staining (Cy3-conjugated secondary antibody, red). C, G,
and K are the corresponding merged images of A and B, E and F, and I
and J (yellowish-orange). D, H, L: DAPI staining. Bar =80 um in (A),
which applies to (B—L).

BTB site might reflect a loss of protein—protein associa-
tion between N-cadherin and B-catenin. We therefore
sought to investigate this possibility by Co-IP experi-
ments using an antibody against N-cadherin or j-
catenin to pull down the corresponding protein in
lysates and the blots were probed for p-catenin
(Fig. 7A). The relative level of B-catenin in control testes
versus samples from rats during androgen suppression-
induced germ cell loss from the epithelium detected in
this Co-IP experiment using an anti-p-catenin antibody
had a trend similar to that using lysates alone for
immunoblotting, showing an induction at the time of
germ cell loss (Fig. 7A,B). Yet using an anti-cadherin
antibody for Co-IP, it failed to pull down more B-catenin
at the time of germ cell loss (Fiig. 7A), indicating that at
the late stage of the TE treatment, this protein pair had
weakened protein—protein association. The relative
protein levels in the Co-IP experiment were normalized
against control and plotted as a bar chart in Figure 7B.
To estimate these results semi-quantitatively, the
amount of B-catenin that was pulled down by the
corresponding N-cadherin or B-catenin antibody was
compared and plotted as a scatter-line chart (Fig. 7B). It
is noted that there was a 50% loss in protein—protein
association between N-cadherin and B-catenin at the
time of germ cell loss (Fig. 7B vs. Fig. 4B). This result
hence suggests that the loss of germ cells from the
seminiferous epithelium may be the result of a loss of
association between a cell adhesion protein (e.g., N-
cadherin) with its adaptor (e.g., B-catenin) that led to a
weakened or disrupted junction.

An increase in Tyr-phosphorylation of p-catenin
may contribute to the cadherin/catenin protein
complex dissociation. One mechanism that can
account for the cadherin/catenin protein complex dis-
sociation is Tyr-phosphorylation of the adaptor, B-
catenin (for a review, see Daniel and Reynolds, 1997).
To estimate the Tyr-phosphorylation status of p-cate-
nin, we first used an anti-f-catenin antibody to pull
down the target protein, which was resolved on SDS—
PAGE, electroblotted to nitrocellulose membrane and
probed for a phosphor-Tyr antibody and detected an
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increase in Tyr-phosphorylation at the time of Sertoli- (see Figs. 5A, 6A, and 7A). To circumvent this issue, we
germ cell adhesion impairment (day 20 and 30). had corrected uneven B-catenin protein level during
However, the total Tyr-phosphorylation increase in B- androgen suppression-induced changes in the immuno-
catenin could be the result of an increase in B-catenin precipitated complexes as described in Materials and
protein, which is known to occur during germ cell loss Methods (see part 3 in Fig. 8A vs. part 1). Interestingly,
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an increase in Tyr-phosphorylation status in B-catenin
was still detected (Fig. 8A,B). Figure 8 has thus
illustrated an increase in Tyr-phosphorylation of [-
catenin during germ cell loss from the epithelium.

DISCUSSION
Does a disruption of AJs in the seminiferous
epithelium affect TdJs, analogous to junctional
complex disruption in other epithelia?

In this study, we have illustrated that a decline of
intratesticular androgen level induced by TE implants
can lead to a loss of adhesion function at the ES, leading
to sloughing of spermatids (steps 8 and beyond) from the
seminiferous epithelium, consistent with several earlier
studies using this model (O’Donnell et al., 1996, 2000;
Beardsley and O’Donnell, 2003). It was anticipated that
Tds at the BTB would be compromised in this model
since a disruption of AdJs is known to perturb TJ-
permeability barrier function in virtually all other
epithelia examined to date including skin, kidney, and
intestine (Troxell et al., 1999; Man et al., 2000; Gassler
etal., 2001; Venkiteswaran et al., 2002; Guo et al., 2003).
Indeed, both N-cadherin and B-catenin at the basal ES
that co-exist with TJ in constituting the BTB were
shown to be induced. However, a loss of their association
was also detected by Co-IP experiment. Furthermore,
both proteins at the basal ES apparently were diffusing
away from the BTB site as detected by fluorescent
microscopy consistent with biochemical study by Co-IP.
Yet the BTB integrity was not compromised as illu-
strated by fluorescent microcopy. The technique of using
fluorescent microscopy to monitor BTB integrity has
been rigorously characterized in our laboratory in

(Continued)

conjunction with electron microscopy and micropunc-
ture technique assessing the leakage of [12°1]-BSA from
the systemic circulation to the rete testis and seminifer-
ous tubule fluids (Chung et al., 2001; Wong et al., 2004);
and it was shown to be a reliable and sensitive approach
tomonitor the BTB integrity. Itis apparent that the BTB
integrity was maintained by a surge in the TdJ-integral
membrane proteins that constitute the TJ fibrils, such as
occludin, JAM-1 and their common adaptor, ZO-1. This
observation is physiologically significant, perhaps it is
the same mechanism that is being used by the BTB to
maintain the TJ integrity during extensive AJ restruc-
turing pertinent to spermatogenesis. These data suggest
that while the occludin/ZO-1, the JAM-1/Z0O-1 and the
cadherin/catenin protein complexes co-exist to constitute
the BTB; at the time of AJ restructuring to facilitate germ
cell movement during spermatogenesis, a disengage-
ment of TJ (e.g., occludin/ZO-1) and AJ (e.g., cadherin/
catenin) proteins can occur, thereby allowing the induced
TdJ proteins to supersede the function of AJ proteins at
the BTB and vice versa. This thus permits the loss of AJ
function without compromising the BTB integrity.
Herein, we have shown that the three ES structural
protein complexes, namely the cadherin/catenin, the
nectin/afadin, and the integrin/laminin were induced
preceding germ cell detachment from the epithelium as
detected histologically. In some cases, the protein levels
were induced as early as 4—12 days after insertion of TE
implants, such as N-cadherin and catenins, with no
obvious germ cell loss detected as yet. It is obvious that
when germ cell loss was most severe on days 28—29, the
protein induction was also most drastic. Needless to say,
it can be argued that since T suppression by TE implants

Fig.4. A-C: A study to assess the integrity of the BTB in the rat testis
using JAM-1 as a TJ-marker protein by immunohistochemistry and
fluorescent microscopy during androgen suppression-induced germ cell
loss. A: Immunohistochemical localization of JAM-1 in normal rat
testes. a—c, JAM-1 staining appears as reddish-brown precipitates. d,
control staining using normal rabbit IgG, illustrating the staining
shown in (a—c) is specific to JAM-1. Stages of the epithelial cycle were
labeled. A magnified view of the boxed areas shown in (a) was also
included and shown in I and I, in which black arrowheads indicate the
JAM-1 staining which was found in the basal compartment near the
basement membrane at the site consistent with its localization at the
BTB (I and II) in stage XI-XIV tubules, and white arrowheads indicate
the lack of JAM-1 staining in the same location in a stage V-VI tubule
(I). These micrographs are representative results of four different
experiments. Bar = 100 pm in (a), which applies to b—d; bar =50 ym in
(I), which applies to II. The immunoblot shown in (e) illustrates the
specificity of JAM-1 antibody using lysates of testes and Sertoli cells

since only a prominent band with an electrophoretic mobility of JAM-1
at ~36—41 kDa was detected. B: Immunohistochemical staining of
JAM-1 in rat testes during androgen depletion-induced germ cell loss.
a, normal testis; b and ¢, testes from rats with TE implants for 12 days
(12D/+TE) and 20 days (20D/+TE); d, testis of rat in early recovery
phase under high T condition after 1 day of TE implants removal with
4x T implants inserted in this rat (29D/—TE + T4). Bar =80 um in (a),
which also applies to (b—d); and bar = 320 pm in the inset of (a), which
applies to insets in (b—d). C: Immunofluorescent co-localization of JAM-
1 and ZO-1 in normal and androgen-depleted testes. a—d, normal testis;
e-h, testis of rat terminated on day 29 in the spontaneous recovery
group (29D/—TE/SR) when the epithelium was virtually devoid of all
spermatids (see B). a and e, JAM-1 staining revealed by a Cy3-
conjugated goat anti-rabbit IgG (red); b and f, ZO-1 staining revealed
by an FITC-conjugated mouse anti-ZO-1 antibody (green); ¢ and g,
merged images of (a and b), (e and f), respectively (yellowish-orange); e
and h, DAPI staining. Bar = 120 pm in (a), also applicable to (b—g).
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causes testicular atrophy which is likely the result of
loss of spermatids from the epithelium, as denoted by a
reduction in testis weight to about 1/3 to 2/5 of that of
control, proteins in Sertoli cells, spermatogonia, or
spermatocytes might be “enriched” in the samples that
were being analyzed instead of being physiologically
“induced.” If this is indeed the case, the level could
plausibly be induced by 2.5- to 3-fold at the most. Yet in
induction of ~five- to sixfold for these proteins were
detected, illustrating that an increase in protein
expression had indeed occurred. Furthermore, the

induction of AdJ-associated proteins was significantly
higher than TdJ proteins, arguing against the possibility
that such changes are the result of a non-specific protein
concentration effect as a result of declining testis
weight. Nonetheless, such an increase in AJ proteins
failed to retain germ cells in the epithelium since the
association between these protein complexes, such as N-
cadherin and B-catenin, was significantly weakened as
shown herein. The N-cadherin-associated B-catenin
level which was pulled down using an anti-N-cadherin
antibody by Co-IP was similar to the control level when

A +TE Implants “TEImplants
Recovery
Time after TE Treatment
29D 30/35D 42D 49D
Ctrl 4D 8D

12D 20D 28D

N-Cadherin, — [
127 kDa
E-Cadherin, — | c—————
Cadherin- 120 kDa AL :ﬂ -
Catenin
Complex .
a-Catenin,
102 kDa
B-Catenin, —
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Nectin-3,
Nectin- 83 kDa
Afadin
Complex )
I-Afadin,
205 kDa
Integrin-p1,
Integrin- 130 kDa
Laminin
Complex
Laminin-y3, __
170 kDa
Cytoskeletal | B—Actin, _
protein 42 kDa M— .

Fig. 5. A, B: A study by immunoblotting to assess changes in AdJ-
associated proteins in rat testes during androgen suppression-induced
germ cell loss from the seminiferous epithelium. A: Lysates of testes
from rats of different treatment groups containing ~150 pg protein per
lane was resolved by SDS—PAGE, electroblotted onto nitrocellulose
papers and immunostained using different primary target antibodies.
B: These are densitometrically-scanned data using immunoblots such
as those shown in (A) with n=3 rats. The level of target protein in

control rats (Ctrl) was arbitrarily set at 1, against which all data were
compared. Each data point is the mean 4+ SD of three rats. ns, not
significantly different from control as determined by ANOVA; *,
significantly different, P <0.05; **, significantly different, P <0.01.
Open arrowhead indicates where TE implants were placed in the
dorsal region of the adult rats; solid arrowhead indicates where TE
implants were removed, and rats were allowed to recover either
spontaneously or with androgen implants.
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itslevel was induced by almost five- to sixfold at the peak
of germ cell loss from the epithelium. This is physiolo-
gically important since the N-cadherin/p-catenin com-
plex is more predominant at the basal ES (Lee et al.,
2003, 2004), and if basal ES structure was largely
retained when spermatids were depleted from the
epithelium on day 30 (2 days into the recovery phase),
the N-cadherin antibody should pull down significantly
more P-catenin than it was detected, taking testicular
atrophy into account. This thus implies that there was
an increase in the ‘free,’ non-N-cadherin-bound B-
catenin pool in the cytoplasm of the testicular cells
[e.g., both Sertoli cells, spermatogonia, and spermato-
cytes were shown to express both cadherins and
catenins (Wu et al., 1993; Lee et al., 2003)], and a loss
of N-cadherin/B-catenin association. This argument is
indeed supported by results of fluorescence microscopy,
which detected a diffusing localization pattern of these
two proteins in the epithelium. It is likely that their loss
of protein—protein association leads to a fuzzy, less
focused localization at the BTB.

(Continued)

What are the differences between the regulation
of epithelial TJ/AJ and TJ/basal ES at the BTB?

Current studies in epithelial cell physiology have
shown that the assembly of TJs between epithelial cells
requires the presence of AJs, and changes in AdJ
integrity can modulate TJ formation and the epithelial
permeability barrier function (Behrens et al., 1985;
Troxell et al., 1999; Man et al., 2000; Guo et al., 2003).
For instance, nectin-based adhesion is initially estab-
lished between migrating epithelial cells, followed by
cadherin-based adhesion to form mature AdJs; thereafter
JAMs, followed by claudin and occludin, are being
recruited to the apical portion of AdJ for assembling Tds
(for reviews, see Takai and Nakanishi, 2003; Sakisaka
and Takai, 2004), illustrating the intimate relationship
between these junctions. When confluent epithelial cells
are treated with agents that target specifically to AdJ
proteins (e.g., E-cadherin), both AJs and TdJs can be com-
promised, as manifested by an increase in permeability
function (Fujimori and Takeichi, 1993; Man et al., 2000).
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Fig.6. A, B. A study to assess changes in the pattern of localization of
N-cadherin and B-catenin in the seminiferous epithelium and their
apparent loss of association by immunofluorescence microscopy
during androgen suppression-induced germ cell loss from the testis.
A: Immunofluorescent co-localization of N-cadherin and B-catenin to
the epithelium in rat testes during androgen suppression-induced
germ cell loss. a—d, control testes; e-h, testes of rats with TE implants
for 12 days (12D/+TE); i-1, testes of rats after 20 days of TE treatment
(20D/+TE); m—p, testes of rats terminated on day 30 with 28 days of
TE treatment followed by 2 days of recovery under high T condition
(30D/—TE +T4) when the seminiferous epithelium was virtually
devoid of round, elongating, and elongate spermatids (see Fig. 3B).
a, e, i, m: N-cadherin staining (Cy3, red); b, f, j, n: B-catenin staining
(FITC, green); ¢, g, k, and o are the corresponding merged images of (a
and b), (e and f), (i and j), (m and n) (yellowish-orange); d, h, 1, p: DAPI
staining. Bar =100 pm in (a), which also applies to (b—p). White
broken line indicates the location of the basal compartment corre-

12DATE

20DA+TE 30D/-TE+T4

sponding to the BTB site nearing the basement membrane in (a, e, i,
m); and the “bracket” indicates the RD of a target AJ-protein during
androgen depletion-induced germ cell loss from the epithelium. B:
This bar chart shows the RD of N-cadherin or B-catenin from its site of
origin near the basement membrane. This is calculated by measuring
the distance of the fluorescence that moved away from the BTB site
indicated by the white broken line. As seen in (a and b), virtually all
the immunoreactive N-cadherin and B-catenin resided closely to the
white broke line in the basal compartment, which diffused away from
the basal ES at BTB as shown in testes from time points at 12D/+TE,
20D/+TE, and 30D/-TE +T4. The distance of target protein that
diffused away was compared to control testis (mean), which was
arbitrarily set at 1. Each data point is the mean + SD (n =50 tubules
scored from at least two testes of different rats). ns, not significantly
different from control as determined by ANOVA; ** significantly
different, P <0.01.
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Fig. 7. A, B: A study by Co-IP to assess changes in protein—protein
interactions of the N-cadherin-B-catenin protein complex in rat testes
during androgen suppression-induced germ cell loss from the
seminiferous epithelium. A: Equal amount of lysates (~500 ug protein)
from control, 12D/4+TE, and 30D/—TE + T4 testes were IP using an
anti-N-cadherin or an anti-p-catenin antibodies. The immunoprecipi-
tated complexes were analyzed by immunoblotting (IB) using a
specific B-catenin antibody to estimate if there was a loss of protein—
protein association in the cadherin/catenin complex. A negative
control was also included in which the precipitating antibody was
substituted by rabbit IgG. Following SDS—PAGE, proteins were
detected by immunoblotting using an anti-B-catenin antibody. An
aliquot of lysates used for IP were also probed for B-actin to assess if

This suggests that the proximity of AJ and TdJ between
epithelial cells has created a bi-directional cross-talk
mechanism that a disruption of one junction type can
transmit the disruptive signal to the other. If a similar
mechanism(s) is in place in the seminiferous epithelium,
the BTB integrity cannot be maintained at spermato-
genesis when thousands of developing germ cells have to
traverse the epithelium throughout the epithelial cycle,
associating with extensive junction restructuring (for
reviews, see Cheng and Mruk, 2002; Mruk and Cheng,
2004a).

Based on the data presented herein plus those found
in the literature, it remains unclear regarding the
intricate coordination of Tds and basal ES to facilitate
germ cell movement. Yet the present study has clearly
illustrated that, unlike other epithelia, the basal/apical
ES cell adhesion function and the TdJ barrier function
can be “disengaged” so as to maintain the BTB integrity.
For instance, during the androgen suppression-induced
spermatids loss from the epithelium, signals that induce
disruption of apical ES are being shielded from affecting
TdJ integrity, but not basal ES, at the BTB. In fact, these
signals possibly reinforce the basal barrier function.
This conclusion was reached based on the fact that both

20D/+TE 30D/-TE+T4

[—]

equal amount of protein was used. The right part shows the heavy and
light chains of IgG following IP from the same immunoblots shown on
the left part to illustrate equal protein loading and uniform protein
transfer. A surge in B-catenin using lysates without (w/o) IP was
detected. While total B-catenin pulled down by the anti-B-catenin
antibody is consistent with the lysate data (see w/o IP), the anti-N-
cadherin failed to pull out the same amount of B-catenin, illustrating a
loss of protein—protein interaction. B: This bar chart was prepared
using data such as those shown in (A) that were densitometrically
scanned, and normalized to the control testis, which was arbitrarily
set at 1. Each data point is the mean + SD from three experiments. ns,
not significantly different from control as determined by ANOVA; **,
significantly different, P < 0.01.

TJ and AJ proteins were induced at the time of
spermatid loss. Yet N-cadherin and f-catenin at the
basal ES were found to diffuse away from the BTB site,
apparently disengaging from the adjacent TdJ-protein
complexes (e.g., the occludin/ZO-1 and the JAM-1/Z0-1
protein complexes) so that the TJ-barrier function was
not compromised. This disengagement mechanism can
thus permit the loss of spermatids from the epithelium
because of a loss of the cadherin/catenin function that
confers cell adhesion (via a loss of protein—protein
interactions) while leaving the significantly induced
proteins of the occludin—ZO-1 and the JAM-1-ZO-1
complexes at the BTB site to maintain the TdJ-barrier
function.

Recent studies have shown that TJ and AJ of
gastrointestinal epithelial cells can be disrupted by
progastrin hormone through activation of Src and PI 3-
kinase, respectively. However, blocking either signal
transducer failed to rescue the other junction type from
disruption (Hollande et al., 2003). In Madin—Darby
canine kidney cells, EGTA treatment-induced junction
disruption involved a transition of ZO-1 association with
TJ proteins occludin and claudin to AJ protein
E-cadherin (Rothen-Rutishauser et al., 2002). These
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Fig. 8. A, B: A study to assess changes in the level of Tyr-
phosphorylation of B-catenin in rat testes during androgen suppres-
sion-induced germ cell loss. A: To examine changes in Tyr-phosphor-
ylation in B-catenin, sample lysates (~1,200 pg) from control (Ctrl),
12D/+TE, and 30D/—TE + T4 testes were IP using an anti-B-catenin
antibody. Immunocomplexes after IP were divided into three equal
aliquots as follows. The first aliquot (1/3) was examined by
immunoblotting using an anti-B-catenin antibody (top part). This blot
was stripped and reprobed with an anti-phospho-Tyr antibody
illustrating an increase in Tyr-phosphorylation (p-Tyr) (2nd part).
As such, both top and 2nd parts are results obtained before normal-
ization against changes in B-catenin protein. But since there was an
increase in B-catenin per se (see top part), the increase shown in the
second part could be attributed to an increase in B-catenin protein.

results seemingly suggest that epithelial AJ and TJ
disassembly, although interdependent with each other,
is regulated via different signaling pathways. Further-
more, the shift of association between ZO-1, occludin/
claudin, and E-cadherin also supports the disengage-
ment hypothesis ascribed to BTB regulation. It is
apparent that if adequately sealed within a microenvir-
onment, the disruption of one junction type can be
restricted without spreading over to others. An inter-
esting question remains to be addressed: is this indeed
the case in the testis? In the testis, several signaling
pathways have been identified that are crucial to AdJ
dynamic regulation, by and large at the apical ES, which
include the integrin/pFAK/PI 3-K/p130 Cas/ERK and
the integrin/RhoB/ROCK/LIMK/cofilin pathways (Lui
etal., 2003a; Siu et al., 2003b), whereas TdJ dynamics are
mediated via the TGF-p3/MEKK2/p38 MAPK and
integrin/ILK/GSK-3/p130 Cas/JNK pathways (Lui
et al., 2003b; Siu et al., 2003a). Some of these signaling
pathways may act specifically to one junction type but
some seem to be more versatile. For instance, the TGF-
B3/p38 MAPK was found to regulate both AJ and TdJ
dynamics (Wonget al., 2004). Interestingly, TGF-B3 was

The blot in top part was therefore scanned and the protein level of B-
catenin was normalized and the other 1/3 aliquot was used for a second
immunoblotting experiment. The third part shows the IP products of
B-catenin after it was normalized against the increase in B-catenin
level. As such, the level of B-catenin between samples was uniform
(8rd part). When this blot was stripped and reprobed with an anti-
phospho-Tyr antibody, an increase in Tyr-phosphorylation indeed was
detected (bottom part), showing a surge in B-catenin phosphorylation.
B: This bar chart was prepared using immunoblotting data, such as
those shown in (A), which were densitometrically scanned, and
normalized to control testes, which was arbitrarily set at 1. Each
data point is the mean+SD from three experiments. ns, not
significantly different from control as determined by ANOVA; **
significantly different, P < 0.01.

recently shown to disrupt Sertoli-germ adhesion func-
tion at the AJ without affecting the TdJ integrity at the
BTB (Xia and Cheng, 2005). Thus, the testis is equipped
with different transducers that are capable of directing
multiple signaling pathways to regulate diversified
functions pertinent to junction dynamics, but the details
of how these signals are being utilized remain unex-
plored. Nonetheless, these findings illustrate the semi-
niferous epithelium is using a different strategy to
regulate junction dynamics pertinent to spermatogen-
esis versus other epithelia.

Phosphorylation of adaptor proteins caused
dissociation of cell adhesion complex

Although it has been known for almost a decade that
phosphorylation of cadherins and B-catenin can alter the
adhesive function of AJ (for reviews, see Daniel and
Reynolds, 1997; Gumbiner, 2000), yet this possibility
has not been explored in the testis until recently (Wine
and Chapin, 1999; Chapin et al., 2001; Lui et al., 2003a).
In this study, we have demonstrated unequivocally that
an increase in Tyr-phosphorylation of B-catenin
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occurred at the time of a weakened N-cadherin/f-
catenin association, leading to spermatid detachment
from the epithelium. Earlier studies have implicated the
roles of protein phosphorylation in the regulation of
spermiation (Wine and Chapin, 1999; Chapin et al.,
2001). Using AF-2364 [1-(2,4-dichlorobenzyl)-indazole-
3-carbohydrazide] to induce germ cell depletion from the
epithelium, it has been shown that germ cell loss is also
accompanied by an induction of N-cadherin and -
catenin, and other peripheral ES proteins such as Fer
kinase, pFAK, p130Cas (Chen et al., 2003; Lee et al.,
2003; Siu et al., 2003b). For instance, the cadherin/
catenin complex was shown to associate with several
protein kinases including c-Src, CK2, Csk and Fer, and
adaptors (e.g, WASP, axin, zyxin) that link the protein
complex to the underlying actin cytoskeleton (Chen
et al., 2003; Lee and Cheng, 2005). Similar to earlier
studies using the AF-2364 model, we speculate that
these kinases are involved in the loss of spermatids from
the epithelium when a surge in Tyr-phosphorylation of
B-catenin occurs, thereby the cadherin and catenin
proteins not only dissociate from each other but also
from the actin cytoskeleton.

Summary and concluding remarks

In summary, a disruption of AJ (e.g., ES) in the
androgen suppression model is limited to the apical and
basal ES without affecting the BTB integrity, implicat-
ing the testis is able to direct the regulatory signals to a
junction site specifically via a disengagement mechan-
ism. Based on the results reported herein, we propose a
schematic model shown in Figure 9 that regulates ES
and TdJ function in the rat seminiferous epithelium. It is
of interest to note that both apical ES and basal ES at the
Sertoli cell side are similar in structure except that basal
ES co-exist with TJ at BTB. But how can a signal that
targets the disassembly of apical ES and basal ES can
limit its action at ES without perturbing the adjacent
Td-barrier? While this is likely via a disengagement
mechanism as illustrated herein, it remains to be
investigated how this signal is being transmitted
between basal ES and TJ at the BTB, and between
BTB and apical ES.
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Softproofing for advanced Adobe Acrobat Users - NOTES tool
NOTE: ACROBAT READER FROM THE INTERNET DOES NOT CONTAIN THE NOTES TOOL USED IN THIS PROCEDURE.

Acrobat annotation tools can be very useful for indicating changes to the PDF proof of your article.
By using Acrobat annotation tools, a full digital pathway can be maintained for your page proofs.

The NOTES annotation tool can be used with either Adobe Acrobat 3.0x or Adobe Acrobat 4.0.
Other annotation tools are also available in Acrobat 4.0, but this instruction sheet will concentrate
on how to use the NOTES tool. Acrobat Reader, the free Internet download software from Adobe,
DOES NOT contain the NOTES tool. In order to softproof using the NOTES tool you must have
the full software suite Adobe Acrobat Exchange 3.0x or Adobe Acrobat 4.0 installed on your com-
puter.

Steps for Softproofing using Adobe Acrobat NOTES tool:

1. Open the PDF page proof of your article using either Adobe Acrobat Exchange 3.0x or Adobe
Acrobat 4.0. Proof your article on-screen or print a copy for markup of changes.

2. Go to File/Preferences/Annotations (in Acrobat 4.0) or File/Preferences/Notes (in Acrobat 3.0)
and enter your name into the “default user” or “author” field. Also, set the font size at 9 or 10
point.

3. When you have decided on the corrections to your article, select the NOTES tool from the
Acrobat toolbox and click in the margin next to the text to be changed.

4. Enter your corrections into the NOTES text box window. Be sure to clearly indicate where the
correction is to be placed and what text it will effect. If necessary to avoid confusion, you can
use your TEXT SELECTION tool to copy the text to be corrected and paste it into the NOTES
text box window. At this point, you can type the corrections directly into the NOTES text

box window. DO NOT correct the text by typing directly on the PDF page.

5. Go through your entire article using the NOTES tool as described in Step 4.

6. When you have completed the corrections to your article, go to File/Export/Annotations (in
Acrobat 4.0) or File/Export/Notes (in Acrobat 3.0). Save your NOTES file to a place on your
harddrive where you can easily locate it. Name your NOTES file with the article number
assigned to your article in the original softproofing e-mail message.

7. When closing your article PDF be sure NOT to save changes to original file.
8. To make changes to a NOTES file you have exported, simply re-open the original PDF
proof file, go to File/Import/Notes and import the NOTES file you saved. Make changes and re-

export NOTES file keeping the same file name.

9. When complete, attach your NOTES file to a reply e-mail message. Be sure to include your
name, the date, and the title of the journal your article will be printed in.



