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Abstract - Conventional synthesis filters in subband 
systems lose their optimality when additive noise due, for 
example, to signal quantization, disturbs the subband 
components. The multichannel representation of subband 
signal is combined with the statistical model of input 
signal to derive the multirate state-space model for filter 
bank system with additive noises. Thus the signal 
reconstruction problem in subband system can be 
formulated as the process of optimal state estimation in 
the equivalent multirate state-space model. With the input 
signal embedded in the state vector, the multirate Kalman 
filtering provides the minimum-variance reconstruction 
of input signal. Using the powerful Kronecker product 
notation, the results and derivations can then be extended 
to the 2-D cases. Incorporated with the vector dynamical 
model, the 2-D multirate state-space model for 2-D 
Kalman filtering is developed. Computer simulation with 
the proposed 2-D multirate Kalman filter gives favorable 
results. 

I. Introduction 

Recently multirate signal processing ha5 become the 
domain of extensive research. The concept of multirate 
signal processing is to decompose the original signal into 
complementary frequency bands and then process them 
separately in each subband. There have been tremendous 
progress on the design of decimation and interpolation 
filters or analysishynthesis filter banks that allow perfect 
reconstruction[5]. The conventional approach for PR 
filter bank systems are based on the assumption that the 
subband components are free of noise. However, in 
practical application with filter bank systems, the 
subband components are always contaminated by noises 
due to the effect of quantization, round off and other 
corruption, therefore, the perfect reconstruction is no 
longer possible. 

The goal of the paper is to improve the applicability 
of filter bank systems by proposing the multirate Kalman 
synthesis filter to replace the conventional synthesis 
filters, with emphasis on 2-D cases. With the input signal 
embedded in the state vector, the multichannel 
representation of subband signals is combined with the 
statistical model of input signal to derive the multirate 

state-space model for the filter bank systems and the 
subband noises are assumed to be additive ones in this 
model. On the basis of this model. the multirate Kalman 
filter can be constructed to provide the minimum- 
variance estimation of the input signal based on 
observations of noisy subband components. The concept 
of multirate Kalman synthesis filtering is first given in 
[3]. Our works differ from those of [3] in that the 
philosophy to derive the state-space model is different 
and the multirate state-space model suitable for 2-D 
Kalman filtering is developed. 

11. Filter bank Systems and Problem Formulation 

11.1 Filter bank systems 
Let (HL (z ) ,GA ( 2 ) :  k = 0,1,... , M - I }  denotes the .M 

band filter bank systems. The bank of filtcrs {HI i:)} 
constitutes the analysis filters. Each filter output is down- 
sampled and transmitted to the receiver. where they are 
up-sampled and fed into thc bank of synthcsis filters 
{ G ,  ( t  j} for signal reconstruction. 

11.2 Multichannel representation of subband signals 
we shall consider 

only the M = 2 ,  i.e., two band case in the interest of 
convenient description, the derivations and results can be 
easily generalized to M > 2 case at the cost of notational 
complexity. Let {h, ,  g , :  i = 0.1)denotes the impulse 
response of 2 - band analysiskynthesis filter bank. we 
have the equivalent multichannel representation of 
subband signals y,(nj, i = 0,l 

Without any loss of generality, 

and H(k) is the multichannel impulse response matrix of 
the form 

h, , (k)  = h , ( 2 k )  andIz,,(k)= h,(2k -1)  i =0,1 
The h,, ( n )  andf, ( n )  above are the so-called polyphase 
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components of h,(n) and f ( n )  respectively. 
If additive noisy corruption are included in the 

subband components, the received subband signal 
r( n )  can be expressed as follows: 

r(n) = y(n)+ v(n) (2-3) 

v(n)= [v,(n) ~ , ( n ) ] ~  in (2-3) is the additive-noise 

disturbance vector. 

111. Derivation of Multirate State-Space Model 
for 1-D Signal 

111.1 The Basic Signal Model 
Recall the multichannel representation of subband 

signal (2-1). Let p = A+ A ,  where 1 and A are chosen 
such that h, (-2A - 1) = 0 and h, (2A + 1) = 0 i = 0,l . By 
substituting k = k - A ,we can rewrite (2-1) as a causal 
form 

P 

y(n) = H(k - A)f ( n  + A  - k )  
(3-1) 

k 0  

(3- 1) can be equivalently described by a state-space 
model (A,B,C,D) . If we denote the state vector as 

x(n)=[f(rl+A--l)r q n + a - 2 1 r  ... f ( n - - ~ ) ~ ] ' ,  we 

then have 
x( n + 1) = AX( n )  + Bf (n + A) (3-2a) 

We further denote H , ( k )  = [h , (k )  h , , ( k ) ]  and notice 
that h, (-21 - 1) = 0 ,  the subband output can be written 
as 

= Cx(n) + Df[2( n + A)] (3-2b) 
Considering the effect of noisy disturbance vector 

v(n) , we can formulate the problem as the form of state- 
space model 

x ( n  + 1) = Ax(n)+ Bf ( n  +A) x(-I) = x-I 
r(n) = Cx(n)+Df[2(n+A)]+v(n) (3-3) 

111.2 The Statistical Model 

characteristic of input signal should have the form[ 11 
The state space model describing the statistical 

z ' (k+ l )=@~' (k)+Gu(k)  Z'(-l)=z'-, 
f ( k )  = W ( k )  (3-4) 

where the z'(k) and u ( k )  are the state vector and driving 
source, respectively. 

Examining the state-space models described by (3-3) 
and (3-4) reveals that the two systems evolve in different 
time scale. Alter some algebra and let 
z(n) = z'[2(n+A)], we have the equivalent block 
generation model (3-5) of thc form: 

z(n+1)=@*z(n)+G2u2(n) 

I ( n  til) = H,z(n) t Qzuz(n) 
f P ( n  + A l l  = W n )  

(3-5)  

111.3 The Multirate State-Space Model 
The basic model (3-3) can be augmented with the 

statistical model (3-5) to yield the final combined 
multirate state-space model. 
w(n + 1)  = Aw(n) +Bu,(n) 

r(n) = Cw(n) + v(n) 
+(-I) = ik, 

(3-6) 

where w(n)=[x(n)' ~ (n) ' ] ' ,  is the state vector of 

system model (3-6). The parameter matrices 
A, B and 
_ _  

are de temned as follows 
(3-7) 

IV. Derivation of Multirate State-Space Model 
for 2-D Signal 

IV. 1 The Basic Signal Model 
When implementing the 2-D filter banks, the 

dominant approach is to apply two I-D filter banks 
separately. Let {hf , gf: i = 0,1 } and {h,' , gl: i = 0,1 } 
denote two I-D filter banks for column- and row-wise 
operations, respectively. The original 2-D signal 
f ( m ,  n )  can then be decomposed into four subband 
components gjj(m,n) i, j = 0,l through the 2-D separate 
analysis banks. We have the 2-D multichannel 
rcprcsentation of the form 

If we further define 

F(m, n )  = [F(m - A', n )  F(m - A' + 1, n )  ... F(m+ X, .)Ir 
and after some algebra (4-1) can be expressed as the 

more compact form 

y ( m , n )  = x H ' F ( m , n  -t% - k ) H ' ( k  -%)' 

where E'= [ H'(A') H c ( A ' - l )  ... H'(-X)].  
For the sake of derivation of 2-D multirate state-space 
model, we express ( 4-2 ) in a more convenient form with 
the powerful Kronecker product notation, namely, 

Y(n1.n) = i ( H r ( k -  ,l')@W ) f (m ,n  + K  - k )  = tC ,? (n i . t i+K  - k )  

- 

p' - - (4-2) 

1 =o 

1-0 k=0 

(4-3) 
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where - 
Y ( ~ J Z )  = [ ~ ~ ~ , ( m , r ~ )  ~ ~ ~ ~ ( m , n )  y,,,(m,n) yll(m,n)]'  

and F(m,n+j l ' )= 
[f[2( m - A' ),2( 12 + ;1' )I.. f[2(m + 2 ) + 1,2( n + ;1' )] 
f[2(m- A' ) , 2 (n  + X) + 1]..f[2(m + 2') + 1,2(n + X )  + I]]' 

The column vector F ( m , n + X )  happens to be 
constituted by two adjacent column vectors 
f[m,Z(n+X)] and f[m,2(n+;1')+1]. As in 1-D case, 
we define state vector as 
x( m, n )  = 

- 

- 

- - - [ G( m, ,I + x - I)' F( m, n + x - 2)' . . . F( m, ,I - *' )'I' 
, and consider the effect of noisy disturbance 
r (m,n)=y(m,n)+Iv(m,n) ,  wethenhave 

x(m, n + 1) = Ax(m, n )  + BF(m,n + X) ?(m,-l) = i,n 
F(n2,n) = Cx(m,n)+Df[m,2(n+il')]+ V(m,n )  (4-4) 

- 

IV.2 The Vector Dynamical Model 
Consider the wide-sense stationary random field 

f ( t , n ) ,  for large portion of nature images, their 
autocorrelation functions R( t, n )  are well characterized 
by ( 4-5 ) PI 

On the basis of (4-5) a vector model can be developed 
[2], and have the form in our configuration: 

z( m, n + 1) = @'z( m, n )  + G,u2 (m, n) 

F( m, n + il' ) = H2 z(m, n ) + Q,u, (m, n ) 

f [m,2(n+X)I= Hz(m,n) 
u[m,2(n+X)]  [ u[m,2(n+X)+l ]  

R(r,n) = aexp(-,u,ltl-,u,inl) (4-5) 

- 
(4-6) - 

1, and where u 2 ( m , n )  = 

z(m, k) and U? (m, k )  are the 4( p ,  + 1) - dimensional state 
vector and driving white noise vector, respectively. 

IV.3 The 2 - 0  Multirate State-Space Model 
The 2-D multirate state-space model with 

consideration of the statistics of object plane and noisy 
disturbances in subbands can be constructed by 
combining the basic model (4-4) with the object plane 
model (4-6) to yield a augmented multirate state-space 
model (4-7). 
w ( m , n + l ) =  Aw(m,n)+Bu,(m,n) +(m,- I )=  +,,, 

- - 

(4-7) - r(m, n )  = Cw(m, n )  + S(m,n) 

The vector w ( m , n )  = [x(m,n)' z(m,n)']' is the state 

vector of system (4-7). The Kalman synthesis filter 
equations for 2-D subband system are given below for the 
sake of completeness 
iU(m.n) = [I-K(m,n)Clxiv(m, n-  I)+K(m,n)F(m, n) 

K(m,n) = P(m,n)C'[CP(m,n)Fr + R(nz,n)]-' 
P(m, ti + 1) = A[I - K(m, n)C]P(m. n)Ar +FQ(m, n)Br  

(4-8a) 
(4-8b) 
(4-bc) 

- -  

with +(m,-l) = G,,,, P(m,-11-1) = P, for m= 0,1;.. . 

R and C l  are the covariance matrices of i( n )  and u2 ( n )  , 
respectively. 

V. Numerical Results and Discussions 

Computer simulation is carried out to show the 
feasibility and effectiveness of the proposed 2-D Kalman 
filtering for optimal 2-D signal reconstruction from noisy 
subband systems. We compare the performance of the 
proposed 2-D multirate Kalman filter versus the 
conventional PR filters for 2-D signal reconstruction 
under different noise levels. The simulation was 
implemented on the SGVR4000 platform with Matlab. 

We adopted a set of 2-band QMF PR filter bank 
{h(n)}of length 8 in our simulation [4]. The 2x2 

subband decomposition of test image is implemented 
through two I-D separate analysis filter 
bank{h;,hr). with h' ( n )  = hr(n)  = h,(n) ,  i = 0,l. 

,=n.i 

Two quantitative measures, SNR,InSn and SNR, , are 
defined to reflect the input noise level and reconstruction 
performance, respectively. We would denote SNR,?" as 
S N R , ,  since we adopted the same SNR level in each 
subband in our simulation. The test image Hillside is of 
size 160 x 160 x 8 ( fig. 1 (a) ). The image is converted to 
zero mean prior to 2 x 2 subband decomposition and its 
autocorrelation function is found to have the form of 
R ( t , n )  = 1168.3exp(-23591tl-0.221nl) ( f : continuous in 

horizontal direction ). White additive noise at different 
S N R  levels was added to all the four subband images. 
Fig.2 demonstrates the reconstruction performance 
comparison with both the proposed multirate Kalman 
filtering and the conventional PR synthesis filters under 
different S N R  level. It is observed that the improvement 
in reconstruction SNR with the proposed 2-D multirate 
Kalman filtering is considerable. Fig1 .(e) shows that, 
even in the extremely low SNR, case, the main structure 
of the original image is still distinguishable on the 
reconstructed image with 2-D multirate Kalman filtering. 

VI. Conclusion 

In this paper, we combine the multichannel 
representation of subband signal with the statistical 
model of input signal to derive the multirate state-space 
model for noisy filter bank systems, with emphasis on 2- 
D cases. With the input signal embedded in the state 
vector, the issue of signal reconstruction can be 
formulated as the optimal state estimation with multirate 
Kalman filtering. Since the Kalman filtering is one- 
dimensional in nature, the vector dynamical model is 
incorporated to develop the 2-D multirate state-space 
model suitable for 2-D multirate Kalman filtering. 
Computer simulation results demonstrate significant 
improvement in SNR, of reconstructed 2-D signal, under 
different noise levels, with the proposed 2-D multirate 
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Kalman filtering approach over those with conventional 
synthesis filter. The nonstationarity of nature images, 
however, can be tackled, with adaptive Kalman filtering 
approach based on the image segmentation, which 
remains the topic for further research. 
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Fig. 1 .  (a) Original image Hillside of size 160 x 160 ; (b) 2 x 2 subband decomposition of Hillside; (c) noise-corrupted 
subband image at SNR, = 0 db ; (d) reconstructed image with conventional PR filter banks at SNR, = 0 db ; (e) 
reconstructed image with 2-D Kalman filtering at SNR, = 0 db; (f) reconstructed image with conventional PR filter banks 
at SNR, = 8 db ; (g) reconstructed image with 2-D Kalman filtering at SNR, = 8 db . 

SNR M (ma) 

Fig.2 Reconstruction S N R  versus additive noise SNR level 
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