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Abstract
Background: MATLAB is a high-performance language for technical computing, integrating
computation, visualization, and programming in an easy-to-use environment. It has been widely
used in many areas, such as mathematics and computation, algorithm development, data acquisition,
modeling, simulation, and scientific and engineering graphics. However, few functions are freely
available in MATLAB to perform the sequence data analyses specifically required for molecular
biology and evolution.

Results: We have developed a MATLAB toolbox, called MBEToolbox, aimed at filling this gap by
offering efficient implementations of the most needed functions in molecular biology and evolution.
It can be used to manipulate aligned sequences, calculate evolutionary distances, estimate
synonymous and nonsynonymous substitution rates, and infer phylogenetic trees. Moreover, it
provides an extensible, functional framework for users with more specialized requirements to
explore and analyze aligned nucleotide or protein sequences from an evolutionary perspective. The
full functions in the toolbox are accessible through the command-line for seasoned MATLAB users.
A graphical user interface, that may be especially useful for non-specialist end users, is also
provided.

Conclusion: MBEToolbox is a useful tool that can aid in the exploration, interpretation and
visualization of data in molecular biology and evolution. The software is publicly available at http://
web.hku.hk/~jamescai/mbetoolbox/ and http://bioinformatics.org/project/?group_id=454.

Background
MATLAB integrates programming, visualization and com-
putation in an easy-to-use environment and is widely
used in scientific and engineering studies. One of the most
attractive features of MATLAB is that the basic data ele-
ment of the system is a matrix that does not require
dimensioning. This allows users to solve many technical
computing problems, especially those with matrix and

vector formulations, in a very effective way. The MATLAB
environment itself offers a comprehensive set of built-in
functions and many toolboxes have been developed, and
are often freely available, for more specialized needs.

However, to our knowledge, these advantages in the MAT-
LAB environment have not been fully utilized in the area
of molecular biology and evolution. Only a few MATLAB
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toolboxes or functions are freely available for data analy-
sis, exploration, and visualization of nucleotide and pro-
tein sequences. MATHWORKS has recently provided a
bioinformatics toolbox, however this toolbox has rela-
tively limited functions for molecular evolutionary stud-
ies. MBEToolbox, is presented here to fulfil the most
obvious needs in sequence manipulation, genetic distance
estimation and phylogeny inference under the MATLAB
environment. Moreover, this toolbox provides an extensi-
ble, functional framework to formulate and solve prob-
lems in evolutionary data analysis. It facilitates the rapid
construction of both general applications, as well as spe-
cial-purpose tools for evolutionary biologists, in a fraction
of the time it would take to write a program in a scalar,
noninteractive language such as C or FORTRAN.

Implementation
MBEToolbox is written in the MATLAB language and has
been tested on the WINDOWS platform with MATLAB
version 6.1.0. The main functions implemented are:
sequence manipulation, computation of evolutionary dis-
tances derived from nucleotide-, amino acid- or codon-
based substitution models, phylogenetic tree construc-
tion, sequence statistics and graphics functions to visual-
ize the results of analyses. Although it implements only a
small fraction of the multiplicity of existing methods used
in molecular evolutionary analyses, interested users can
easily extend the toolbox.

Input data and formats
MBEToolbox requires a single ASCII file containing the
nucleotide or amino acid sequence alignment in either
PHYLIP [1], CLUSTALW [2] or fasta format. The toolbox
does provide a built-in CLUSTALW [2] interface if an una-
ligned sequence file is provided. Protein-coding DNA
sequences can be automatically aligned based on the cor-
responding protein alignment with the command
alignseqfile.

After input, in common with the MATHWORKS bioinfor-
matics toolbox, MBEToolbox represents the alignment as
a numeric matrix with every element standing for a
nucleic or amino acid character. Nucleotides A, C, G and
T are converted to integers 1 to 4, and the 20 amino acids
are converted to integers 1 to 20. A header, containing
information about the names and type of the sequences as
well as the relevant genetic code for protein-coding nucle-
otides, is attached to the alignment matrix to form a MAT-
LAB structure. An example alignment structure, aln, in
MATLAB code follows:

aln =

seqtype: 2

geneticcode: 1

seqnames: {1 × n cell}

seq: [n × m double]

where n is the number of sequences and m is the length of
the aligned sequences. The type of sequence is denoted by
1, 2 or 3 for sequences of non-coding nucleotides, protein
coding nucleotides and amino acids, respectively.

Sequence manipulation and statistics
The alignment structure, aln, can be manipulated using
the MATLAB language. For example, aln.seq(x,:) will
extract the xth sequence from the alignment, while
aln.seq(:, [i: j]) will extract columns i to j from the align-
ment. Users may easily extract more specific positions by
using functions developed in the toolbox, such as extract-
pos(aln, 3) or extractdegeneratesites to obtain the third
codon positions or fourfold degenerate sites, respectively.
For each sequence, some basic statistics such as the nucle-
otide composition (ntcomposition) and GC content, can
be reported. Other functions include the calculation of the
relative synonymous codon usage (RSCU) and the codon
adaptation index (CAI), counts of segregating sites, taking
the reverse complement or translating a sequence, and
determining the sequence complexity.

Evolutionary distances
The evolutionary distance is one of the important meas-
ures in molecular evolutionary studies. It is required to
measure the diversity among sequences and to infer dis-
tance-based phylogenies. MBEToolbox contains a number
of functions to calculate evolutionary distances based on
the observed number of differences. The formulae used in
these functions are analytical solutions of a variety of
Markov substitution models, such as JC69 [3], K2P [4],
F84 [1], HKY [5] (see [6] for detail). Given the stationarity
condition, the most general form of Markov substitution
models is the General Time Reversible (GTR or REV)
model [7-10]. There is no analytical formula to calculate
the GTR distance directly. A general method, described by
Rodriguez et al. [9], has been implemented here. In this
method a matrix F, where Fij denotes the proportion of
sites for which sequence 1 (s1) has an i and sequence 2 (s2)
has a j, is formed. The GTR distance between s1 and s2 is
then given by

where ∏ denotes the diagonal matrix with values of nucle-
otide equilibrium frequencies on the diagonal, and
tr(A)denotes the trace of matrix A. The above formula can
be expressed in MATLAB syntax directly as:

ˆ ( ))d tr= − −ΠΠ ΠΠlog( 1F
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>> d = -trace(PI*logm(inv(PI)*F))

MBEToolbox also calculates the gamma distribution dis-
tance and the LogDet distance [11] (i.e., Lake's paralinear
distance [12]).

For alignments of codons, the toolbox provides calcula-
tion or estimation of the synonymous (Ks) and non-syn-
onymous (Ka) substitution rates by the counting method
of Nei and Gojobori [13], the degenerate methods of Li,
Wu and Luo [14] and the method of Li or Pamilo and
Bianchi [15,16], as well as the maximum likelihood
method through PAML [17]. All these methods for calcu-
lating Ks and Ka require that the input sequences are
aligned in the appropriate reading frame, which can be
performed by the function alignseqfile. Unresolved codon
sites will be removed automatically. In addition, several
quantities, including the number of substitutions per site
at only synonymous sites, at only non-synonymous sites,
at only four-fold-degenerate sites, or at only zero-fold-
degenerate sites can be calculated. The output from these
calculations are distance matrices which can be exported
into text or excel files, or used directly in further
operations.

Phylogeny inference
Two distance-based tree creation algorithms, Unweighted
Pair Group Method with Arithmetic mean (UPGMA) and
neighbor-joining (NJ) [18] are provided and trees from
these methods can be displayed or exported. Maximum
parsimony and maximum likelihood algorithms can be
applied to nucleotide or amino acid alignments through
an interface to the phylip package [1]. As properly imple-
mented maximum likelihood methods are the best vehi-
cles for statistical inference of evolutionary relationships
among species from sequence data, several maximum
likelihood functions have been explicitly implemented in
MBEToolbox. These functions allow users to incorporate
various evolutionary models, estimate parameters and
compare different evolutionary trees.

The simplest case of estimation of the evolutionary dis-
tance between two sequences, s1 and s2, can be consid-
ered as the estimation of the branch length (the number
of substitutions along a branch) separating ancestor and
descendent nodes. Branch lengths, relative to a calibrated
molecular clock, can reveal the time interval for this sepa-
ration. A continuous time Markov process is generally
used to model evolution along the branch from s1 to s2.
A transition rate matrix, Q, is used to indicate the rate of
changing from one state to another. For a specified time
interval or distance, t, the transition probability matrix is cal-
culated from P(t) = eQt. If there are N sites, the full likeli-
hood is

In this equation,  and  are the ith bases of sequences

1 and 2 respectively;  is the expected frequency of base

.

In MBEToolbox, to calculate the likelihood, L, at a given
time interval (or distance) t, we have to specify a substitu-
tion model by using an appropriate model defining func-
tion, such as modeljc, modelk2p or modelgtr for non-
coding nucleotides, modeljtt or modeldayhoff for amino
acids, or modelgy94 for codons. These functions return a
model structure composed of an instantaneous rate matrix,
R, and an equilibrium frequency vector, pi which give Q,
(Q = R*diag(pi)). Once the model is specified, the func-
tion likelidist(t, model, s1, s2) can calculate the log likeli-
hood of the alignment of the two sequences, s1 and s2,
with respect to the time or distance, t, under the substitu-
tion model, model.

In most cases we wish to estimate t instead of calculating
L as a function of t, so the function optimlikelidist
(model, s1, s2) will search for the t that maximises the
likelihood by using the Nelder-Mead simplex (direct
search) method, while holding the other parameters in
the model at fixed values. This constraint can be relaxed
by allowing every parameter in the model to be estimated
by functions, such as optimlikelidistk2p, that can estimate
both t and the model's parameters. Figure (1a and 1b)
illustrates the estimation of the evolutionary distance
between two ribonuclease genes through the fixed- and
free-parameter K2P models, respectively. When the K2P
model's parameter, kappa, is fixed, the result and trace of
the optimisation process is illustrated by the graph of L
and t (Fig. 1a). When kappa is a free parameter, a surface
shows the result and trace of the optimisation process
(Fig. 1b).

When calculating the likelihood of a phylogenetic tree,
where s1 and s2 are two (descendant) nodes in a tree
joined to an internal (ancestor) node, sa, we must sum
over all possible assignments of nucleotides to sa to get the
likelihood of the distance between s1 and s2. Conse-
quently, the number of possible combinations of nucle-
otides becomes too large to be enumerated for even
moderately sized trees. The pruning algorithm introduced
by Felsenstein [19] takes advantage of the tree topology to
evaluate the summation in a computationally efficient
(but mathematically equivalent) manner. This and a sim-
ple and elegant mapping from a 'parentheses' encoding of
a tree to the matrix equation for calculating the likelihood
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of a tree, developed in the MATLAB software, PHYLLAB
[20], have been adopted in likelitree.

Combination of functions
Basic operations can be combined to give more compli-
cated functions. A simple combination of the function to
extract the fourfold degenerate sites with the function to
calculate GC content produces a new function (countgc4)
that determines the GC content at 4-fold degenerate sites

(GC4). A subfunction for calculating synonymous and
nonsynonymous differences between two codons, getsyn-
nonsyndiff, can be converted into a program for calculat-
ing codon volatility [21] with trivial effort. Similarly,
karlinsig which returns Karlin's genomic signature (the
dinucleotide relative abundance or bias) for a given
sequence can be easily re-formulated to estimate relative
di-codon frequencies, which may be a new index of biolog-
ical signals in a coding sequence. In addition, the menu-
driven user interface, MBEGUI, is also a good example
illustrating the power of combination of basic MBETool-
box functions.

Graphics and GUI
Good visualisation is essential for successful numerical
model building. Leveraging the rich graphics functionality
of MATLAB, MBEToolbox provides a number of functions
that can be used to create graphic output, such as scatter-
plots of Ks vs Ka, plots of the number of transitions and
transversions against genetic distance, sliding window
analyses on a nucleotide sequence and the Z-curve (a 3-
dimensional curve representation of a DNA sequence
[22]). A simple menu-driven graphical user interface
(GUI) has been developed by using GUIDE in MATLAB.
The top menu includes File, Sequences, Distances, Phyl-
ogeny, Graph, Polymorphism and Help submenus (Fig.
2). It aids the usage of the most frequently required func-
tions so that users do not have to run any scripts or func-
tions from the MATLAB command line in most cases.

Results and discussion
Vectorization simplifies programming
MATLAB is a matrix language, which means it is designed
for vector and matrix operations. Programming can be
simplified and made more efficient by using algorithms
that take advantage of vectorization (converting for and
while loops to the equivalent vector or matrix opera-
tions). The MATLAB compiler in version 7.0 will automat-
ically recognize and vectorize loops without recursion. An
example of vectorization is the calculation of Z-scores [23]
for Smith-Waterman alignments [24] to give a measure of
the significance of an alignment score against a back-
ground of scores from randomly generated sequences
with the same composition and length. Hence, Z-scores
are designed to overcome the bias due to the composition
of the alignment and are usually calculated by comparing
an actual alignment score with the scores obtained on a
set of random sequences generated by a Monte-Carlo
process. The Z-score is defined as:

Z(A, B) = (S(A, B) - mean)/standard deviation

where S(A, B) is the Smith-Waterman (S-W) score
between two sequences A and B. The mean and standard
deviation are taken from realignments of the permuted

Log-likelihood of evolutionary distanceFigure 1
Log-likelihood of evolutionary distance. (a) Likelihood 
as function of K2P distance. The distance is estimated by 
maximising the likelihood of the alignment with the bias of 
transitions to transversions, kappa, held fixed. (b) Likelihood 
as a function of distance and kappa. Both the distance and 
kappa are optimised simultaneously. The maximum likeli-
hood peaks are marked with *. The two sequences used are 
the coding regions of Tamarin eosinophil-derived neurotoxin 
(Acc. No.: U24099) and human eosinophil cationic gene (Acc. 
No: NM_002935).
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sequences. The algorithm is implemented as follows in
MATLAB with as few as 15 lines of code:

function [z,z_raw] = zscores(s1,s2,nboot)

ml = length(s1);

m2 = length(s2);

% Initialise two vectors holding Z-score of

% s1_rep and s2_rep, i.e., replicate samples

% of sequences s1 and s2.

v_z1 = zeros(1,nboot);

v_z2 = zeros(1,nboot);

z_raw = smithwaterman(s1,s2);

for (k = 1:nboot),

s1_rep = s1(:,randperm(m1));

v_z1(1,k) = smithwaterman(s1_rep, s2) ;

s2_rep = s2(:,randperm(m2));

v_z2(1,k) = smithwaterman(s1, s2_rep);

end

z1 = (z_raw-mean(v_z1))./std(v_z1);

z2 = (z_raw-mean(v_z2))./std(v_z2);

z = min(z1,z2);

where randperm(n) is a vector function returning a ran-
dom permutation of the integers from 1 to n and smith-
waterman performs local alignment by the standard
dynamic programming technique.

Extensibility
An important distinction between compiled languages
with subroutine libraries and interactive environments
like MATLAB is the ease with which problems can be spec-
ified and solved in the latter. Moreover, MATLAB tool-
boxes are traditionally organised in a less object-oriented
mode and, consequently, functions are more independent
of each other and easier to combine and extend. Several
examples were given in the Implementation section.

Comparison with other toolboxes
Some other toolboxes have been developed in MATLAB
for bioinformatics related analyses. These include PHYL-
LAB [20] and MATARRAY [25] as well as the

MBEToolbox GUIFigure 2
MBEToolbox GUI. (a) Distances submenu; (b) Phylogeny 
submenu; (c) Graph submenu; and (d) Polymorphism 
submenu.
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bioinformatics toolbox developed by MATHWORKS.
Other examples can be found at the link and file exchange
maintained at MATLAB CENTRAL [26]. PHYLLAB is a
molecular phylogeny toolbox which also provides some
functions for sequence and tree input and manipulation.
Its main focus is on creating a maximum likelihood tree
based on Bayesian principles using a Markov chain Monte
Carlo method to compute posterior parameter distribu-
tions. MATARRAY is focussed on the analysis of gene
expression data from microarrays and provides normali-
zation and clustering functions but does not address
molecular evolution. The bioinformatics toolbox from
MATHWORKS provides a range of bioinformatics func-
tions, including some related to molecular evolution.

MBEToolbox provides a much broader range of molecular
evolution related functions and phylogenetic methods
than either the more specialized PHYLLAB project or the
more general bioinformatics toolbox from MATH-
WORKS. These extra functions include IO in PHYLIP for-
mat, statistical and sequence manipulation functions
relevant to molecular evolution (e.g. count segregating
sites), evolutionary distance calculation for nucleic and
amino acid sequences, phylogeny inference functions and
graphic plots relevant to molecular evolution (e.g. Ka vs
Ks). As such it makes an important contribution to the
bioinformatics analyses that can be performed in the
MATLAB environment.

A novel enhanced window analysis
To test for the selective pressures in the different lineages
of a phylogenetic tree, the nonsynonymous to synony-
mous rate ratio (Ka/Ks) is normally estimated [27-29]. Val-
ues of Ka/Ks = 1, > 1, or < 1 indicate neutrality, positive
selection, or purifying selection, respectively. However, Ks
and Ka are measurements of average synonymous and
nonsynonymous substitutions per site along the whole
length of the sequences. Average Ks and Kavalues give nei-
ther the pattern of intragenic fluctuation of selective con-
straints, nor region- or site-specific information. A sliding
window method is usually adopted to examine the intra-
genic pattern of the substitution rates and to test for the
occurrence of significant clusters of variant regions [30-
33]. Significant heterogeneity in Ks would indicate that the
neutral substitution rate varies across the gene, whereas
heterogeneity in Kamay indicate that selective constraints
vary along the gene. The results and accuracy of sliding
window methods, either overlapping or non-overlapping,
depend on both the size of the window and the moving
distance adopted. Large window lengths may obliterate
the details of patterns in Ks or Ka, whereas small window
lengths usually result in larger statistical fluctuations.
Hence, the resolution of a sliding window is usually
limited.

A mathematical formalism, similar to the Z'-curve [34], is
introduced here to solve this problem. Consider a subse-
quence based analysis of Ks or Ka. In the n-th step, count
the cumulative numbers of Ks or Ka occurring from the first
to the n-th nucleotide position in the gene sequences

being inspected. Let  denote either Ks or Ka and 

denote the cumulative  at the n-th sequence position.

 is usually an approximately mono-increasing linear

function of n. The points ( , n), n = 1, 2, ..., N are fit

by a least square method to a linear function, f( ) =
βn, to give a straight line with β being its slope. We define

The two-dimensional curve of (  ~ n) gives an alter-
native representation of the normal sliding window curve.

To compare these two curve representations, the example
dataset of Suzuki and Gojobori [35], which contains the
coding regions of two hepatitis C virus strains (HCV-JS –
Genbank Acc.: D85516 and HCV-JT – Genbank Acc.:
D11168), was used. The entire coding sequence is divided
into eight regions (C, El, E2, NS2, NS3, NS4, NS5A,
NS5B). Some of the coding regions have been combined
as these short ORFs are unlikely to yield meaningful Ks
and Ka values. The reduction of Ks in the C, El and NS5B
regions, as well as its elevation in NS3, which have been
shown in previous studies [35], are not clear in a standard
sliding window representation (Fig. 3a). In contrast a
sharp increase in the (  ~ n) curve (Fig. 3b), indicates
an increase in , while a drop in the curve indicates a
decrease in . This new method has been implemented
in the function plotSlidingKaKs. Since it is derived from
the sliding window method, it is called the enhanced slid-
ing window method.

Limitations
The current version of this toolbox lacks novel algorithms
yet it implements a variety of existing algorithms. There
are some limitations in the practical use of MBEToolbox.
First, though the toolbox provides many methods to infer
and handle sequence and evolutionary analyses, the full
range of these features can only be accessed through the
MATLAB command line interface, as in the majority of
MATLAB packages. Second, some of the functions cannot
handle ambiguous nucleotide or amino acid codes in the
sequences. The future development of MBEToolbox will
overcome these present limitations.

Conclusion
The MBEToolbox project is an ongoing effort to provide
an easy-to-use, yet powerful, analysis environment for
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molecular biology and evolution. Currently, it offers a
substantial set of frequently used functions to manipulate
sequences, to calculate genetic distances, to infer phyloge-
netic trees and related analyses. MBEToolbox is a useful

tool which should inspire evolutionary biologists to take
advantage of the MATLAB environment.

Availability and requirements
Project name: MBEToolbox

Project web page: http://web.hku.hk/~jamescai/mbe
toolbox/

http://bioinformatics.org/project/?group_id=454

Operating system: WINDOWS 95/98/2000/XP

Programming language: MATLAB 6.0 or higher

Other requirements: Statistics Toolbox

License: GPL

Any restrictions on use by non-academics: License
needed
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