
A Graphical Approach to the 

Standard Principal-Agent Model 

Xianming Zhou 

Abstract: An obstacle to the teaching of principal-agent theory is the technical 
complexity and intractability of the general model. Even in academic studies 
strong assumptions are often imposed so as to derive an analytical solution. The 
author describes a graphical approach to the standard principal-agent model. 
Characterizing equilibrium in the contract space defined by the incentive para- 
meter and insurance component of pay under a linear contract, this approach pro- 
vides a simple and intuitive method for analyzing the principal-agent problem, 
which can be easily understood by students of economics with basic knowledge 
of algebra and differentiation. The approach has shown to be convenient and rich 
for comparative statics analyses. 
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The classic principal-agent model provides an elegant theory of the moral haz- 
ard problem, but it yields few general results.' Perhaps because of the technical 
complexity and intractability in its general framework, principal-agent theory is 
often not taught except to graduate students concentrating in economic theory or 
industrial organization. Studies of applied principal-agent models, however, have 
grown tremendously in recent years in various fields of economics. Hence, it is 
both desirable and important to extend the teaching of agency theory to a broad 
range of students and in a more intuitive approach. In this article, I describe a 
graphical approach to the standard principal-agent model. In the contract space 
defined by the incentive parameter and insurance component of pay under a lin- 
ear contract, the approach characterizes equilibrium using a "feasible contract 
curve/indifference curves" framework. Because the approach is simple and intu- 
itive in showing fundamental results of principal-agent theory, it can be under- 
stood easily by economics students with basic knowledge of algebra and differ- 
entiation. 

A rapidly growing literature of applied principal-agent theory examines 
managerial incentive contracts and executive compensation. In this literature, a 
simplified model is often developed to obtain theoretical guidance to certain 
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specific incentive issues. Strong assumptions are often imposed on the general 
principal-agent model so that an analytical solution becomes attainable. These 
assumptions usually include exponential utility, quadratic cost of effort, a lin- 
ear production function with normally distributed noise, and a linear contract 
(e.g., Gibbons and Murphy 1992; Garen 1994; Murphy 1999; Baker and Hall 
1998).2 The graphical approach I describe in this article relaxes most of these 
assumptions. The approach is convenient and intuitive in analyzing equilibri- 
um and comparative statics and provides further insights into the optimal con- 
tract. 

After I describe the graphical approach and characterize the optimal contract 
for the standard principal-agent model, I discuss applications of the approach, 
focusing on the effect of important contractual factors such as risk, productivity, 
and firm size. 

THE GRAPHICAL APPROACH 

Consider a single agent and the principal in a one-period contract. The pro- 
duction function of the agent is 

Y = F(e) + E, 

where e is the agent's investment of effort, which is unobservable to the prin- 
cipal, and F(e) defines expected output, which is strictly concave in effort, that 
is, F'(e) > 0 and F"(e) < 0, and where F(O) = 0. The second term, E, is a ran- 
dom variable with zero mean. The variance of E measures the risk of output. 
To derive a graphical framework, the distribution of output needs to be well 
behaved in the sense that the first-order approach applies.3 The main audience 
of the graphical approach may be uninterested in model details and insensitive 
to conditions for the first-order approach. Yet it is important to note that the 
graphical framework is subject to the qualification that the first-order 
approach is valid. 

The agent's utility, denoted as U, is a general function of his or her net payoff, 
W - C, where W is the realized wage and C the cost of effort. The utility func- 
tion is strictly concave in net payoff, that is, U'(W - C) > 0 and U"(W - C) < 0, 
and where U'(O)-- +0. The cost function is strictly convex in effort, that is, 
C'(e) > 0 and C"(e) > 0, except at e = 0 where C'(0)= 0. Assume a linear pay 
contract for the agent,4 

W= a + PY, 
where a is the fixed component of pay or insurance pay, and P the incentive para- 
meter or pay-performance sensitivity. In the literature of managerial incentives, 
3 is interpreted as incentive strength. 

The agent chooses effort to maximize his or her expected utility, E[U(W- C)], 
where E is the expectation operator, yielding the following incentive compatibil- 
ity constraint: 

fF'(e) - C'(e) = O. (1) 
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The constraint dictates that effort increase with the incentive parameter. The 
principal is risk-neutral and, in a competitive labor market, earns zero expected 
profit. Then, E(Y - W) = 0, or 

a = (1 - P)F(e). (2) 

The optimization problem of the model is to maximize the agent's expected util- 
ity subject to the incentive compatibility constraint, equation (1), and the zero 
expected profit condition, equation (2). Essentially, the model needs two simpli- 
fying assumptions: the distribution of production satisfies the conditions for the 
first-order approach and the contract is linear. 

To characterize the optimal contract in a diagram, I consider the space between 
the incentive parameter, P, and the insurance component of pay, a. Let the hori- 
zontal axis represent P and the vertical axis represent a, as shown in Figure 1. A 
point in this space corresponds to a contract, and hence, all possible combina- 
tions of a and P define the contract space. The optimal contract is the point in the 
space at which the agent's expected utility is maximized. 

For (possible) contracts to be feasible, they must satisfy both the incentive com- 
patibility constraint, equation (1), and the zero expected profit condition, equation 
(2). All feasible contracts in the contract space form a locus, which I call the fea- 
sible contract curve (FCC). The shape of FCC is easy to determine. From equa- 
tion (2), a is positive for 0 < p < 1, and it equals 0 at P = 1. Furthermore, if 
p = 0, equation (1) determines e = 0 because C'(e) = 0, and then a = F(O) = 0 
from equation (2). Thus, FCC is increasing in P at the origin, and after a certain 
point it becomes decreasing in P. It goes back to the horizontal axis at P = 1. 

The shape of FCC can be formally obtained by analyzing its slope. Noticing 
that effort is an implicit function of P, differentiating equations (1) and (2) with 
respect to P gives, respectively, 

FIGURE 1 
Equilibrium with Risk-Neutral Agents 
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de de 
F'(e) + PF"(e) - C"(e)- = 0, 

- -F(e) + (1- P)F(e) 

Solving the two equations for -, I get the slope of FCC, 

ao ( 1 - P) [F'(e(1 
JcjIFCC = - F(e) + (I - )[F"(e)](3) 
ap- C"(e) - PF"(e) 

Given the functional properties of F(e) and C(e), the second term in equation (3) 
is positive for 0 < p < 1. As 0 changes from 0 to 1, e increases monotonically, 
following the incentive compatibility constraint. The slope of FCC accordingly 
changes from +0 to 0 and then turns negative and becomes -F(e) at P3 = 1. 

FCC has the shape shown in Figures 1 through 6: It starts at the origin and 

goes up and outward, then bends down and further outward, and back to the hor- 
izontal axis at 0 = 1. Moving outward along FCC, P increases from 0 to 1. The 
intuition of the hill-shaped FCC curve is the following. There are two opposite 
effects from increasing the incentive parameter. On the one hand, a larger P 
means more effort and thus higher output, which tends to raise both the incentive 
and insurance components of pay, given the zero expected profit constraint. On 
the other hand, a larger P means a smaller portion of total pay in the insurance 
component. For low values of P, the marginal product of effort is high, and the 
output effect of p on a is dominating, and hence, the curve slopes up. Past its 
peak, the output effect drops below the switching effect from insurance pay to 
incentive pay, which dictates that the curve be downward sloped. 

I now turn to indifference curves (IC). By definition, an indifference curve is 
a curve in the contract space along which the expected utility remains constant. 
To derive the slope of IC, I set E{ U[a + P (F(e) + E) - C(e)] I equal to R, where 
R is a constant, then I differentiate both sides of this expression by P, which 
yields5 

E[U'(W - C)] + F(e) + PF'(e)- - C'(e) + (4) 

E[U'(W - C)E] = 0. 

Solving equation (4) and using the incentive compatibility constraint gives 

aa -F( E[ U'(W - C)e] (5) = - F(e) [U'(W - C) 8 ic E[ U'(W C) ] 
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Note that U'(W - C) is decreasing in W - C and hence in E, and that E(E) = 0, so 
the term E[U'(W - C)E] is negative.6 

Because the second term in equation (5) can be any positive value, 

aa-I IC 

is either negative or positive, depending on the functional form of U and the dis- 
tribution of e. In other words, IC can slope either downward or upward in the 
contract space. This is not surprising because, to the agent, the insurance com- 
ponent of pay is always a good whereas incentive strength (0) can be either a 
good or a bad. Because a higher P raises compensation to the agent but increas- 
es risk, it is a good to the agent when risk aversion is low and/or when produc- 
tion has little risk such that the former effect dominates (when the first term in 
equation (5) is dominating). When the reverse holds, 3 becomes a bad to the 
agent. With IC being upward sloped, a and P become complementary. This sec- 
ond case, seemingly counterintuitive, is particularly interesting. It is barely 
noted in previous studies although, as will be shown, it contains important 
implications. 

The optimal contract is determined jointly by FCC and IC. In Figure 1, I pre- 
sent the equilibrium for the special case with a risk-neutral agent [having con- 
stant U'(W - C)] or riskless production (E = 0), where E [U'(W - C)E] = 0. With 
the slope of IC being -F(e), it is steeper than FCC everywhere except at 3 = 1, 
where the two curves are tangent. Equilibrium is then attained at P = 1 and 
a = 0, where the first-best solution, denoted as E*, is achieved. It is worth noting 
that,in this case, IC is concave in the contract space. This is because the slope of 
IC, -F(e), increases in magnitude with P due to an incentive effect on effort. 

In general, the agent is risk averse and production is risky, so the second term 
in equation (5) is positive. With IC being flatter than FCC at 3 = 1, equilibrium 
occurs at some point with 3 < 1 (and thus a > 0), where the second-best solution 
is obtained. As the degree of risk aversion increases, the second term in equation 
(5) increases, and accordingly, IC rotates counterclockwise and changes from 
concave to convex. This occurs because the effect of the random term in the util- 
ity function, PE, increases with risk aversion, reducing the marginal rate of sub- 
stitution between 3 and a (with the expected marginal utility of P declining rel- 
ative to the expected marginal utility of a).' Two cases of the equilibrium for a 
risk-averse agent are shown in Figure 2. IC1 and IC2 present the typical case 
where both a and 3 are a good to the agent. Equilibrium occurs at a point in the 
decreasing part of FCC, denoted as E. In this case, any small change in the 
agent's taste will cause a change in equilibrium along FCC characterized by the 
substitution between a and p. 

As the agent becomes more risk averse, indifference curves further rotate 
counterclockwise and result in smaller pay-performance sensitivities. When the 
agent is sufficiently risk-averse, the second term in equation (5) becomes domi- 
nating, and consequently, indifference curves become upward sloped as shown 
by IC1' and IC2' in Figure 2. The equilibrium in this case occurs at a point (e.g., 
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FIGURE 2 
Equilibrium with Risk-Averse Agents 
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E') in the increasing part of FCC. The implication here is that comparative stat- 
ics would predict complementary changes in the incentive parameter and insur- 
ance component of pay. 

With the graphical framework, therefore, it is easy to show that the co-exis- 
tence of production risk and risk-averse behavior result in agency costs and that 
higher agency costs dictate smaller incentive parameters. This fundamental result 
of the principal-agent theory (Holmstrom 1979) becomes very intuitive in such a 
diagram, even though in this model utility, production, and the cost of effort are 
all a general function. 

APPLICATION 

The Effect of Risk 

The relationship between managers and shareholders presents the classic 
example of the principal-agent problem. Agency theory posits an economic 
tradeoff between inducing managerial effort and minimizing the cost born by 
risk-averse managers. Confirming this tradeoff, many applied principal-agent 
models predict a negative effect of risk on pay-performance sensitivities, which 
finds empirical support in studies of executive compensation (e.g., Garen 1994; 
Aggarwal and Samwick 1999). 

The graphical approach described above provides a convenient framework to 
address this issue. Because FCC does not change with the distribution of the ran- 
dom variable e,8 the effect of risk is simply a shift in equilibrium along FCC. As 
risk in output increases variations in managerial pay, it reduces the marginal ben- 
efit of increasing P and thus causes IC to rotate counterclockwise. As shown in 
Figures 3 and 4, the optimal contract shifts inward along FCC from E to E' as a 
result of increased risk. In either case the sensitivity becomes smaller. The effect 
is qualitatively the same as that of increasing the degree of risk aversion. 
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FIGURE 3 
The Effect of Risk-Case One 

IC' 
IC 

FCC E 

E 

O 1 

FIGURE 4 
The Effect of Risk-Case Two 
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The risk effect on the insurance component of pay is ambiguous, depending on 
the position of the initial equilibrium. The case shown in Figure 4 is particularly 
interesting: a and P change together, both decreasing in output risk. This result 
appears to be surprising and inconsistent with the conventional impression that 
the tradeoff between incentives and insurance requires opposite changes in a and 
p. This can be explained as follows: when output is sufficiently risky, incentive 
strength is a bad to the risk-averse agent. This requires that equilibrium be 
attained at the uphill side of FCC, where the output effect of P is dominating. 
Any small change in model parameters including riskiness will lead to a suffi- 
cient change in P, which requires the fixed component of pay to adjust in the 
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same direction so as to absorb the resulting change in output. Although cc and P 
move together, they change to a different extent such that a shift in the tradeoff 
between incentives and insurance is realized. The interesting point of this case is 
that it is more likely to occur when the incentive parameter is small, which is 
widely believed to be the case with executive compensation in large companies. 

The Effect of Productivity 

Higher expected output makes incentive pay more attractive. Hence, intuition 
suggests a positive relationship between managerial productivity and incentive 
strength. Taking the marginal product of effort to be a measure of productivity, 
simplified principal-agent models obtain analytical solutions confirming this 
relationship (Milgrom and Roberts 1992; Schaefer 1998; Baker and Hall 1998). 

Using the graphical approach, one can easily analyze this relationship with the 
more general model. Productivity is captured by the expected component of out- 
put, F(e). Higher productivity means higher F'(e), given the cost function of 
effort. Because both FCC and IC will change with F(e), the effect of productiv- 
ity becomes slightly more complicated. On one hand, FCC shifts up because a 
increases with expected output given P. On the other hand, given the distribution 
of the random term, the expected marginal utility of P increases with productiv- 
ity because of the increase in the component PF(e) - C(e) in the utility function. 
As the expected marginal utility of P increases relative to the expected marginal 
utility of a, IC rotates clockwise. 

The total effect can hypothetically be decomposed into two changes as shown 
in Figure 5. When 3 is maintained unchanged, there is an output effect, which is 
the upward vertical shift from E to E'. This effect increases the agent's utility 
without distorting risk allocation between the agent and the principal. Along the 

FIGURE 5 
The Effect of Productivity 
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new feasible contract curve, FCC', there is a risk effect, which is the change from 
E'to E ". This effect is qualitatively similar to that shown in Figures 3 and 4 but 
in the opposite direction (equivalent to a reduction in output risk). The total effect 
(from E to E") is that P becomes larger. The change in a is ambiguous, depend- 
ing on the position of the initial equilibrium and the strength of the productivity- 
induced risk effect. 

Firm Size and Incentive Strength 

On the basis of the discussions in the two previous subsections, I use the 
graphical approach to examine the relationship between firm size and incentive 
strength-an interesting and important issue in recent studies of executive com- 
pensation. For clarity in discussion, the production function is redefined as fol- 
lows: 

Y = F(K,e) + H(K)E, 
where K denotes capital, which is a proxy for firm size. The effect of capital on 
productivity and output variations is captured by F(K,e) and H(K), respectively. 
The random variable, E, characterizes risk heterogeneity holding company size 
constant. The slopes of FCC and IC become the following: 

a• (1- P)[Fe (K, e)]2 --Fcc = -F(Ke) + )_Fe(K , (6) ap -F(Ke) C"(e) - p Fee(K, e) 

)ct E[U'(W - C)H(K)e] 
ap -F(Ke) E[U'(W - C)] 

In equation (6), Fe(K,e) and Fe(K,e) denote the first-order and second-order 
derivatives, respectively, of F(K,e) with respect to e. 

In one extreme case, capital increases output variations but does not affect pro- 
ductivity, that is, H'(K) > 0 and FK'(K,e) = 0. In this case, firm size causes a pure 
risk effect: FCC remains unchanged whereas IC rotates counterclockwise 
because of a capital-induced increase in the random term, H(K)E. The effect is 
qualitatively the same as that described in Figures 3 or 4. In another extreme 
case, capital increases productivity but does not change variations in output, that 
is, FK'(K,e) > 0 and H'(K) = 0. In this case, both FCC and IC change, and firm 
capital causes a typical productivity effect, which can be similarly analyzed as in 
Figure 5. In general, capital raises both productivity and output variations, and 
hence, FK(K,e) > 0 and H'(K) > 0. The total effect is the combination of the two 
special cases, which is shown in Figure 6. The incentive parameter either 
becomes larger as the resulting change from A to D or becomes smaller from A 
to E, depending on the position of the initial equilibrium and the relative strength 
of the output effect and the total risk effect. The output effect corresponds to the 
shift from A to B. The total risk effect corresponds to the shift from B to C (from 
the productivity-induced change in risk) and then to either D or E (from 
increased output variations). The change in the insurance component of pay 
again remains indeterminate. 

Summer 2002 273 



FIGURE 6 
The Effect of Firm Size 

FCC 

A 

o I Bl 

Examining a simple principal-agent model, Schaefer (1998) and Baker and Hall 
(1998) also obtain an ambiguous effect of firm size on the incentive parameter. 
Because it is intrinsically unclear as to which (output or risk) effect of capital is 
dominating, agency theory does not generally establish an unambiguous relation- 
ship between firm size and incentive strength. It is essentially an empirical matter. 
The evidence for this relationship is so far inconclusive. Examining CEO compen- 
sation of large U.S. firms, Jensen and Murphy (1990), Garen (1994), Schaefer 
(1998), and Baker and Hall (1998) all found a negative relationship between firm 
size and the arithmetic sensitivity of CEO pay to shareholder wealth. However, 
investigating the elasticity of CEO pay with respect to firm value for similar U.S. 
companies, Hall and Liebman (1997) argued that executive compensation is more 
sensitive to performance in larger firms. Without a doubt, further studies are need- 
ed before a firm conclusion can be reached on this issue. 

CONCLUSION 

Research interest in principal-agent theory and its application has grown 
tremendously in the past two decades. The teaching of the theory (to undergrad- 
uate students, in particular) has not kept apace, partly because of its mathemati- 
cal intractability. I provide a graphical presentation of the standard principal- 
agent model, which characterizes equilibrium in the contract space defined by 
incentive strength and insurance pay. This approach provides a simple and intu- 
itive method for analyzing the optimal contract, which can be easily understood 
by students of economics with basic knowledge of algebra and differentiation. 
By examining the effect on the optimal contract of important contractual factors 
such as risk, productivity and firm size, the approach is shown to be convenient 
and rich for comparative statics analyses. 
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The graphical approach relaxes some simplifying assumptions that are often 
needed to derive an analytical solution. However, it needs pointing out that the 
approach does not present a general method for analyzing the principal-agent 
problem. Indeed, as noted earlier, it is based on two important assumptions: the 
first-order approach and linear contracts. The graphical approach can be used as 
an intuitive introduction to the general theory for less advanced students, though 
it can also be useful to understanding some applied models that are more diffi- 
cult to analyze otherwise because of technical challenges. 

NOTES 

1. For pioneer work on principal-agent theory, see Mirrlees (1975) and Holmstrom (1979). 
2. Milgrom and Roberts (1992) made use of the concept of certainty equivalent to avoid technical 

complexity associated with expected utility. 
3. The first-order approach relaxes the constraint of the general model that the agent choose a utili- 

ty-maximizing action to require instead only that the agent choose an action at which his or her 
utility is at a stationary point. Being more mathematically tractable, the first-order approach has 
been the standard method for analyzing the principal-agent problem, although it is not generally 
correct. For the first-order approach to be valid, two distributional assumptions (sufficient condi- 
tions) need to be satisfied, which are known as the monotone likelihood ratio condition (MLRC) 
and the convexity of distribution function condition (CDFC). For discussions on these conditions, 
see Mirrlees (1979), Grossman and Hart (1983), and Rogerson (1985). 

4. A linear contract is widely used for analytical convenience. Holmstrom and Milgrom (1987) dis- 
cuss conditions under which linear contracts are optimal. 

5. Note that the operators of expectation and differentiation are exchangeable. Differentiating E[U(W 
- C)] with respect to 3 gives 

aE[U(W - C_)=E[a U(W- C)1 [U(W- C) a(W- C) 

C] [ (W - C)E 

=E U',(W- C) + (F(e)+ + )+F'(e)- C'(e) 
e 

E '(W - C) - + F(e) + pF'(e)- C( e)- + EU'(W - C) e. 

6. This can be formally proved as follows. Usef(e) to denote the probability density function, then, 

E[U'(W- C)E]=J=U'(W- C)EfE)k=JU'(W- CEf(E)dE+ J U'(W - C)Ef(E)dE. 

Because U'(W - C) is positive and U'(W - C)Ie<o > U'(W - C)I=o > U'(W- C)JE>0, the first 
term above is negative and has the following relationship: 

S 

U'(W - C)ef(e e < [U'(W - CEo ]ef(ege 
E <0 eC<0 
= U'(W - C,0 ef(E)de . 

E<0O 

The second term is positive, and with the similar reasoning. 

S 

U'(W- C)ef(E•e <U'(W- CI=O f(e)de 

E[U'(W - C)e] < 0 follows immediately. 
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7. A similar graphical analysis can be done in the [P F(e) - C(e)] x at space, where the horizontal 
axis is the component of net payoff in utility that is increasing in P. In this space, it is more 
straightforward to discuss changes in the slope and curvature of IC in response to changes in the 
degree of risk aversion and riskiness. However, in this space the interpretation of the horizontal 
axis is less intuitive, and so I do not pursue this approach. 

8. FCC is derived from the incentive compatibility constraint, equation (1), and the zero expected 
profit condition, equation (2), neither of which contain the random variable. 
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