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Abstract
A supervised learning ART model (SART) is proposed which is based on the structure ofARTMAP but is

much simpler. The techniques ofmatch tracking and complement coding have been implemented to ensure the
correct selection 0/category and stability during the training and testing phases. Two simulations have been done
in order to verify andevaluate the classificationpowero/SART. The result 0/identification o/poisonous mushroom
by SART is compared with that by ARTMAP.

1. Introduction

Adaptive Resonance Theory (ARn, introduced by Grossberg[l], is a neural network model that
self-organizes stable recognition codes inreal timein response to arbitrary sequences ofinputpatterns. This network
has the characteristics to remain adaptive in response to novel events but remain stable in response to familiar
events. The stability-plasticity property of ART enables the network to combine the information from external
world with the internal knowledge stored[2]. These self-organizing and self-stabilizing features play an important
role in human congitive information processing[3].

ART may be considered as a kind of unidirectional pattern clustering[4]; its learning mode is unsupervised.
Sometimes, it is desirable to make ART to perform supervised learning so that not only it can self-organise the
input samples into different conceptual categories, but also it can be told what actual concepts the categories
represented. ARTMAP, introduced by Carpenter and Grossberg[5], is a supervised learning version of ART.
However, the overall structure of ARTMAP is too complicated and it is rather difficult to analyse the whole
mechanism.

The following sections propose a new model call SART which is a S.upervised.AlIT model based on the
structure of ARTMAP but with much simpler structure. Match Tracking and complement coding are employed to
solve the problem of instability from random input sequences and improve the system generalization. Two
simulations, one in simple character recognition and the other in mushrooms classification, have been conducted
and the result is comparable with that by AR'IMAP. In this paper, we assume that the reader is familiar with both
ARTl and ARTMAP models. To know more details about them, please refer to the corresponding sources.

2. Structure of SART

SART consists of a binary-value ART module (ARTI) and an analog-value single layer R (figure 1). The
nodes in F2 and R are one-to-one connected. IfF2 and R are disconnected, SART is just an ARTl model. When
the ART module is in the resonant state after an input pattern is presented to PI, the selected node in F2 will activate
the corresponding node in R. The expected result, given by the teacher, is learnt and stored in the weight from F2
toR, and thatnode is then called committed. One can see that the layerRreplaces the ARTb module in the ARTMAP.

The nodes in R are just the outstar[6] structure as shown in figure 2. The vector I is the input from the
teacher with all the components have the same value while the vector G = (g(Yl)' g(Y2)' ... ) is the output where
g(y} is the jth component which is a linear threshold function and equals to Yj for Yj > 0, and 0 otherwise. The
prediction (P) for an input pattern is then given by

P =L g(y.) --- (1)
. J

J

The activity of the node in R is governed by the following additive differential equation :
Yj =-aYj+bI +cz!(x) ---(2)

where Yj is the activity of the node j, Zj is the weight from F2 to R, I is the input from teacher, Xj is the activity of
node vj 10 F2,f() is the output function in F2, and a, b, c are system parameters.

Without the existence of the teacher (l =0), equation (2) is used in the recognition process; that means the
activity of R gives the prediction of the input pattern. It should be noted that only one node in F2 is active while
the others are asleep during the resonance; that means/(~) = 0, for anj exceptj =J, where J is the winning node
in F2. Therefore Yj' and also g(Yj)' diminish whenf(x} = u.

Ifthe ART module stays 10 the resonant state for long enough time, the frred node in R will reach equilibrium
with YJ =O. Since the output ofF2 takes a binary value, we let/(xJ) =1, then YJ ::: kz) > 0 if ZJ > 0, where k =cia.
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Therefore, from (1), P =g(YJ) =kzJ. The prediction is proportion to the strength of the synaptic weight. Assume
k =1, then YJ is just equal to the value stored in zJ; that means the output of prediction is ZJ. We can see from the
next section that ZJ learns the expected value from the teacher during training.

g(V, ) g(Y,) g x.)G

•••

Heure 2. Qutstar Confieuration in Layer R.

Teacher Prediction

ART 1

Fi2ure 1. Structure of SART

3. Learning in SART

The learning equations of both bottom-up and top-down weights in the ART module satisfy the following
gated decay differential equation[2] :

wij=Kf(xj)[-Eijwij+h(x)] •
where Wij is the weight from Vi to Vj' Xi is the activity of node Vi' and K, -Eij, h() are system parameters.
Simpler form of equations are used in the implementation of ARTI systems. For the bottom-up learning:

axi

WiJ=~+IX·1

where x: is the intersection of the bottom-up input pattern and the top-down template from F2, Xi is the ith output
of X, and a and ~ are system parameters.
For the top-down learning :

wJi =a(xi-wJ)

where a is the learning rate.
If a > 0, WJi is attracted to Xi. In vector terms, if a> 0, then wJ = (wJj, WJ2, ••• , wJM) approach X. Usually we

take a = 1, then wJi = 1 if Xi =1. The above equations are called fast learning rules because the system reaches
equilibrium (stable point) by one step only. For the weights in R, the learning rule of outstar is used:

zJ = (-dzJ+eIxJ)f(xJ)

where ZJ is the weight from F2 to R, XJ is the activity of vJ in F2, and d, e are system parameters.
For fast learning, we assume the speed of the weight change to reach its asymptotic value is much faster

than the decay of the excitation from input I. Therefore,
At equilibrium, zJ = °

=> °= ~dzJ + eIxJ
ButxJ = 1 (since F2 is a binary-value layer), therefore,
ZJ =hI where h=e/d.
In our application, we just set h =1 for simplicity. As a result, ZJ =I; the weight captures the expected value

from the teacher.

4. Match Tracking and Character Recognition

During the training process, when a committed node in R is activated by an input pattern but the value stored
in the weight of R is different from the expected result, Le. ZJ ::F- I, a reset signal, together with a control strategy
called match tracking, is sent to the orienting subsystem of the ART module to reset the F2 node. Match tracking,
proposed by Carpenter and Grossberg, in response to a predictive error on training trail, is a process which increases
the vigilance parameter of ART by the minimum amount needed to abort the resonant state and to drive a new
search for a new category that can establish a correct prediction. An example by Carpenter and Grossberg has
shown that without match tracking ARTMAP may produce incorrect result[5]. The same phenomenon occurs in
SART.

In order to verify the capability and usefulness of SART, two simulations have been carried out. The ftrst
one was to recognize the twenty six alphabets which were 4x4 binary patterns. The patterns are listed in appendix
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and the testing sets are listed in table 1. There were totally six testing sets which classified the twenty six alphabets
into two to seven groups. The numbers under the alphabets indicated to which group they belong. The patterns
were grouped into different categories randomly except test #1 in which the two groups divided are linearly
separable[7]. The input patterns were repeatedly presented to the system until 100% accuracy is achieved. Table
2 shows the number ofnodes committed in R with different values of Po (baseline vigilance parameter) in the ART
module. The stability-plasticity property and the representation power of SART was then verified.

Test # # of group A B C 0 E F G H I J K L M N 0 p Q R S T U V W X Y Z

1 2 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1

2 3 1 0 2 0 0 1 2 2 0 1 1 2 0 1 2 0 2 0 1 1 2 2 0 0 1 2

3 4 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1

4 5 4 1 2 3 3 0 4 4 1 2 1 2 3 0 0 1 2 4 4 0 0 1 2 3 0 4

5 6 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 0 1 2 3 4 5 0 1

6 7 0 1 2 3 1 4 5 6 0 1 2 3 2 5 5 6 0 1 2 3 5 4 5 6 3 5

Table 1. Testing Set in Alphabet Recognition

Test #

1
2
3
4
5
6

# of nodes in R
(Po = 0.0)

11
19
22
22
22
24

# of nodes in R
(Po = 0.5)

11
19
22
22
22
24

# of nodes in R
(Po = 0.75)

18
19
22
23
25
24

# of nodes in R
(Po = 0.9)

22
24

Unstable
25
25
26

Table 2. Results of Alphabet Recognition

It can be concluded that when Po is large, more categories will be formed. It is reasonable because we want
to classify the twenty six alphabets more fmer; as a result, generalization will be small. The case when Po = 0.0 is
called/orced choice which means after the fust choice in F2, the ART module will reach resonant state for any
input. Reset occurs only for mismatch between expected result and the value of R.

It was noted that there was an unstable case occurred in test #3. The following section discusses the reason
why instability occurs and suggests the solution by using complement coding.

5. Instability and Complement Coding

Firstly, we investigate why instability occurred in test #3 when Po = 0.9. The letters 'E' and 'Q' were both
classified into the same group (group 0) while the letter 'G' was classified into group 2. During the fust round
training, 'E' and 'Q' fued the same node in F2 while 'G' occupied another node in Fl. But we can see that the
intersection of the binary patterns 'E' and 'Q' is the same as that of 'G'.

1111
1000
1111
1111

n
1111
1001
1011
1111

=
1111
1000
1011
1111

'E' 'Q' 'G'
Unfortunately, at the second round training, when 'G' was presented to the system, the node with template

formed by 'E' and 'Q' was selected fust Reset and match tracking took place because of the mismatch between
the teacher and R. And then the value of p becomes greater than 1.0. Therefore the node formed by 'G' would
never be selected and an uncommitted node in Fl was selected. This process repeated indefmitely until all the
nodes in Fl were exhausted. Same phenomenon happens in ARlMAP.

This problem occurs because the system has lost some information during learning. The intersect operation
in learning makes the ART system stable because it is monotonic decreasing[4]; however, information has been
lost Considering the partial truth table of the intersect operation shown in table 3, all these three combinations of
A nB yield the same result 0, but they carry different information about A and B. As we can see, the non-existence
of a feature in the process of pattern recognition may sometimes contribute to the decision making. Therefore, it
may be better to represent both the existence and non-existence of an attribute.
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A

o
1
o

B

o
o
1

A (lB

o
o
o

Table 3. Partial truth table of (I

In order to solve this problem, complement coding was used[8]. Complement coding represents both the
on-response and off-response of an input pattern. Let a be the input pattern, then the complement of a, denoted ae

,

represents the off-response, where at == 1-a j • Then the,pair (a, a~ forms the complement coding of a.
Using complement coding, the binary pattern of the node formed by the intersection of 'E' and 'Q' is

(a)

1111
1000
1011
1111

(a~

ooסס

0110
ooסס

ooסס

and the template formed by 'G' only is
1111 ooסס

1000 0111
(a) 1011 (a~ 0100

1111 ooסס

The two patterns are different in the complement part although their original parts are the same. Table 4
shows the result of alphabet recognition of SART with complement coding.

Comparing tables 2 and 4 gives the phenomenon that the number of categories formed with complement
coding is less than that without complement coding. As more information is provided to SART for classification,
generalization is usually increased. Complement coding increases generalization is shown in more details in the
second simulation.

Test # # of nodes in R # of nodes in R # of nodes in R # of nodes in R
(Po = 0.0) (Po = 0.5) (Po = 0.75) (Po = 0.9)

1 8 8 14 24
2 16 16 18 24
3 22 22 23 26
4 19 19 21 26
5 20 20 23 25
6 25 25 25 26

Table 4. Results of Alphabet Rec02nition with Complement Codin2

6. Distinguishing Edible and Poisonous Mushrooms

ARTMAP was tested on a benchmark machine learning database that partitioned a setofobservable features
of a mushroom as a binary vector, and each mushroom is classified as either edible or poisonous[9]. This data set
includesdescriptionsof8,124hypothetical samples corresponding to 23 species ofgilledmushrooms in the Agaricus
andLepoiotaFamily. Among the 8,124 samples, 4,208 (51.8%) samples are edible and 3,916 (48.2%) are poisonous.
Each sample describes 22 observable features, which have totally 126 different values, of a mushroom. The result
was satisfactory as over 90% correct classification could be obtained when the training set size is over 250 out of
8,124[5]. In order to compare the performance andresult with ARTMAP implementedby Carpenter and Grossberg,
the same benchmark was also tested by SART. Complement coding has not been applied to ARTMAP but it is
applied in SART so as to provide more information. Consequently, the input patterns to SART were 252-element
binary vectors, each vector having 1261's and 1260's, instead of 12~elementbinary vectors in ARTMAP.

In this simulation, SART performed only off-line learning in which a fIXed training set was repeatedly
presented to the system until 100% accuracy was achieved on that set Usually 2 to 3 iterations were needed to
stabilize the network. The training sets were ranging in size from 15 to 4,000 samples. System performance was
then measured on the test set, which consisted of all the others 8,124 samples not included in the training set No
learning occurred in testing. Two set of testings were performed, using two different baseline setting of vigilance
parameter Po = 0.0 (forced choice condition) and Po = 0.7 (conservative condition). In each set of testing, 10
independent simulations were carried out and the results are listed in tables 5 and 6.
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Training Set Size Average % Correct Average % Incorrect Number of SART
(Test Set) (Test Set) Categories

15 80.3 19.7 2-4
125 97.7 2.3 4-6

1000 99.6 0.4 4-7
4000 99.9 0.1 5-7

Table 5. Off-line Forced Choice (~'" = 0.0) SART Performance

Training Set Average % Correct Average % Incorrect Average % Number of SART
Size (Test Set) (Test Set) No-Response Categories

(Test Set)

15 53.5 6.3 40.2 4-5
125 75.9 0.6 23.5 13-17

1000 98.6 0.1 1.3 17-35
4000 99.9 0 0.1 20-42

Table 6. Off-line Conservative (Pi' = 0.7) SART PerfQrmance

Training Set Size Po =0.0 Po =0.7

AR1MAP SART AR1MAP SART

15 4-6 2-4 8-10 4-5
125 5-14 4-6 33-37 13-17

1000 7-18 4-7 53-66 17-35
4000 11-22 5-7 61-73 20-42

Table 7. Number of Categories fQrmed by AR1MAP and SART

The fQurth CQlumn in table 6 shows the average percentage of No-Response which means the matching
between the input sample and all the patterns learnt in SART dQes not exceed the baseline vigilance value (0.7).
TherefQre, SART answers 'SQrry, I don'tknQw'.

The number Qf categQries fQrmed in the forced choice mode is much less than that in the conservative mode,
especially when the size of the training set is large. This result is reasonable because'in the conservative cases,
the similarity between the input pattern and the selected template should not be less than the baseline vigilance
value Po (0.7). If the difference between them is large, a new categQry will be fQrmed to recognize this novel input
pattern. As a result, in general, more categQries will be generated when the baseline vigilance value is greater. For
instance, when the training set size was 4000, one simulatiQn gave 42 categories in conservative mQde but 5 only
in forced choice mode.

The results shQwn above are similar to that in AR1MAP by Carpenter and Grossberg except the number of
categories formed by SART is much smaller than that in AR1MAP. Table 7cQmpares the difference. The difference
in the number ofcategories formed is due to the incQrporation Qfcomplementc~ing in SART. CQmplementcoding
can providemore information to SART SQ thatmore generalisatiQn is resulted; therefQre, less categQries are formed.
Without complement coding, the number of categories formed in SART is almQst the same as that in AR1MAP.
As the number ofcategories formed is smaller, the learning rate, in the simulation, is faster because the time needed
to establish resonant state is shortened, even though the input pattern size is twice of that without complement
coding, which takes 30% longer in learning rate. The slower in learning rate is due to the searching Qfthe apprQpriate
template frQm a larger categQry set in F2 to match the input pattern. But it may have no influence if the searching
is done in parallel mechanism.

7. Conclusions

The self-organising and self-stabilizing capabilities Qf ART make it a fantastic mQdel, in spite of the
complexity of its structure. The AR1MAP provides supervised learning but its structure is mQre complicated.
SART is a simpler supervised ART mQdel than AR1MAP. The supervised learning capability is desirable as it can
tell the ART mQdule what the actual concept learnt is and distinguish a subset pattern frQm the template if they are
classified into different groups but their difference is within the tolerant level. The expected value frQm the teacher
in SART is used to differentiate them. ART cannQt do that as it self-organizes or classifies the patterns according
to their similarity Qnly. IncorpQrating SART with match tracking and complement coding, the classification ability
and system stability can be improved. Besides, the system generalization is enhanced.
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Appendix
The twenty six 4x4 binary alphabet patterns. The two groups separated by the dashed line are linearly

separable.
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