
A Data Structure Using Hashing and Tries For Efficient Chinese Lexical Access ∗

Yat-Kin LAM and Qiang HUO
Department of Computer Science, The University of Hong Kong, Hong Kong, China

(Email: h9914679@graduate.hku.hk, qhuo@cs.hku.hk)

Abstract

A lexicon is needed in many applications. In the past, dif-
ferent structures such as tries, hash tables and their variants
have been investigated for lexicon organization and lexi-
cal access. In this paper, we propose a new data structure
that combines the use of hash table and tries for storing a
Chinese lexicon. The data structure facilitates an efficient
lexical access yet requires less memory than that of a trie
lexicon. Experiments are conducted to evaluate its perfor-
mance for in-vocabulary lexical access, out-of-vocabulary
word rejection, and substring matching. The effectiveness
of the proposed approach is confirmed.

1. Introduction

A lexicon is needed in many applications such as con-
textual processing in OCR, handwriting recognition, and
speech recognition; spelling correction; information re-
trieval; computer games; and many others. Finding a good
organization of the lexicon to address different application
needs has been a topic of extensive researches for several
decades. Popular data structures include tries, hash tables
and their variants (e.g. [1, 3, 4]).

Although ideas behind these techniques are quite gen-
eral, some data structures that are suitable for western lan-
guages like English with just 26 letters may not be suitable
for oriental languages like Chinese with more than 5000
characters. For example, variants of 26-way tree [7] and
compressed tries [4] are useful in English as only 26 flags
are needed in a node to represent the 26 possible characters,
but for Chinese, more than 5000 bits are needed for each
node, which greatly increase the space required for storing
the lexicon. Some other techniques have to be used. In [2],
a specific trie data structure was used to store a Japanese
lexicon. Each node in the lexicon tree consists of a charac-
ter code and a pointer to a child node pointer table which is
a variable size table storing the pointers to the child nodes.

∗This work was supported by a grant from the RGC of the Hong Kong
SAR (Project No. HKU7145/03E).

One of the advantages of trie is that it allows fast access
to entries with common prefixes, which is very important
when searching similar entries. One of the disadvantages
is that if approximate string matching is performed, an as-
sumption has to be made that the first letter of the query is
correct, otherwise the whole lexicon will be searched.

In another recent attempt of finding a good data structure
to store a Chinese lexicon [6], a hash table is used to store all
2-character prefixes in the lexicon. The advantage of such
a table is that it allows a fast access to 2-character entries,
and entries with the same 2-character prefixes, that indeed
account for a large portion of entries in a typical Chinese
lexicon.

By combining the advantages of trie and hash table as
described above, a new data structure is proposed in this
paper to store a Chinese lexicon. In the following, we de-
scribe the detail of the structure and show how it works in a
series of experiments.

2. Our Approach

2.1. The Data Structure

The proposed structure consists of two tables and a num-
ber of tries. Entries in a Chinese lexicon is put into the
structure according to their length as follows:

- All single character words are stored in a table of
32768 bins. Since the GB code of a character takes
2 bytes, and the bit 16 is always set to 1, bits 1-15 are
used as the bin address for the word. Each bin corre-
sponds to a 2-byte value which may or may not be a
valid Chinese character. Therefore each bin requires a
valid bit to indicate whether it represents a valid single-
character Chinese word.

- All 2-character words are stored in a separate table of
65536 bins. The bin address is calculated from GB
codes of the 2-character word according to a prede-
fined addressing scheme. Should there be other words
contesting for the same bin, they are kept in a linked

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

A

B

A B C

D

A C D

E

D

C D A

F

B C

D

D

FE

E F

Single character words

Words longer than 2
characters sharing
common prefixes, in
the form of a trie.

A

B

AB,
ABC,
ABD

ACDD,
ACE

CDABC,
CDABCD,
CDABD,
CDE,
CDEFF

EF

Entries Represented as

Figure 1. Managing entries of different kinds
for the proposed structure.

AB

AC

EF

CD

. . .

. . .

. . .

. . .

Table for 2-character words

Figure 2. Linked list of entries in the table for
2-character words in the proposed structure.

list. The list can be sorted according to usage fre-
quency of the words, which can improve the perfor-
mance in practice. Note that we keep the number of
bits used for each address within 16 bits, so that at
most 2 bytes are needed to store each bin address. We
will discuss and compare several hashing schemes in
the experiment section.

- Any word longer than 2 characters will be divided into
a 2-character prefix and a suffix for the rest of the word.
The prefix is stored in the bin table for 2-character
words. Common prefixes share the same node, with
all possible suffixes forming a trie linked to the prefix.

Fig. 1 illustrates how different entries are managed by
using a 13-word lexicon (A, AB, ABC, ABD, ACDD, ACE,
B, CDABC, CDABCD, CDABD, CDE, CDEFF, EF) as an
example. As the 2-character patterns are stored in the ta-

Table for single character words

A value of 1 means the character is a valid entry

. . . A B C D E F . . .

. . . 1 1 0 0 0 0 . . .

Table for 2-character patterns

ECHAR ALT SUFFIX

1AB C 1000 1

D 1000 1

A 0011 00CD B 0011 0 C 0011 1 D 0001 1

D 0010 1

F 0010 1F 0010 0E 0010 1

D 0100 0

E 1000 1

D 0100 1

CHAR
ALT NEXT

WL E

0AC

1EF

Figure 3. Using the proposed data structure
to store a 13-word lexicon.

ble for 2-character words, collisions are resolved by using
a linked list. In this example, the prefixes to be stored are
“AB”, “AC”, “CD” and “EF”. Suppose “AB” and “CD”
contest for the same bin, the table for 2-character words will
have the entries as shown in Fig. 2.

Apart from nodes for single-character words, there are
other two types of nodes to be used in the structure: the
nodes for 2-character patterns and the trie nodes. Each node
for 2-character pattern has the following four fields

- CHAR: stores GB codes of 2-character word;

- E: ending bit, sets to 1 if the 2-character pattern is a
valid word;

- ALT: points to an alternative node, which contests the
same bin in the table of 2-character words;

- SUFFIX: points to a trie of suffixes.

The trie node is the same as the one used in a trie structure
reported in [5]. By using the above 13-word lexicon as an
example, the proposed data structure to store the lexicon is
shown in Fig. 3.

2.2. Exact Matching

To search a word from the structure, different steps are
used for entries of different lengths:

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

- To search for a 1-character word, the table for single
character words is checked to see if the word is valid.

- To search for a 2-character word, the table of 2-
character words is accessed. The 2-character word is
searched along the linked list at the bin, following the
ALT link of each node, until a match is found. If none
of the nodes matches the 2-character word or the bin in
the table is in fact empty, the search fails. Otherwise if
a node is found, the E field of the node is checked: if it
is 1, the word is found, else the search fails.

- To search for a word longer than 2 characters, the ta-
ble of 2-character words is accessed, finding the 2-
character prefix of the word the same way as finding
a 2-character word, except that the E field will not be
checked. If the 2-character prefix is not found, the
search fails. Otherwise, the SUFFIX link of the node
is followed to a trie of suffix; the remaining suffix of
the word is searched within the trie, using a normal trie
search technique (e.g. [5]).

2.3. Substring Matching

A substring matching algorithm will consider all possi-
ble substrings in the query. A straightforward method is to
perform lexical access at each position of the query. For
example, if the query is “abcd”, lexical access will be per-
formed on sub-queries “abcd”, “bcd”, “cd” and “d”. In each
lexical access, all prefixes will be considered. For example,
in the process of lexical access for “bcd”, matches for “b”,
“bc” and “bcd” will be found. In this way, all substrings in
the query will be matched.

In the proposed data structure, sub-queries are searched
in a multiple step process. For example, in substring match-
ing on the sub-query “bcdefgh”, the first character “b” is
checked against the table for single character words to see
if it can be a valid word. Next, the first two-character word
“bc” is searched in the table for 2-character words. If it can
be a word, it is put in the return list. If it can be a prefix,
the search will be continued on the trie attached to the 2-
character prefix. The suffix “defgh” will be looked up in the
trie. In each of the matched node in the trie, the end-of-word
flag is checked to see if the prefix can be a word. In this ex-
ample, the nodes representing “d”, “de”, “def”, “defg” and
“defgh” will be accessed.

3. Experiments and Results

3.1. Experimental Setup

In order to evaluate the performance of the proposed data
structure, a Chinese lexicon consisting of 86995 words is

Table 1. Word length distribution in a Chinese
lexicon used in experiments.

Total: 86995 words; Average length: 2.4
Length 1 2 3 4 5
Entries 6123 54351 13536 11879 598

Length 6 7 8 9 10
Entries 292 139 66 3 8

used. The word length distribution of the lexicon is shown
in Table 1. The average word length is 2.4 characters. Over
98% of the words are of length less than or equal to 4.

To compare the performance of different data structures
on exact matching and substring matching, the following
three sets of experiments are carried out:

- The first experiment examines the performance of find-
ing a query if the query is in the lexicon. The set of
testing queries is in fact the whole lexicon (i.e. 86995
entries). The efficiency of such a basic operation af-
fects the performance of many applications.

- The second experiment examines the performance of
rejecting an invalid query if the query is not in the lex-
icon. As a good data structure, it should be able to
reject invalid query efficiently so that applications or
users can be alerted for the error and respond as soon
as possible. The testing queries include 5000 invalid
queries that are generated randomly according to the
word-length distribution of the lexicon.

- The third experiment examines the performance of
substring matching. The testing set consists of 5000
queries that are generated by concatenating randomly
selected entries from the Chinese lexicon. Each query
contains at least 2 valid lexical entries and at least 11
characters. The average length of queries is 11.9.

In the above experiments, the following three metrics are
used for measuring the performance:

• the number of nodes accessed throughout the search,

• the number of character comparisons performed
throughout the search, and

• the user CPU time taken to finish the search.

The CPU time is measured by running the experiments in a
computer with a PIII-M 850MHz CPU (512k L2 cache) and
256MB SDRAM.

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

Table 2. A comparison of distributions of 2-character patterns using different hashing schemes.
of cells Occupied cells (%) Avg. chain len. Max. chain len.

Greedy method, 16-bit address 65536 37977 (58%) 1.69 11
Greedy method, 15-bit address 32768 26600 (81%) 2.41 15
Greedy method, 14-bit address 16384 15663 (96%) 4.09 18
Division method, table size 49157 49157 26455 (54%) 2.42 16
Division method, table size 57347 57347 33216 (58%) 1.93 15
Division method, table size 61441 61441 28133 (46%) 2.27 16

Table 3. A performance comparison of the proposed data structure using different hashing schemes.
Exact matching, valid entries Exact matching, invalid entries Substring matching

Hash Function Avg. # Avg. # CPU time Avg. # Avg. # CPU time Avg. # Avg. # CPU time
of nodes of char. per query of nodes of char. per query of nodes of char. per query
accessed comp. (in ms) accessed comp. (in ms) accessed comp. (in ms)

Greedy, 16-bit 2.2 3.8 0.00176 1.2 2.3 0.00185 30 35 0.00840
Greedy, 15-bit 2.8 4.8 0.00178 2.3 4.5 0.00192 41 53 0.00876
Greedy, 14-bit 3.8 6.8 0.00182 4.3 8.7 0.00199 58 87 0.00908
Div., 49157 2.8 4.8 0.00196 2.3 4.5 0.00199 42 56 0.00972
Div., 57347 2.6 4.3 0.00195 1.8 3.5 0.00198 37 44 0.00971
Div., 61441 2.9 5.0 0.00197 2.4 4.8 0.00202 41 53 0.00987

3.2. Effects of Different Hash Functions

In our approach, the hash function to calculate the bin
address in the table of 2-character words is a very basic
function for accessing the data structure. Such a function
ideally should 1) be as simple as possible, otherwise a big
overhead may be incurred, and 2) have a collision rate as
low as possible, otherwise more nodes need be searched.
We have tried the following two approaches:

- To choose n bits out of the 32 bit values of the GB
codes of a given 2-character pattern as the bin address.
For a given lexicon, a greedy algorithm is used to select
n bit positions that lead to the most even distribution
of 2-character patterns in the lexicon for each selected
bit. In our experiments, three cases, n = 16, n = 15,
n = 14, are tested.

- To use the division method by choosing an appropriate
table size. The table size will be at most 216 = 65536.
Using this method, three prime values, 49157, 57347
and 61441, are tested.

The distributions of 2-character patterns using the above
methods are summarized in Table 2. Using the greedy ap-
proach, it is observed that the proportion of occupied bins
increases as the number of address bits decreases. However
at the same time, the average chain length of the occupied

cells increases. With these different hash functions, the per-
formance of the proposed structure in exact matching and
substring matching is evaluated. The results are summa-
rized in Table 3. It is observed that the performance depends
much on the average chain length of the occupied cells. For
example, using a 16-bit address, the average chain length is
the shortest while the number of nodes accessed and number
of character comparisons are the fewest. When less number
of bits are used, the performance drops although the propor-
tion of occupied cells increases. As for the division method,
it is observed that with a table size of 57347, the structure
performs the best among the three table sizes. There may
be other table size that will give a better result, but the best
setup can only be found by trial and error for every different
lexicon.

From the above results, we recommend to use the hash-
ing scheme of 16-bit bin address derived by the greedy ap-
proach. For the Chinese lexicon we are using, those 16 bits
are bit 1, 2, 3, 4, 5, 9, 10, 11 of the GB code of both charac-
ters.

3.3. A Comparison with Other Data Structures

The performance of the proposed structure is also com-
pared with that of other data structures in exact matching
and substring matching. Structures compared include the
sequential list, trie, and the structure used in [6]. Sequen-
tial list and trie are the basic and common structures used

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

Table 4. A performance comparison of different data structures.
Exact matching, valid entries Exact matching, invalid entries Substring matching

Data Avg. # Avg. # CPU time Avg. # Avg. # CPU time Avg. # Avg. # CPU time
Structure of nodes of char. per query of nodes of char. per query of nodes of char. per query

accessed comp. (in ms) accessed comp. (in ms) accessed comp. (in ms)
Seq. list 15.5 21.0 0.00248 16.5 21.8 0.00325 260 340 0.0439
Trie 16.3 16.3 0.00211 16.1 16.1 0.00301 190 190 0.0160
Struct. in [6] 5.3 10.2 0.00194 7.8 15.5 0.00229 87 148 0.0117
Proposed 2.2 3.8 0.00179 1.2 2.3 0.00184 30 35 0.0084

Table 5. A comparison of memory requirement of different data structures for a Chinese lexicon.
Data Sequential list Trie Structure Proposed

Structure fixed width array index table (binary search) in [6] structure
Memory Requirement 1.7MB 660KB 770KB 760KB 730KB

in many applications, while the structure used in [6] is an
existing structure designed to store Chinese lexicon in liter-
ature. Table 4 summarizes the experimental results. Binary
search is used in sequential list searching. It is also used in
searching in the trie structure among alternative nodes. It is
observed that the proposed structure achieves the best per-
formance in terms of the abovementioned three metrics in
all cases. The proposed structure can reject invalid queries
very efficiently because the table of 2-character patterns acts
as a hash table. Although trie does not help much on pro-
cessing a single query in comparison with sequential list,
it does help a lot on substring matching because common
prefixes among substrings of the query are matched at the
same time.

Table 5 compares the memory requirement of different
data structures estimated by using our implementations for
the Chinese lexicon mentioned previously. It is noted that
there are two possible ways to store a lexicon as a sequen-
tial list. The first method is to store the lexicon as an array
with fixed width. The other method is to store the entries
sequentially. Then a lookup table is used to track the posi-
tion of all entries. The proposed data structure requires less
memory than that of a trie.

4. Discussions and Conclusion

In this paper, we have proposed a new data structure that
is suitable to store a Chinese lexicon. It combines the use of
tries and hash table and takes advantages of both approaches
in storing Chinese lexicons. A simple hashing scheme is
suggested for the hash table after comparing it with some
other methods. Experimental results show that the proposed
structure allows a fast access of in-vocabulary entries, a fast
substring matching as well as an efficient rejection of out-

of-vocabulary entries. The structure will be a good choice
for storing Chinese lexicons in many applications as men-
tioned in the beginning of the paper.

References

[1] E. Fredkin, “Trie Memory,”, Communications of the
ACM, Vol. 3, No. 9, pp.490-499, 1960.

[2] M. Koga, R. Mine, H. Sako and H. Fujisawa, “Lexical
Search Approach for Character-String Recognition,”
in Document Analysis Systems: Theory and Practice,
S.-W. Lee and Y. Nakano (Eds.), pp. 115-129, 1999.

[3] D. E. Kunth, The Art of Computer Programming: Vol.
3, Sorting and Searching, 1973.

[4] K. Maly, “Compressed Tries,” Communications of the
ACM, Vol. 19, No. 7, pp. 409-415, July 1976.

[5] S. N. Srihari, J. J. Hull and R. Choudhari, “Inte-
grating Diverse Knowledge Sources in Text Recogni-
tion,” ACM Transactions on Office Information Sys-
tems, Vol. 1, pp. 68-87, January 1983.

[6] P. K. Wong and C. Chan, “Postprocessing Statistical
Language Models for a Handwritten Chinese Charac-
ter Recognizer,” IEEE Trans. on Systems, Man, and
Cybernetics – Part B: Cybernetics, Vol. 29, No. 2,
pp.286-291, 1999.

[7] C. J. Wells, L. J. Evett, P. E. Whitby, R. J.
Whitrow, “Fast Dictionary Look-up for Contextual
Word Recognition,” Pattern Recognition, Vol. 23, No.
5, pp. 501-508, 1990.

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

