
Extra Unit-Speed Machines are Almost as Powerful as

Speedy Machines for Competitive Flow Time Scheduling

Ho-Leung Chan∗ Tak-Wah Lam∗ Kin-Shing Liu∗

Abstract. We study online scheduling of jobs to mini-
mize the flow time and stretch on parallel machines. We
consider algorithms that are given extra resources so as
to compensate the lack of future information. Recent re-
sults show that a modest increase in machine speed can
provide very competitive performance; in particular, us-
ing O(1) times faster machines, the algorithm SRPT
(shortest remaining processing time) is 1-competitive
for both flow time [23] and stretch [12], and HDF (high-
est density first) is O(1)-competitive for weighted flow
time [6]. Using extra unit-speed machines instead of
faster machines is more challenging. This paper gives
a non-trivial relationship between the extra-speed and
extra-machine analysis. It shows that competitive re-
sults via faster machines can be transformed to similar
results via extra machines, and hence giving the first
algorithms that, using O(1) times unit-speed machines,
are 1-competitive for flow time and stretch and O(1)-
competitive for weighted flow time, respectively.

1 Introduction
In this paper we revisit the problem of online scheduling
of jobs to minimize the flow time and stretch on m ≥ 2
parallel machines (see [24] for a survey). Each job
is released at unpredictable time and is sequential in
nature (i.e., it cannot be executed by more than one
machine at a time). We consider the case where
the processing time (work) of a job is known when
it is released. Preemption is allowed at no cost,
i.e., a preempted job can be resumed at the point of
preemption on any machine. SRPT (shortest remaining
processing time first) is a typical example for scheduling
in this setting.

Given a schedule, the flow time of a job is the
length of the time interval between its release time
and its completion time, and the stretch is the ratio
of the flow time to the processing time. In some
applications, each job is given a weight, and the concern
is the weighted flow time. Common objectives for job
scheduling are to minimize the total (or equivalently,
average) flow time (e.g., [19, 20, 2, 1, 21]), stretch (e.g.,
[7, 9, 22]), or weighted flow time (e.g., [4, 14, 3]) of all
jobs. Minimizing stretch is actually a special case of

∗Department of Computer Science, University of Hong Kong.
Email: {hlchan, twlam, ksliu}@cs.hku.hk

minimizing weighted flow time if we assign the weight
of each job to be the reciprocal of its processing time.
An online scheduler is said to be c-competitive for flow
time [resp. stretch, weighted flow time] if for any job
sequence, it guarantees the total flow time [resp. stretch,
weighted flow time] to be at most c times of that of the
optimal offline schedule.

Related work: SRPT is perhaps the most well
studied online algorithm for minimizing flow time. For
scheduling a single machine (m = 1), SRPT is 1-
competitive [19]. For m ≥ 2 machines, Leonardi and
Raz [20] showed that SRPT achieves the best possi-
ble competitive ratio, which is Θ(min(log n/m, log∆))
where n is the number of jobs and ∆ is the maximum to
minimum ratio of processing times. In the offline con-
text, minimizing total flow time on parallel machines
is NP-hard [15] and no algorithm is known to have a
constant approximation ratio.

Pioneered by Kalyanasundaram and Pruhs [17], re-
source augmentation has become a popular approach
to studying better performance guarantee for online
scheduling (e.g., [23, 21, 13, 11, 16, 6]). Specifically,
this approach allows the online scheduler to have extra
resources so as to compensate the lack of future knowl-
edge. The key concerns include (i) whether extra re-
sources can lead to 1-competitive (or even better) per-
formance against the optimal offline algorithm using no
extra resources, and (ii) how competitive an arbitraily
small amount of extra resources can achieve. Extra re-
sources can be in the form of faster machines or extra
(unit-speed) machines. Below we denote a machine that
can complete s ≥ 1 units of work in one unit of time as
an s-speed machine. For minimizing flow time on par-
allel machines, Phillips et al. [23] were the first to show
that SRPT when given (2 − 1/m)-speed machines is 1-
competitive, or in short, (2−1/m)-speed 1-competitive.
McCullough and Torng [21] later showed that SRPT is
indeed α-speed 1

α -competitive for any α ≥ 2 − 1/m.
Let us switch to the results on minimizing stretch

and weighted flow time on parallel machines (one can
refer to [22, 5, 4, 23] for results on a single machine).
For the case of stretch, Muthukrishnan et al. [22] have
showed that SRPT is 14-competitive and no online
algorithm can be 1-competitive. Chekuri et al. [14]
proposed a different algorithm that is 9.81-competitive.
They also gave a lower bound on the competitive ratio

334
SODA ’06, January 22-26, Miami, FL
©2006 SIAM ISBN 0-89871-605-5/06/01

for weighted flow time of Ω(min(
√

∆,
√

W, (n/m)1/4),
where W is the maximum to minimum ratio of the
weights. With resource augmentation, Becchetti et al.
[6] showed that HDF (Highest Density First) is (2+2ǫ)-
speed (1 + 1

ǫ)-competitive for weighted flow time. This
implies that SJF (Shortest Job First) is (2 + 2ǫ)-speed
(1 + 1

ǫ)-competitive for stretch. Recently, more results
on stretch are known. Chekuri et al. [13] proved that
the non-migratory algorithm IMD (proposed in [1]) is
(1+ ǫ)-speed O(1+ 1

ǫ)-competitive, and Chan et al. [12]
showed that SRPT is indeed 5-speed 1-competitive.

Improving the competitiveness via extra unit-speed
machines is more challenging. While a faster machine
can speed up a job, multiple unit-speed machines can-
not. In other words, we cannot use x unit-speed ma-
chines to simulate an x-speed machine, yet the reverse
is possible (using time-sharing). The literature contains
only a few results on exploiting extra machines to obtain
competitive scheduling (see [17, 23, 18, 13]). For flow
time scheduling, Chekuri et al. [13] have recently shown
that the algorithm IMD when given (1+ǫ)m unit-speed
machines is O(1+ 1

ǫ)-competitive for both flow time and
stretch. Whether O(m) unit-speed machines can make
an algorithm 1-competitive for flow time or stretch has
been an open problem.

To ease our discussion, we adopt the following
notations. Let α and τ be any real constants. An
algorithm A is said to be α-speed c-competitive [resp. τ -
machine c-competitive] for a certain objective function
if, for any job sequence, A using m α-speed machines
[resp. ⌈τm⌉ unit-speed machines] has a performance at
most c times of any offline algorithm using m unit-speed
machines. When we consider an algorithm A running on
m α-speed machines [resp. ⌈τm⌉ unit-speed machines],
we refer it as A(α) [resp. A 〈τ〉].

Our results: This paper shows a non-trivial rela-
tionship between the extra-machine analysis and the
extra-speed analysis of flow time scheduling. In par-
ticular, two methods are given to transform results
on competitiveness via faster machines into similar re-
sults via extra unit-speed machines. These transforma-
tions give the first algorithms that are O(1)-machine
1-competitive for flow time and stretch, and O(1)-
competitive for weighted flow time. See Table 1 for a
summary of results. Details are as follows.

Flow time transformation: The first transforma-
tion is relatively simple, serving as a warm-up. It aims
to preserve the flow time of each individual job. Specif-
ically, given an α-speed algorithm A(α) for some α > 1,
we want to transform A to an algorithm A′ that uses ex-
tra unit-speed machines to match the flow time of each
job as closely as possible. Specifically, our transforma-
tion guarantees that A′ when given O(α)m (unit-speed)
machines increases the flow time of each job at most
α(1+o(1)) times. Since SRPT is α-speed 1

α -competitive

for flow time, the transformation gives an algorithm
that is O(α)-machine (1 + o(1))-competitive (and more
precisely, (2 + ǫ)-machine (1 + 1

ǫ)-competitive for any
ǫ > 0). Note that A′ also preserves the competitive-
ness on weighted flow time and stretch. Thus, based
on HDF [6], the transformation gives an O(1)-machine
O(1)-competitive algorithm for weighted flow time.

Waiting time transformation: The waiting time
of a job is the amount of time the job is waiting
for processing before it is completed. To obtain an
O(1)-machine 1-competitive algorithm for flow time and
stretch, we need a more complicated transformation
based on the total waiting time of jobs. By definition, an
algorithm A is O(1)-machine 1-competitive for waiting
time if and only if A is O(1)-machine 1-competitive for
on flow time. Note that using extra unit-speed machines
can possibly improve the competitive ratio on waiting
time to be smaller than one, but it is impossible for flow
time.

Consider any algorithm A using α-speed machines.
Denote LA(α)(I) the total waiting time incurred for a
job sequence I by A(α). The work of McCullough and
Torng [21] implies that SRPT is α-speed 1

α -competitive
for waiting time, where α ≥ 2 − 1/m. That is, for any
I, LSRPT (α)(I) ≤ 1

αLOPT (I) where OPT denotes the
optimal offline algorithm using m unit-speed machines.
Using unit-speed machines to simulate SRPT(α) or any
A(α) does not necessarily blow up the total waiting
time α times. Ideally we want to transform A(α)
to an algorithm A′ using τm = O(α)m unit-speed
machines such that LA′〈τ〉(I) ≤ cLA(α)(I) where c is
a constant independent of α. Then, substituting A(α)
with SRPT(c), we have LA′〈τ〉(I) ≤ LOPT (I). Such a
constant c, however, does not exist.1

To obtain an O(1)-machine 1-competitive algorithm
for waiting time, we aim at a less demanding require-
ment, namely, LA′〈τ〉(I) ≤ c LA(α)(I) + o(LOPT (I)).
In fact, we find that c = 2 is already feasible. Then,
substituting A with SRPT and α with O(c), we have
LA′〈τ〉(I) ≤ LOPT (I), and thus A′ is O(1)-machine 1-
competitive for waiting time, as well as for flow time.

The second transformation can be extended to
give a guarantee for normalized waiting time (i.e., the
waiting time divided by the processing time). This leads
to an algorithm that is O(1)-machine 1-competitive for
stretch.

Technically speaking, the transformations are based

1We consider a simple example where α = 2. Let I be a job
sequence such that the i-th job is released at time 1 − (1/2)i

and the required work is (1/2)i. An algorithm with m 2-speed
machines can complete each job before the next one is released,
thus incurring zero waiting time. On the other hand, any
algorithm using τm unit-speed machines must put some job to
wait after the (τm+1)-th job is released, thus incurring non-zero
waiting time.

335

Extra Speed Extra Machines
Speed Competitive ratio Machines Competitive ratio

Flow time (1 + ǫ) O(1 + 1/ǫ) [13] ⌈(1 + ǫ)m⌉ O(1 + 1/ǫ) [13]
2 1 [23] ⌈(2 + ǫ)m⌉ 1 + 1/ǫ †

s ≥ 2 1/s [21] 34m 1 †
Stretch (1 + ǫ) O(1 + 1/ǫ) [13] ⌈(1 + ǫ)m⌉ O(1 + 1/ǫ) [13]

5 1 [12] 533m 1 †
Weighted 2 + 2ǫ 1 + 1/ǫ [6] ⌈(4 + 24ǫ)m⌉ 8 + 1/ǫ †
flow time 16s, s ≥ 1 1/s †
Waiting s ≥ 2 1/s [21] (36h − 2)m, 1/h †

time h ≥ 1

Table 1: Results on flow time scheduling. Results that are given in this paper are marked with †. Note that ǫ > 0
and s are any real numbers and h ≥ 1 is any integer.

on two interesting concepts called rate control and
waiting time allowance, both make scheduling easy. To
make these two concepts viable without blowing up
the flow time or waiting time, we skillfully exploit a
simulation of a α-speed competitive algorithm and a
prime period busy algorithm.

This paper also makes contribution to the extra-
speed analysis of SJF and HDF. In particular, we
improve the result in [6] to show that HDF can be 16-
speed 1-competitive for weighted flow time.

Remarks: This paper serves as the first step in
understanding how extra-machine analysis is related to
extra-speed analysis, and how extra machines can pro-
vide 1-competitive scheduling for minimizing flow time
and stretch. There are several interesting problems
to be addressed. We do not have a similar result for
weighted flow time. Unlike the algorithm IMD, our new
algorithms incorporate SRPT or HDF, and they are mi-
gratory in nature and do not allow immediate dispatch.
It is interesting to investigate non-migratory algorithms
with a similar performance. Another important direc-
tion is to minimize the Lp norm of flow time and stretch
[5, 13]. Note that Chekuri et al. [13] have extended
(1+ǫ)-speed (or (1+ǫ)-machine) O(1+1/ǫ)-competitive
results for flow time and stretch to the Lp norm.

2 Transformation that Preserves Flow Time

Throughout this paper, we use I to denote a sequence
of jobs. We denote the release time and processing time
of a job J as r(J) and p(J), respectively. Let A(α) be
an algorithm using m α-speed machines, where α ≥ 1 is
any real number. This section shows how to transform
A(α) to an algorithm, called Scatter(A(α), τ), that
uses ⌈τm⌉ unit-speed machines for any τ > α and has
performance comparable to A(α) in terms of flow time
as follows.

Lemma 2.1. Consider any job sequence I. For each

job J ∈ I, the flow time of J in the schedule of
Scatter(A(α), τ) is at most α(1 + α−1

τ−α) times in the
schedule of A(α).

Scatter(A(α), τ) divides the ⌈τm⌉ machines into
two bands. Band 1 uses m and Band 2 ⌈(τ − 1)m⌉
machines. A newly released job J always goes to Band
1 where it is partially processed. Then J is transferred
to Band 2 for completion. Consider any sequence I of
jobs. We denote the flow time of a job J in the schedule
of A(α) as FA(α)(J). We aim to bound the flow time of
J in Band 1 and Band 2, denoted as F1(J) and F2(J),
as follows:

(i) F1(J) = FA(α)(J); and (ii) F2(J) ≤ (α − 1)τ

τ − α
F1(J).

Then it follows that the flow time of J in the sched-
ule of Scatter(A(α), τ) is F1(J) + F2(J) ≤ (1 +
(α−1)τ

τ−α)FA(α)(J) = α(1 + α−1
τ−α)FA(α)(J), which is as

stated in Lemma 2.1.

Simulation. Requirement (i) can be achieved easily
by simulating the execution of A(α). Precisely, Band
1 uses m machines and schedules the jobs according
to a simulated copy of A(α), which uses m α-speed
machines. That is, Band 1 runs a job J if and only
if A(α) runs the job J . When A(α) completes J , Band
1 transfers J to Band 2. Thus, F1(J) = FA(α)(J), and J
is processed in Band 1 for exactly p(J)/α units of work.

Rate control. Let rem(J) be the amount of
remaining work of a job J when it is transferred to
Band 2. Jobs may be released in a bulk to Band 1, yet
they will each be partially processed before transferred
to Band 2 and will thus spread out eventually. Band
1 controls the rate of work transferred to Band 2 in
the sense that jobs released and transferred within
any time interval have bounded remaining work (see
Lemma 2.2 for technical details). With rate control,
Requirement (ii) can be satisfied easily using a simple

336

strategy, namely, the latest release time first algorithm
(LRT), which at any time t, processes jobs with latest
release time (to Band 1). Ties are broken arbitrarily.

The above discussion of Scatter is summarized
in Algorithm 1, followed by two lemmas on the work
transferred to Band 2 and the flow time in Band 2.

Algorithm 1 Scatter(A(α), τ), which uses ⌈τm⌉ unit-
speed machines.

Job Release: A newly released job goes to Band 1.
Band 1: It uses m machines. Jobs are scheduled ac-

cording to a simulated copy of A(α). When a job J
is completed in the simulated A(α), it is transferred
to Band 2.

Band 2: It uses ⌈(τ − 1)m⌉ machines and it completes
all jobs using LRT.

Lemma 2.2. (Rate control) Consider any time inter-
val [t, t′], let H be the set of jobs released within
[t, t′] and transferred to Band 2 within [t, t′]. Then∑

J∈H rem(J) ≤ (α − 1)(t′ − t)m.

Proof. Each job J ∈ H has been processed by Band 1
for 1

αp(J) units of work during the time interval [t, t′].
Band 1 can perform at most m(t′ − t) units of work
during [t, t′]. Thus,

∑
J∈H

1
αp(J) ≤ m(t′ − t), and∑

J∈H rem(J) =
∑

J∈H(1− 1
α)p(J) ≤ (α− 1)(t′ − t)m.

�

Lemma 2.3. (LRT) For any job J , F2(J) ≤ (α − 1) ×
τ

τ−αF1(J).

Proof. For any job J , let t0 = r(J), let t1 be the time
J is transferred from Band 1 to Band 2, and let t2
be the time J is completed by Band 2. Note that
F1(J) = t1 − t0 ≥ p(J)/α, and F2(J) = t2 − t1.

Assume that J waits for a number of time periods
in Band 2 before it is completed. Let S be the set of jobs
that have ever received processing in Band 2 while J is
waiting. For each job J ′ ∈ S, J ′ is released no earlier
than t0 (i.e., r(J ′) ≥ r(J)), and J ′ is transferred to Band
2 no later than t2. Applying Lemma 2.2 to the interval
[t0, t2], we have

∑
J′∈S rem(J ′) ≤ (α − 1)(t2 − t0)m.

Whenever J waits in Band 2, all the ⌈(τ − 1)m⌉
machines are processing jobs in S. The waiting time
of J in Band 2 is at most 1

⌈(τ−1)m⌉

∑
J′∈S rem(J ′) ≤

1
⌈(τ−1)m⌉(α − 1)(t2 − t0)m. Therefore, F2(J) =

t2 − t1 ≤ α − 1

α
p(J) +

α − 1

⌈(τ − 1)m⌉ (t2 − t0)m

≤ (α − 1)F1(J) +
α − 1

τ − 1
(F1(J) + F2(J)) .

Rearranging the last inequality, we have F2(J) ≤
(α−1)τ

τ−α F1(J). �

Based on the results that SRPT is 2-speed 1
2 -

competitive for flow time [21], and HDF is 4-speed 2-
competitive for weighted flow time [6], we can apply
Lemma 2.1 to obtain the following extra-machine com-
petitive results.

Corollary 2.1. Consider any ǫ > 0. (i) The al-
gorithm Scatter(SRPT(2), 2 + ǫ) is (2 + ǫ)-machine
(1 + 1/ǫ)-competitive for flow time. (ii) The algorithm
Scatter(HDF(4), 4+24ǫ) is (4+24ǫ)-machine (8+1/ǫ)-
competitive for weighted flow time.

3 Transformation that Preserves Waiting Time

Let A(α) be any algorithm using m α-speed ma-
chines, where α ≥ 1 is any real number. This sec-
tion shows how to transform A(α) to an algorithm
Scatter & Squash(A(α), τ) that uses ⌈τm⌉ unit-speed
machines and incurs a total waiting time comparable to
that of A(α) as follows.

Lemma 3.1. Let τ = 7α + 5k − 2 for any integer
k ≥ 1. Then, for any job sequence I, the total waiting
time incurred by Scatter & Squash(A(α), τ) is at most
2LA(α)(I) + 1

kLOPT (I), where LA(α)(I) and LOPT (I)
denote the total waiting time incurred by A(α) and the
optimal algorithm OPT using m unit-speed machines,
respectively.

We will prove Lemma 3.1 in Section 3.1. Let
us consider its implication first. Suppose that A is
α-speed (1/x)-competitive for waiting time for some
x ≥ 1. Let k = ⌈x⌉ and τ = 7α + 5 ⌈x⌉ − 2. By
Lemma 3.1, Scatter & Squash gives an O(α + x)-
machine (3/x)-competitive algorithm for waiting time.
In other words, based on the result that SRPT is 3-speed
(1/3)-competitive for waiting time [21], we immediately
obtain a 34-machine 1-competitive algorithm for wait-
ing time. Notice that an algorithm using unit-speed
machines is 1-competitive for waiting time if and only if
it is 1-competitive for flow time. The competitive ratio
of Scatter & Squash for waiting time can be further re-
duced to less than one using a more competitive result
of SRPT. However, for flow time, the competitive ra-
tio of an algorithm using unit-speed machines is lower
bounded by one. The following corollary summarizes
these results.

Corollary 3.1. (i) Scatter & Squash can give an
algorithm that is 34-machine 1-competitive for flow
time. (ii) For any integer h ≥ 1, Scatter & Squash

(based on SRPT(3h)) can give an algorithm that is
(36h− 2)-machine (1/h)-competitive for waiting time.

3.1 The algorithm As to be shown in Algorithm 2,
Scatter & Squash divides the machines into 3 bands

337

called Band 1a, Band 1b and Band 2, using respec-
tively m, (2k + 1)m and ⌈(7α + 3k − 4)m⌉ machines,
where k is any integer ≥ 1. Similar to the algorithm
Scatter, Band 1 (comprising Band 1a and Band 1b)
only partially processes the jobs, and Band 2 ensures
all jobs get completed. For i = 1a, 1b, 1 or 2, we
denote Li(J) the waiting time of a job J in Band i,
and let Li(I) =

∑
J∈I Li(J). Consider any job se-

quence I and any job J in I. Given an algorithm A(α),
Scatter & Squash aims to guarantee that L1a(J) =
LA(α)(J); L1b(I) ≤ 1

2kLOPT (I); and L2(J) ≤ L1(J).
Then Lemma 3.1 follows. To achieve L2(J) ≤ L1(J),
we ensure that jobs transferred from Band 1 to Band 2
are easy to schedule in the following sense. Let rem(J)
be the remaining work of a job J when J is transferred
to Band 2.

(a) Rate Control. For any time interval T , the sum
of rem(J) over all jobs released during T and
transferred from Band 1 to Band 2 during T is at
most (α − 1)m|T |.

(b) Bounded remaining work. rem(J) ≤ L1(J).

Band 1a uses the simulation technique presented in
the last section. It uses m machines and schedules jobs
according to a simulated copy of A(α). When a job J is
transferred out of Band 1a, p(J)/α units of its work has
been processed, and Band 1a incurs exactly the same
waiting time as A(α). I.e., L1a(J) = LA(α)(J). By
Lemma 2.2, Band 1a provides the rate control property.

Define the prime period of a job J to be the time
interval [r(J), r(J) + p(J)]. To achieve the bounded
remaining work property, we simply ensure that each
job is transferred to Band 2 after its prime period. That
is, a job transferred out of Band 1a within its prime
period is retained in Band 1b until the end of its prime
period.

Lemma 3.2. If a job J is transferred from Band 1 to
Band 2 at the end of or after J ’s prime period, then
rem(J) ≤ L1(J).

Proof. Let w(J) ≥ 0 be the amount of work done
on J in Band 1. J is transferred to Band 2 at
r(J)+w(J)+L1(J), which is at least r(J)+p(J). Thus,
L1(J) ≥ p(J) − w(J) = rem(J). �

Band 1 as a whole still satisfies the rate control
property because jobs released and transferred to Band
2 within an interval T is a subset of jobs released
and transferred out of Band 1a within an interval T .
The nontrivial part is how to ensure that the waiting
time incurred in Band 1b is comparable to A(α) or
OPT . To our surprise, we find that Band 1b, using
any prime period busy algorithm on 2k + 1 machines,
denoted PPBUSY〈2k + 1〉, incurs a total waiting time

Algorithm 2 Scatter & Squash(A(α), τ), where τ =
7α + 5k − 2 for any integer k ≥ 1.

Job Release: A newly released job goes to Band 1a.
Band 1a: It uses m machines. Jobs are scheduled

according to a simulated copy of A(α). At any
time t, if a job J is completed in the simulated
A(α), J is transferred to Band 1b if t ≤ r(J) +
p(J); otherwise, J is transferred to Band 2 (with
AWT (J) = L1a(J)).

Band 1b: It uses (2k + 1)m machines and it runs the
algorithm PPBUSY〈2k + 1〉. At the end of the
prime period of a job J , J is transferred to Band
2 if it is not completed (with AWT (J) = L1a(J) +
L1b(J)).

Band 2: It uses ⌈(7α + 3k − 4)m⌉ machines. At any
time, it runs the MIN-AWT algorithm to complete
the jobs.

at most 1
2k times of OPT . Formally speaking, at any

time, PPBUSY only considers jobs that are still in their
prime periods, and it selects arbitrarily one job for each
machine. Notice that PPBUSY may not complete a job
J and does not incur waiting time beyond the prime
period of J , yet OPT does both. In Section 3.2, we
will give a careful charging scheme to relate the waiting
time of PPBUSY and OPT . In summary, Band 1 has
the following upper bound on waiting time.

L1(I) = L1a(I) + L1b(I) ≤ LA(α)(I) + 1
2kLOPT (I).

For Band 2, we want to complete the remaining
work of each job J such that L2(J) is at most L1(J).
In other words, J is allowed to wait in Band 2 up
to L1(J) units of time. To ease our discussion, we
assume that each job transferred to Band 2 is associated
with an extra parameter AWT (J) representing the
allowed waiting time of J , and AWT (J) is set to
L1(J). Based on the properties of rate control and
bounded remaining work, we find that MIN-AWT, a
greedy strategy that schedules jobs with smallest AWT
(ties are broken arbitrarily), can complete each job
within its allowed waiting time if Band 2 is given
⌈(7α + 3k − 4)m⌉ machines. The above description of
Scatter & Squash is summarized in Algorithm 2. The
rest of this subsection is devoted to proving that for
each job J in I, MIN-AWT incurs a waiting time at
most L1(J).

MIN-AWT Consider a job J that is transferred from
Band 1 to Band 2, say, at time tsf (J). Recall that
AWT (J) is set to L1(J) and rem(J) (i.e., the remaining
work of J at tsf (J)) is at most AWT (J). We want
to show that if Band 2 uses MIN-AWT on O(α + k)
machines, then J waits no more than AWT (J) units of

338

time in Band 2, or equivalently, J is completed by the
time d(J) = tsf (J) + rem(J) + AWT (J). We call d(J)
the deadline of J .

We use an inductive proof and consider jobs in
increasing order of deadlines. Let J be a job. Assume
that all jobs with deadline earlier than J are completed
by their deadlines. We focus on the total waiting time
of J up to d(J). During [tsf (J), d(J)], whenever J is
waiting, all machines in Band 2 are processing jobs J ′

with the following properties:

1. AWT (J ′) ≤ AWT (J);

2. J ′ is transferred to Band 2 no earlier than tsf (J)−
2AWT (J) (otherwise, d(J ′) = tsf (J ′) + rem(J ′) +
AWT (J ′) < tsf (J) < d(J) and J ′ is completed
before tsf (J)); and

3. J ′ is transferred to Band 2 no later than d(J).

Let S be the set of all jobs J ′ satisfying the above
properties. Below we upper bound the sum of rem(J ′)
over all J ′ in S.

Lemma 3.3.
∑

J′∈S rem(J ′) ≤ δm AWT (J), where
δ = 7α + 3k − 4.

Proof. Let t1 = tsf (J)− 2AWT (J). By definition, jobs
in S are transferred to Band 2 within [t1, d(J)]. Let
t0 = t1 − xAWT (J) for some x > 1. We divide the jobs
in S according to their release time (to Band 1a). Let
S1 = {J ′ ∈ S | r(J ′) ≥ t0} and S2 = S − S1.

Jobs in S1. We use the rate control property to
bound the sum of rem(J ′) over all J ′ in S1. For each
job J ′ in S1, J ′ is released during the time interval
[t0, d(J)] and is transferred to Band 2 during [t1, d(J)].
Recall that t0 < t1. By the rate control property,∑

J′∈S1
rem(J ′) is at most (α − 1)m(d(J) − t0) ≤

(α − 1)m(x + 4)AWT (J).
Jobs in S2. In this case, we exploit the bounded

remaining work property and the fact that AWT (J)
is set to L1(J). Each job J ′ in S2 is released before
t0 and transferred to Band 2 on or after t1. Thus,
J ′ is kept in Band 1 for a period of length at least
t1− t0 ≥ xAWT (J). Note that L1(J

′) (i.e., the waiting
time of J ′ in Band 1) = AWT (J ′) ≤ AWT (J). Thus,
J ′ is processed by Band 1 for at least (x − 1)AWT (J)
units of work from t0 to t1. Band 1 has only (2k + 2)m
machines and it performs at most (2k+2)m(xAWT (J))
units of work from t0 to t1. Thus,

(2k + 2)mxAWT (J) ≥
∑

J′∈S2

(x − 1)AWT (J)

≥
∑

J′∈S2

(x − 1)AWT (J ′)

≥
∑

J′∈S2

(x − 1)rem(J ′) .

So,
∑

J′∈S2
rem(J ′) is at most (2k + 2)m x

x−1AWT (J).
In conclusion,

∑
J′∈S rem(J ′) ≤ [(α − 1)(x + 4) +

(2k + 2) x
x−1]m AWT (J). Putting x = 3, we obtain

Lemma 3.3. �

We are ready to prove that J can be completed
by d(J). Whenever J is waiting in Band 2 during
[tsf (J), d(J)], all machines of Band 2 are processing jobs
belonging to the set S, and the sum of rem(J ′) over all
jobs J ′ ∈ S is at most (7α + 3k − 4)m AWT (J). Band
2 uses ⌈(7α + 3k − 4)m⌉ machines, and the work due to
S can keep J waiting in Band 2 for at most AWT (J)
units of time. Thus, J is completed by d(J).

3.2 Analysis of PPBUSY Scatter & Squash uses
the algorithm PPBUSY in Band 1b. To upper bound
the waiting time incurred in Band 1b, we first study in
this section the waiting time incurred by PPBUSY when
it is used alone to process a sequence of jobs. The latter
result may have its own interest in other scheduling
problem.

PPBUSY〈h〉 uses hm machines, for any integer
h ≥ 2. It schedules a job only within its prime period
and it may not be able to finish each job. Let OPT be
the optimal scheduler, which uses m machines to process
all jobs to completion and minimizes the total waiting
time.

For any job sequence I, let P (I) be the schedule
produced by PPBUSY〈h〉 on I, and similarly OPT (I)
for OPT . Note that a job remains in P (I) only during
its prime period, while a job remains in OPT (I) until
it is completed. We want to show that the total waiting
time of jobs in P (I) is at most 1

h−1 of that of OPT (I).
We first focus on the schedule P (I). P (I) may

contain one or more waiting periods (a waiting period is
a period in which at least one job is waiting at any time).
Denote these waiting periods as λ1 = [t1, t

′
1], λ2 =

[t2, t
′
2], λ3 = [t3, t

′
3], · · · , where t1 < t′1 < t2 < t′2 < t3 <

t′3 < · · · . Let |λi| = t′i − ti. Note the P (I) accumulates
waiting time only during the waiting periods.

Definition 1. Let S = {λu, λu+1, · · · , λv} be a collec-
tion of consecutive waiting periods. Recall that h is
the parameter required by PPBUSY〈h〉. S is said to
be h-close if tu+1 ≤ tu + h|λu|, tu+2 ≤ tu + h(|λu| +

|λu+1|), · · · , and tv ≤ tu + h
∑v−1

i=u |λi|.

Furthermore, define tS to be the time (tu +
h

∑v
i=u |λj |), and define λ(S) to be the interval [tu, tS].

Note that |λ(S)| = h
∑v

j=u |λj |. See Figure 1 for an
example.

Fact 3.1. For any u ≤ i ≤ v, tS−ti ≥ h(|λi|+ |λi+1|+
· · · + |λv|).

We partition the waiting periods in P (I) into max-
imal h-close collections S1 = {λ1, λ2, · · · , λk1

}, S2 =

339

λ1 λ2 λ3 λ4 λ5 λ6

t1 t5

t1 + h|λ1|

t1 + h
P

2

i=1
|λi|

t1 + h
P

3

i=1
|λi| t5 + h|λ5|

TS1
= t1 + h

P

4

i=1
|λi| TS2

= t5 + h
P

6

i=5
|λi|

λ(S1) λ(S2)

time

Figure 1: Two h-close collections of waiting periods (h = 2 in this example).

{λk1+1, λk1+2, · · · , λk2
}, · · · . That is, the next waiting

period beyond each Si has a starting time greater than
tSi

. The notion of a maximal h-close collection of wait-
ing periods defines a framework for our analysis. In the
following, we show that for each maximal h-close col-
lection S of waiting periods, the waiting time incurred
by P (I) within the interval λ(S) is at most a factor of
1/(h−1) of the waiting time incurred by OPT (I) within
λ(S).

The following notion further provides a tool for
lower bounding the waiting time of OPT (I).

Definition 2. Consider any interval λ = [t, t′] and any
job J . If λ is enclosed in the prime period of J , the work
of J can be partitioned into three chunks of size t−r(J),
t′ − t, and r(J) + p(J) − t′, respectively. The middle
chunk is referred to as the λ-work of J . In general, for
any arbitrary λ, let λ′ = λ∩[r(J), r(J)+p(J)] and define
the λ-work of J to be the λ′-work of J . The amount
of work in the λ-work of J is denoted as W (J, λ) (i.e.,
W (J, λ) = |λ ∩ [r(J), r(J) + p(J)]|).

A fact useful to our analysis is that if W (J, λ) > 0,
the earliest time OPT (I) (or any schedule using unit-
speed machines) can start processing the λ-work of a
job J is max{t, r(J)}.

Let S = {λu, λu+1, · · · , λv} be a maximal h-close
collection of waiting periods. Let J be any job. Con-
sider the λi-work of J for all λi ∈ S. Below, we give
a way to mark the earliest possible schedule of the λi-
work of J in OPT (I). Let λℓ = [ti, t

′
i] be the first wait-

ing period overlapping with the prime period in S of
J (i.e., W (J, λℓ) > 0). Note that OPT cannot pro-
cess the λℓ-work of J earlier than ti or r(J). We mark
the first W (J, λℓ) units of work starting from the time
max{ti, r(J)} in the schedule of J in OPT (I). For each
subsequent j > ℓ, if the λj-work of J is non-null, we
identify, in the schedule of J in OPT (I), the first time
t ≥ tj when no work has been marked, and we mark an-
other W (J, λj) units of work starting from t. We have

the following observation on the work marked on the
schedule of J in OPT (I).

Within the time interval λ(S), we denote the wait-
ing time of J incurred by P (I) as LP (J)|λ(S), and sim-
ilarly LOPT (J)|λ(S) for OPT (I).

Lemma 3.4. Suppose that in the course of marking all
the λi-work of a job J in OPT (I), a total of y units of
work are marked beyond tS. Then LOPT (J)|λ(S) is at
least (h − 1)y.

Proof. Assume that λi = [ti, t
′
i] is the first waiting

period in S such that part of the λi-work of J is marked
beyond tS . Then, y ≤ |λi| + |λi+1| + · · · + |λv|. In
OPT (I), the λi-work of J is not completed by time tS .
Thus, within λ(S), the waiting time of J is at least
tS − t′i = tS − ti − |λi|. By Fact 3.1, we conclude that
LOPT (J)|λ(S) ≥ h(|λi| + |λi+1| + · · · + |λv|) − |λi| ≥
(h − 1)y. �

Lemma 3.5.

∑

J∈I

LP (J)|λ(S) ≤
1

h − 1

∑

J∈I

LOPT (J)|λ(S) .

Proof. With respect to P (I), the total waiting time of
all jobs during a waiting period λi is exactly the total
length of the λi-work of all jobs minus the amount of
work that PPBUSY〈h〉 processes during λi. That is,∑

J∈I LP (J)|λi
=

∑
J∈I W (J, λi) − hm|λi|. Summing

over all waiting periods in S, we have

∑

J∈I

LP (J)|λ(S) =

v∑

i=u

∑

J∈I

W (J, λi) −
v∑

i=u

hm|λi|

=

v∑

i=u

∑

J∈I

W (J, λi) − m|λ(S)| .

Note that
∑

J∈I LP (J)|λ(S) ≥ 0, and hence∑v
i=u

∑
J∈I W (J, λi) ≥ m|λ(S)|.

Since OPT has only m machines, during λ(S), OPT
can process at most m|λ(S)| units of work. Consider

340

the λi-work of all jobs over all λi in S. Their total
size is

∑v
i=u

∑
J∈I W (J, λi), which exceeds m|λ(S)|.

Thus, not all λi-work can be marked within λ(S) in
OPT (I). The total amount of work marked beyond tS
in OPT (I) is at least

∑v
i=u

∑
J∈I W (J, λi)−m|λ(S)| =∑

J∈I LP (J)|λ(S). By Lemma 3.4, LOPT (J)|λ(S) is
at least the total amount of λi-work marked beyond
tS for J . Thus,

∑
J∈I LOPT (J)|λ(S) is at least (h −

1)
∑

J∈I LP (J)|λ(S). �

Corollary 3.2. For any job sequence I, let LP (I)
be the total waiting time incurred by PPBUSY〈h〉
and LOPT (I) be that for OPT . Then, LP (I) ≤

1
h−1LOPT (I).

PPBUSY in Scatter & Squash. We are now
ready to analyze the waiting time incurred by Band
1b of Scatter & Squash. Recall that Band 1b uses
(2k + 1)m machines to run PPBUSY〈2k + 1〉. We want
to prove that for any job sequence I, the total waiting
time incurred in Band 1b of Scatter & Squash is at
most 1/(2k)LOPT (I).

By definition of Scatter & Squash, a job J in
I is transferred to Band 1b only after it is partially
scheduled in Band 1a. Thus, J remains in Band 1b
only during a subinterval of its prime period.

Let us compare the schedule of Band 1b with the
schedule when I is scheduled by a stand-alone copy of
PPBUSY〈2k + 1〉, which considers each job throughout
J ’s prime period. At any time t, if a job J remains in
Band 1b, then t is still within J ’s prime period, and
J also remains in the stand-alone PPBUSY〈2k + 1〉.
Thus, jobs remaining in Band 1b is a subset of jobs
remaining in the stand-alone PPBUSY〈2k + 1〉. As
both Band 1b and the stand-alone PPBUSY〈2k + 1〉 are
using (2k + 1)m machines, the number of jobs waiting
in Band 1b, denoted #1b(I, t), is at most the number
of jobs waiting in the stand-alone PPBUSY〈2k + 1〉,
denoted #P (I, t).

Let L1b(J) and LP (J) be the waiting time of
J in the schedule of Band 1b and the stand-
alone PPBUSY〈2k + 1〉, respectively. We have∑

J∈I L1b(J) =
∫

#1b(I, t)dt ≤
∫

#P (I, t)dt =∑
J∈I LP (J) ≤ 1

2k

∑
J∈I LOPT (J) .

4 Extension to Weighted Waiting Time and
Stretch

An O(1)-machine algorithm is 1-competitive algorithm
for stretch if and only if it is 1-competitive for nor-
malized waiting time (recall that the normalized wait-
ing time of a job refers to the waiting time divided
by the processing time). Thus, it is desirable that
Scatter & Squash can preserve the normalized waiting
time. In fact, we can show that Scatter & Squash can
be extended to preserve the weighted waiting time, i.e.,

each job is given an arbitrary weight. Notice that re-
garding weighted waiting time, Band 1a incurs the same
amount as the given α-speed algorithm A(α) does, and
Band 2 incurs no more than Band 1 does. Only Band 1b
requires modification to cater for the weighted setting.

In Scatter & Squash, Band 1b uses an arbitrary
prime period busy algorithm on (2k+1)m machines. We
enhance Band 1b by requiring it to select jobs with high-
est weights. We call this new busy algorithm PPHWF
(prime period, highest weight first). Intuitively, jobs
with big weights will wait less. Let OPT be the optimal
algorithm (using m unit-speed machines) for minimizing
weighted flow time. The key observation is that for any
job weight wi, we can bound together the waiting time
of all jobs with weight at least wi in PPHWF〈2k + 1〉
to be at most 1/(2k) times that of OPT . Then, by
induction from the largest to the smallest job weight,
we show that PPHWF〈2k + 1〉 incurs a total weighted
waiting time at most 1/(2k) times of OPT .

Furthermore, we can extend the transformation
so that the input algorithm, denoted A(ℓ, α), uses
ℓm α-speed machines, where ℓ ≥ 1 is an integer.
We call the transformation with the above extensions
weighted SS(A(ℓ, α), τ), which uses ⌈τm⌉ machines to
preserve the weighted waiting time as follows.

Lemma 4.1. Let τ = 7αℓ + 5k − 9
2ℓ + 5

2 . The weighted
waiting time incurred by weighted SS(A(ℓ, α), τ) is at
most 2 times of A(ℓ, α) plus 1/k times of OPT .

The proof of the above lemma will be given in
the full paper. For the special case of normalized
waiting time (i.e., the weight of each job J is 1/p(J)),
we can show that SJF is (4, 8s)-machine-speed 1/s-
competitive for normalized waiting time for any s ≥
1 (see Section 5). Then by Lemma 4.1, we obtain
an algorithm that is 533-machine 1-competitive for
normalized waiting time, as well as the following result.

Corollary 4.1. Based on SJF, weighted SS gives a
533-machine 1-competitive algorithm for stretch.

5 Improved Analysis of HDF and SJF on Faster
Machines

Recall that the competitive ratio of SRPT for flow time
and waiting time can be made arbitrarily small with
increased speed. [21]. This section presents a similar
result for HDF on weighted flow time and normalized
waiting time. We use the notation A(ℓ, α) to denote an
algorithm running on ℓm α-speed machines, and we say
that A(ℓ, α) is (ℓ, α)-machine-speed c-competitive if it
has performance at most c times of any offline algorithm
using m unit-speed machines. It is known that HDF
is (1, 4)-machine-speed 2-competitive for weighted flow
time [6]. Our key results are as follows.

341

Lemma 5.1. Let s ≥ 1 be any real number. HDF
is (2, 8s)-machine-speed (1/s)-competitive for weighted
flow time, and SJF is (4, 8s)-machine-speed (1/s)-
competitive for normalized waiting time.

The first result also implies an algorithm that is 16s-
speed (1/s)-competitive for weighted flow time (by
simulating HDF(2, 8s) using time sharing).

Let w(J) denote the weight of a job J . The density
of J is w(J)/p(J). HDF(ℓ, α) always schedules up to
ℓm jobs with the highest density and we assume that
ties are broken by job ID. Lemma 5.1 stems from an
observation that the performance of HDF can be scaled
with machine speed. Precisely, we compare HDF(ℓ, α)
and HDF(2ℓ, cα) where c ≥ 1 is a real. We show that
the waiting time of each job decreases by c times (see
the lemma below).

Lemma 5.2. For each job J , L(2,c)(J) ≤ 1
cL(1,1)(J),

where L(2,c)(J) and L(1,1)(J) are the waiting time of J
incurred by HDF(2ℓ, cα) and HDF(ℓ, α), respectively.

Proof. Denote S1(I) and S2(I) as the schedule of a job
sequence I using HDF(ℓ, α) and HDF(2ℓ, cα), respec-
tively. Consider a job J . Assume J is completed at time
z(J) in S1(I). During [r(J), z(J)], the waiting time of
J in S1(I) can be calculated as follows. Let I ′ be the
job sequence formed by removing J and all jobs with
lower priority than J . At any time, J waits in S1(I) if
and only if S1(I

′) is busy (i.e., all machines are running
some jobs). So the waiting time of J is the total length
of the busy periods in S1(I

′) during [r(J), z(J)]. Let
λ1, λ2, . . . be these busy periods.

Let λ = [t1, t2] be one of the above busy periods.
Let W = ℓm α |λ| be the work done by S1(I

′) during
|λ|. Let R be the jobs remaining in S1(I

′) immediately
after t2. Note that R contains at most ℓm − 1 jobs as
S1(I

′) is not busy immediately after λ.
Next, we consider the schedule S2(I

′). Within the
time interval λ, denote the busy periods in S2(I

′) as
ρ1, ρ2, . . . , ρn. Let g be the total length of these ρj .
Note that g ≤ |λ|. During these periods ρj ’s, S2(I

′) can
process the work W plus at most cα g units of work for
each job in R. Thus, the total amount of work done
by S2(I

′) during these ρi’s is exactly 2ℓm cαg, which is
upper bounded by W + cα g |R| < ℓ m α |λ| + c α g ℓ m.
Rearranging the terms, we have g ≤ |λ|/c.

In S2(I), the waiting time of J during λ is at most
the total length of busy periods in S2(I

′) during λ,
which is at most 1

c |λ|. Note that during [r(J), z(J)],
S2(I

′) is not busy for any time outside the periods λi’s.
So by considering each λi individually, we conclude that
the waiting time of J in S2(I) at most 1

c times that of
S1(I). �

Lemma 5.2 also implies that when comparing
HDF(2ℓ, cα) against HDF(ℓ, α), the weighted waiting

time, flow time, and weighted flow time of each job
also decrease by c times. Since HDF is (1, 4)-machine-
speed 2-competitive for weighted flow time, we conclude
that HDF is (2, 8s)-machine-speed (1/s)-competitive for
weighted flow time for any s ≥ 1. In the appendix, we
will show that SJF(2, 4) is 2-competitive for normal-
ized waiting time. By Lemma 5.2, HDF(4, 8s) is 1/s-
competitive for normalized waiting time for any s ≥ 1.

References

[1] N. Avrahami and Y. Azar. Minimizing total flow time
and total completion time with immediate dispatching.
In SPAA, pages 11–18, 2003.

[2] B. Awerbuch, Y. Azar, S. Leonardi and O. Regev.
Minimizing the flow time without migration. In STOC,
pages 198–205, 1999.

[3] N. Bansal. On minimizing the total flow time on
multiple machines. In SODA, pages 572–574, 2004.

[4] N. Bansal and K. Dhamdhere. Minimizing weighted
flow time. In SODA, pages 508–516, 2003.

[5] N. Bansal and K. Pruhs. Server scheduling in the Lp

norm: a rising tide lifts all boat. In STOC, pages 242–
250, 2003.

[6] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela,
and K. Pruhs. Online weighted flow time and deadline
scheduling. In RANDOM-APPROX, pages 36–47,
2001.

[7] L. Becchetti, S. Leonardi, and S. Muthukrishnan.
Scheduling to minimize average stretch without migra-
tion. In SODA, pages 548–557, 2000.

[8] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan.
Flow and stretch metrics for scheduling continuous job
streams. In SODA, pages 270–279, 1998.

[9] M. A. Bender, S. Muthukrishnan, and R. Rajaraman.
Improved algorithms for stretch scheduling. In SODA,
pages 762–771, 2002.

[10] P. Berman and C. Coulston. Speed is more powerful
than clairvoyance. In Proc. 6th SWAT, pages 255–263,
1998.

[11] H. L. Chan, T. W. Lam, and K. K. To. Non-migratory
online deadline scheduling on multiprocessors. In
SODA, pages 970–979, 2004.

[12] W. T. Chan, T. W. Lam, K. S. Liu, and P. Wong. New
Resource Augmentation Analysis of the Total Stretch
of SRPT and SJF in Multiprocessor Scheduling. In
MFCS, 2005.

[13] C. Chekuri, A. Goel, S. Khanna, and A. Kumar.
Multi-processor scheduling to minimize flow time with
ǫ resource augmentation. In STOC, pages 363–372,
2004.

[14] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for
minimizing weighted flow time. In STOC, pages 84–
93, 2001.

[15] J. Du, J. Y. T. Leung, and G. H. Young. Minimizing
mean flow time with release time constraint. Theoret-

ical Computer Science, 75(3):347–355, 1990.
[16] J. Edmonds. Scheduling in the Dark. In STOC, pages

179–188, 1999.
[17] B. Kalyanasundaram and K. Pruhs. Speed is as

powerful as clairvoyance. J. ACM, 47(4):617–643,
2000.

342

[18] C. Y. Koo, T. W. Lam, T. W. Ngan and K. K. To.
Extra processors versus future information in optimal
deadline scheduling. In SPAA, pages 133–142, 2002.

[19] K. R. Baker. Introduction to Sequencing and Schedul-

ing. Wiley, New York, 1974.
[20] S. Leonardi and D. Raz. Approximating total flow time

on parallel machines. In STOC, pages 110–119, 1997.
[21] J. McCullough and E. Torng. SRPT optimally utilizes

faster machines to minimize flow time. In SODA, pages
343–351, 2004.

[22] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and
J. Gehrke. Online scheduling to minimize average
stretch. In FOCS, pages 433–442, 1999.

[23] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Opti-
mal time-critical scheduling via resource augmentation.
In STOC, pages 140–149, 1997.

[24] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. In
J. Leung, editor, Handbook of Scheduling: Algorithms,

Models and Performance Analysis, pages 15–1–15–41.
CRC Press, 2004.

Appendix. Normalized Waiting Time of SJF
For the special case that the weight of each job J is
1/p(J), we will show that SJF is (2, 4)-machine-speed
2-competitive for normalized waiting time. Since SJF
and HDF are equivalent in this special case, we can
make use of Lemma 5.2 to show that SJF is (4, 8s)-
machine-speed 1/s-competitive for normalized waiting
time for any s ≥ 1.

Basically, we will first show that SJF is (2, 4)-
machine-speed 2-competitive for (unweighted) waiting
time. SJF accumulates less waiting time than other al-
gorithms on jobs with smaller size, so by considering the
jobs with increasing job size, we can show that SJF is
(2, 4)-machine-speed 2-competitive even for normalized
waiting time. Details are as follows. We let ALG be
any algorithm using m unit-speed machines.

Lemma 5.3. SJF is (2, 4)-machine-speed 2-competitive
for (unweighted) waiting time.

Proof. Consider any job sequence I. Since we are
interested in the (unweighted) waiting time only, we can
assume that the weight of each job is 1 and the schedule
of SJF is unaffected.

We notice the schedule of SJF on I is equivalent
to the schedule of HDF on I. It is shown in [6] that
HDF(1, 4) is locally 2-competitive in weighted flow time,
i.e., at any time t, the total weight of jobs remaining in
HDF(1, 4) is at most two times of ALG. Thus, at any
time, the number of jobs remaining in SJF(1, 4) is at
most two times of ALG.

At any time t, let Ut(SJF(2, 4)) be the number of
jobs remaining in SJF(2, 4), and define Ut(SJF(1, 4))
and Ut(ALG) similarly. Then, Ut(SJF(2, 4)) ≤
Ut(SJF(1, 4)) ≤ 2 × Ut(ALG). Note that SJF(2, 4) has
2m machines. If there are more than 2m jobs remaining
in SJF(2, 4), the number of jobs waiting in SJF(2, 4) =

Ut(SJF(2, 4)) − 2m ≤ 2(Ut(ALG) − m). Thus, at any
time, the number of jobs waiting in SJF(2, 4) at most
two times that of ALG, and the lemma follows. �

Lemma 5.4. SJF is (2, 4)-machine-speed 2-competitive
for normalized waiting time.

Proof. We consider any job sequence I, and let s1 <
s2 · · · < sr be the distinct values of job size in I.
Let LSJF(si, I) be the total waiting time incurred by
SJF(2, 4) on jobs in I with size exactly si, and define
LA(si, I) similarly for ALG. For any q = 1, . . . , r,
let I ′ be the job sequence including only jobs in I
with size at most sq. Since SJF does not change the
schedule of a job due to other jobs with larger size,
the total waiting time incurred by SJF(2, 4) on I ′ =∑q

i=1 LSJF(si, I
′) =

∑q
i=1 LSJF(si, I). By Lemma 5.3,

it is at most two times the total waiting time incurred by
any schedule of I ′ on m unit-speed machines. Thus, for
q = 1, 2, . . . , r,

∑q
i=1 LSJF(si, I) ≤ 2 ×

∑q
i=1 LA(si, I).

By putting ai = LSJF(si, I), bi = LA(si, I),
ci = 1/si and M = 2 into the next lemma, we con-
clude that the normalized waiting time of SJF(2, 4) =∑r

i=1
1
si

LSJF(si, I) ≤ 2
∑r

i=1
1
si

LA(si, I) = the normal-
ized waiting time of ALG. �

Lemma 5.5. Let r ≥ 1 be an integer and M > 0 be
a real number. Let a1, . . . , ar and b1, . . . , br be two
sequences of non-negative real numbers such that for
q = 1, . . . , r,

∑q
i=1 ai ≤ M ×

∑q
i=1 bi. Let c1 > c2 >

· · · > cr be a sequence of positive real numbers. Then,∑r
i=1 ciai ≤ M × ∑r

i=1 cibi.

Proof. We prove the lemma by induction on r. The
case for r = 1 is obvious. Assume that the lemma
is true when r = z, for some integer z ≥ 1. When
r = z + 1, we have a1, . . . , az+1 and b1, . . . , bz+1 such
that for q = 1, . . . , z + 1,

∑q
i=1 ai ≤ M × ∑q

i=1 bi. We
consider two cases.

(Case 1.) If az+1 ≤ M × bz+1, then
∑z+1

i=1 ciai =∑z
i=1 ciai+cz+1az+1 ≤ M×∑z

i=1 cibi+M×cz+1bz+1 =

M × ∑z+1
i=1 cibi.

(Case 2.) Otherwise, az+1 > M × bk+1. Let
az+1 = M × bz+1 + δ for some real number δ > 0.
∑z+1

i=1 ciai =
∑z−1

i=1 ciai + czaz + cz+1 × (M × bz+1 + δ)

≤ ∑z−1
i=1 ciai + cz(az + δ) + M × cz+1bz+1.

Consider the sequence of real numbers d1, . . . , dz

where for i = 1, . . . , z − 1, di = ai and dz = az + δ. For
any q = 1, . . . , z−1,

∑q
i=1 di =

∑q
i=1 ai ≤ M ×∑q

i=1 bi.

For q = z,
∑z

i=1 di =
∑z

i=1 ai + δ =
∑z+1

i=1 ai − M ×
bz+1 ≤ M×∑z

i=1 bi. Thus, by the induction hypothesis,∑z
i=1 cidi ≤ M×∑z

i=1 cibi. Thus, we have
∑z+1

i=1 ciai ≤
M × ∑z

i=1 cibi + M × cz+1bz+1 = M × ∑z+1
i=1 cibi, and

it completes the induction. �

343

