
Proceedings of 2005 International Symposium on Intelligent Signal Processing and Communication Systems

QUADRATIC ALTERNATING DIRECTION IMPLICIT ITERATION FOR THE FAST
SOLUTION OF ALGEBRAIC RICCATI EQUATIONS

Ngai Wong

Department of EEE
The University of Hong Kong
Pokfulam Road, Hong Kong
Email: nwong(eee.hku.hk

ABSTRACT

Algebraic Riccati equations (AREs) spread over many branches of
signal processing and system design problems. Solution of large
scale AREs, however, can be computationally prohibitive. This
paper introduces a novel second order extension to the alternating
direction implicit (ADI) iteration, called quadratic ADI or QADI,
for the efficient solution of an ARE. QADI is simple to code and
exhibits fast convergence. A Cholesky factor variant of QADI,
called CFQADI, further accelerates computation by exploiting low
rank matrices commonly found in physical system modeling. Ap-
plication examples show remarkable efficiency and scalability of
the QADI algorithms over conventional ARE solvers.

1. INTRODUCTION

The solution of an algebraic Riccati equation (ARE) plays an im-
portant role in many engineering and scientific applications, and
has attracted substantial research [1-8]. Prominent applications of
AREs include Kalman filtering, linear quadratic regulator (LQR),
and optimal controller design [9, 10]. Recently, VLSI backend de-
sign tools are also applying balanced stochastic truncation (BST)
for passivity-preserving model order reduction and fast simulation
of VLSI circuits [8, 11, 12], wherein a pair of high order AREs
need to be solved. Solution of an ARE, however, can be compu-
tationally intensive even for medium orders. Generally, there are
continuous time and discrete time AREs, denoted by CARE and
DARE, respectively. Transformation exists that converts one type
into another [4]. This paper focuses on the CARE setting (hence-
forth simply called ARE). An ARE takes the form

ATX + XA ± XBBTX + CTC = 0 (1)

where A C RnXn is assumed stable, B C Rnxm, and C C
RPX. Certain formulations would render a definite matrix in
between B and BT (CT and C), which can then be factorized
and absorbed into B (C), thus (1) is assumed without loss of
generality. Different applications produce different signs before
XBBTX, and the unified representation in (1) will be adopted
throughout this paper. When it is necessary to distinguish the dif-
ference, we will refer to them as (1+) or (1-) according to the sign
in front of XBBTX. In particular, in (1+), we further assume
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sup d(C(jw -

A) -1B) < 1,
Vw

R, where v(o) stands for the
maximum singular value. This extra condition in (1+) is equivalent
to the H,, norm of the state space (A, B, C) being less than one
[10], or, when A, B, and C are obtained from certain system ma-
trices (see e.g., [12]), the original system is passive. Using M > 0
(M > 0) to denote a positive definite (positive semidefinite) ma-
trix M, and defining spec(o) to be the spectrum of a matrix, and
C to be the open left halfplane, the above assumptions guarantee
the existence of a unique stabilizing solution, X(C RnXn) > O0
that solves (1) and satisfies spec(A ± BBTX) C C-.

Almost all existing ARE solvers work with the Hamiltonian
matrix, namely,

(2)

The stabilizing solution is then found by identifying the invari-
ant subspace of (2) associated with the set of stable eigenvalues
spec(H) n C-. Representative algorithms are eigenvector and
Schur vector methods, matrix sign function method, multishift al-
gorithm etc. (see [1-5] and references therein). Alternatively, the
Newton method is a non-Hamiltonian approach that treats (1) as a
system of nonlinear equations and computes the solution by solv-
ing a linear matrix equation, called Lyapunov equation, in each
iteration step [6-9]. This approach has high numerical accuracy,
but is mainly used for final refinement because it requires a good
initial condition (not always available) to guarantee convergence.

On the other hand, in the context of large scale Lyapunov
equations (linear counterparts of AREs), alternating direction im-
plicit (ADI) [13] provides an efficient way to iteratively compute
or approximate the solution. Recent results also feature a Cholesky
factor (CF) ADI variant that directly obtains the square-root solu-
tion [6,14]. This enables exploitation of low rank and/or sparse
matrices to speed up computation and reduce memory require-
ment. When Newton method is employed for solving an ARE,
such CF ADI scheme (called CF-ADI in [14]) may also be used in
the Lyapunov equation in each Newton step, thus indirectly form-
ing a square-root solution to an ARE [6, 8]. A natural question
is whether there exists an ADI-like algorithm, possibly with a CF
variant, that directly solves an ARE. Fortunately, the answer is yes.

The main contribution of this paper is the generalization of
ADI to a second order version, called quadratic ADI or QADI, that
efficiently solves a (large scale) ARE. Well-posedness and conver-
gence of QADI are analytically proven. As in ADI, QADI fea-
tures a CF variant, called CFQADI, that operates on square-root
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iterates. Compared to Hamiltonian-based algorithms, this r
Hamiltonian QADI approach allows direct exploitation oflow r
and/or sparse system matrices. It has better scalability and is rr
favorable toward progressive solution of large scale AREs.
tion 2 of this paper revises the basics of ADI. Section 3 pres
QADI and CFQADI. A combined proof for their well-posedy
and convergence is also given. Numerical experiments in Sec
4 demonstrate the superiority of the QADI approach over conN
tional solvers. Finally, Section 5 draws the conclusion.

2. BASICS OF ADI

This section gives a brief account of the alternating direction
plicit (ADI) method [13, 14]. Key results necessary for later;
tions are presented. Specifically, ADI attempts to solve the I
punov equation

ATW + WA + CTC = 0

where the matrix dimensions are consistent with those in (1).
assume spec(A) c C- so there exists a W(c Rnxn) > 0
solves (3). The original ADI consists of two "half-steps" in e
iteration

(AT + pj)WT 1 CTC_WTfI(A-p I)
3-

(AT + jgI=_CTC_W. _ (A-pjl)
where Wo = 0 and the shift parameters pj C C - (j = 1, 2,
appear as real numbers or conjugate pairs. For compactness
define Sj = (A + pjI1)- I and Ti = (A - pj I). A useful fa(
that for any integers m and n, the multiplication among Sm,
and A is commutative, and similarly for Si, TlT, and AT. Fi
(4) we have

Wj j 2, (P Tk) STCTCS, P kkWg=-E 2pi ) i TkSk
i=l k=1 k=1

so all Wj s are symmetric. In [14] it is shown that the orderin
shift parameters in (5) is immaterial. Combining (3) and (4),

W ( | SkTkT) W ( I TkSk ). (6)

To achieve the best convergence in, say, L runs of (4), pjs are

chosen according to the minimax problem

where Xo 0 and pj7 C, j = 1,2,, are either real or
conjugate pairs. It can immediately be seen that (9) reduces to
(4) when B = 0. For ease of illustration we will assume, for the
rest of the paper, all pj s are negative real. However, all qualitative
results hold for conjugate pairs ifwe combine two runs of (9) into
one such that all quantities remain real. It will be shown that, as
in ADI, Xj converges to X when j tends to infinity. One may
also merge the two half-steps in (9) into one. Again, using the
definitions Sj = (A + p 1)1 and Ti = (A -pI), it can be
carefully shown that

Xi = M11 + M12Xj-1 (I -M22Xj-l) M12 (10)

where

M1 = -2piST CT (I T CS BBT STCT )-1CS

(3) MI12 = I - 2p3(I T CTCSiBBTS,T)-1
We M22 = T-2pj S B(I BTSBT CTCS B)-1B ST.

(1 Ia)

( llb)

(tIc)

For the (1-) case, the matrix inverses in (1 I a)-(1 Ic) are easily seen
(4a) to be well-defined. For the (1+) case, invertibility follows from the

assumptions in (1) which ensure b7(CSjB) < 1. Well-posedness
(4b) of the inverse in (10) will be shown in Section 3.2. Also, it can

be seen that a symmetric Xi-1 implies a symmetric Xi. Since
* ) XO = 0, all X. s are symmetric.

s we
ict is
T,l, 3.1. Cholesky Factor Variant
,rom

As in ADI, in the presence of low rank matrices B and C, it is de-
sirable for QADI to work with the Cholesky factor (CF) or square-

(5) root iterate Z3 where Xj = Zj ZT. Utilizing (10) and (11), we
formulate a CF variant of QADI called CFQADI. In particular,

gof setting Zo = 0 and forj 1,2,

M = 2p/S TC (I T CS,BBTS3TC ) 2

2. M12 = I - 2pST(I T CTCS3BBTS3T)-1
3. M22 = T2pjSjB(I BT SjTCTCSjB) -1BTSiT

(12a)

(12b)

(12c)

(7)minl max Pi-

{P1,P2,--- ,PL}IiEspec(A) P1pj + Ai I
j=1

Moreover, from (6) we can derive a "residual error" for the Lya-
punov operator evaluated at Wj, namely,

ATWi +±WgA±+CTC = (1- SkTI ) CTC (Tk TkSk) (8)

where it is straightforward to see that the norm of the right hand
side of (8) converges to zero as j approaches infinity, with a speed
dependent on the (approximate) solution of (7).

3. QUADRATIC ADI

The following second order generalization ofADI, called quadratic
ADI or QADI, is proposed for solving (1):
(A T±XT BBT + pIj)XT _CTCC XTi(A pjI) (9a)

(AT i X._ BBT + pl)Xj =-CTC X._ (A -pjl) (9b)

3-Z = [M12 12 Z (IZj- M22 Zj-1) 2 ~] . (1 d[MZ M12ZjI(1I (12d)

It can be observed that in each run of CFQADI, i.e., for each j,
the number of columns in Zj grows by the number of rows in C.
The iteration is continued until the update Z3Zf - Z31ZfT 1II
is smaller than a preset tolerance. When we have low rank B and
C, matrix inversion lemma can further be utilized in (12a)-(12c)
to reduce arithmetics. In summary, in case of low rank system ma-
trices, CFQADI provides significant computational and memory
savings (only low rank factors are stored). Moreover, symmetry of
Xj is perfectly preserved by reconstruction from Zj.

3.2. Well-Posedness and Convergence

Here we prove the well-posedness and convergence of the basic
QADI in (10). The properties carry over to CFQADI since it is
mathematically equivalent. Define A = A± BBTX, and with the
assumption of a stabilizing solution X to (1), we have spec(A) c
C-. Let S3 = (A + pjI) -1 and Tj = (A-pj1), the key of the
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proof is to rewrite (9a) and (9b) by the knowledge of (1), namely,

X-X_-1=
2~~~~~~~~~~~-

-T( (I T SJBBT(X 3 Si (13a)
X-X,7 = (X -

(i TF (-
(1a)

-,T(-X 1)( T BBTST X 1 )) Tj. (I 3b)

Substituting (13a) into (13b) we get

X-X3

gT tT (X - X ) (I T 2pjSjBBTS (Xj-X )) T§Si
(14)

which is equivalent to (10). Applying (14) recursively to itself and
noting Xo = 0, we get

X-X, = HITX(I ± Q,X>1H, (15)

where

=(Hj Tk Sk ) =(Sk Tk)
k=1 k=1

Qj = -E 2Pi( |skTk)SiBBTST(Y]TTST)

Therefore, the QADI described by (10) is well-defined if and only
if the inverse in (15) is well-defined for every j, j = 1, 2, --. An
important observation is that Q3 > 0 is exactly the jth iterate of
the ADI solution (c.f. (5)) to the Lyapunov equation

AQ + QA + BB = 0.
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Fig. 1. (a) CPU time for solving an ARE of type (1+); (b) conver-
gence of Xj to the stabilizing X at several ARE orders.

40
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That is, we have Q > Qj > 0. For the (1+) case, the inverse in
(15), i.e., (I + QjX)1, is obviously valid as the product of two
positive semidefinite matrices contains only non-negative eigen-
values. For the (1-) case, it can be shown that b7(X1/2QXI/2) < 1
which in turn implies (I-QjX) - 1 is valid for all js. Lastly, con-
vergence of QADI (and therefore that of CFQADI) can readily be
deduced from (15), namely,

TX711 Espec(A)
j Pj + Ai

(17)

where K1, K2 are positive lumped constants. This shows that,
as in ADI, QADI exhibits (super-)linear convergence. Apparently,
the convergence rate depends on pj s whose choice is analogous to
the minimax problem in ADI, c.f. (7). The major difference is that
the shift parameters PI'j 1, 2,.. L, should now be chosen
with respect to the spectrum of A.

4. NUMERICAL EXAMPLES

We study the solution ofAREs stemming from different engineer-
ing applications. The focus here is on the speed of different solvers
operating on the same ARE, rather than the origination or formu-
lation of these AREs. The QADI in (10) and CFQADI in (12)
are coded in MATLAB m-files (ordinary text files) and executed,
without compilation, in the MATLAB R14 environment. They are
compared against the MATLAB subroutine aresolv with the schur

(a) slcares
DO ................................................ sicaregs

aresolv(schur)00 , ,/ ....... V ~~~~~aresolv(eigen)
MtQADI0 CFQADI

0
'0 500 1000 15OC

ARE Order

100 (b) ARE Order 500
ARE Order 1000

10-5 ARE Order 1500

-10

lo-l ........................z

1o15
0 5 10 15

No. of Iterations

Fig. 2. (a) CPU time for solving an ARE of type (1-); (b) conver-
gence of Xj to the stabilizing X at several ARE orders.

and eigen flags enabled successively. The former option imple-
ments the Schur vector method, while the latter uses the eigen-
vector method [2]. The other two solvers, slcares (Schur vector
method) and slcaregs (generalized Schur vector method), are in-
voked from the SLICOT library [5]. These are prebuilt Fortran
77 subroutines written with numerically reliable, robust, and ef-
ficient algorithms. For fairness, ARE solutions from QADI and
CFQADI are computed to the same or better accuracies than those
from other solvers. The experiments were done on a 3GHz desktop
with I G RAM.

The first class of AREs correspond to (1+) and contain the
term +XBBTX. These AREs are taken from passivity-preserving
model order reduction problems (e.g., in VLSI simulation [1 1, 12])
where B and C are both of rank one. Fig. 1(a) plots the CPU time
for solving an ARE against its order. It is immediately seen that
QADI and its CF variant have superior speed and scalability over
conventional solvers. Compared to the fastest Hamiltonian solver
slcares in our example, at the order of 800, QADI is more than 8X
faster and CFQADI is even more than 64X. As for aresolv(eigen),
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the gains are about lOX and 80X, respectively. It should be noted
that the original QADI of (10) does not explicitly rely on low rank
matrices, and is suitable when B and C are of high/full ranks (i.e.,
where CFQADI does not bring about savings). However, when
low rank B and C are present, CFQADI should always be adopted
to achieve memory savings and fast computation (as is obvious
from the plot). Fortunately, this is often the case, say, in the mod-
eling of large scale electrical networks with only a small number
of input/output ports. To see how QADI converges, Fig. 1(b) plots
the metric IX - XIIF / IIXIIF (IIOIIF being the Frobenius norm
of a matrix) against the number of iterations at several ARE or-
ders. From these straight-line curves, (super-)linear convergence
of QADI is obvious, which carries over to CFQADI. The almost
overlapped curves also verify that QADI converges irrespective of
the ARE order.

The second class ofAREs correspond to (1-) and bear the term
-XBBTX. Origins of these AREs include Kalman filters and
linear quadratic regulator problems [9]. To introduce variations,
the ranks ofB and C in this scenario are both set to the ARE order
divided by 100. Fig. 2 shows similar observations as before. This
is not surprising as the sign difference does not introduce much
effect on the operations and properties of the solver algorithms. At
order 800, in comparison to slcares, the speed gains in QADI and
CFQADI are more than 8X and 36X, respectively. These results
demonstrate that QADI and its CF variant, which are quadratic
matrix equation solvers, inherit essentially all the desirable prop-
erties of ADI and its CF variant, which are linear matrix equation
solvers, without much increase in algorithmic complexity.

Additional Remarks:

1. To the knowledge of the authors, QADI is a new (non-
Hamiltonian) ARE solver. CFQADI is the first iterative scheme
that directly computes the square-root solution of an ARE. This
is in contrast to the "indirect" factor obtained from accumulation
of CF solutions to the Lyapunov equations (in each Newton step),
which intrinsically leads to a factor of high dimension [6,8].

2. The runtime of QADI or CFQADI is mainly determined
by the number of shifts. The most expensive step is the matrix
inversion in finding Sj for each pj, which takes roughly 3n3 flops
in the general case when A is dense. If there are L shifts, the work
of both algorithms is proportional to 3Ln3. QADI has another
0(n3) component proportional to the number of iterations (which
is always less than 20 in our examples), while all other operations
in CFQADI are of 0(n2) due to exploitation of low rank matrices.
In short, work of QADI or CFQADI increases in a cubic manner,
but much more slowly compared to conventional solvers. Ifmatrix
inversion can be done in 0(n2) work, e.g., when A is sparse or
banded, then both algorithms will reduce to 0(n2) complexity.

3. QADI and CFQADI are very simple to code. Both algo-
rithms converge with the simple initial condition Xo = 0. The
square-root factor in CFQADI may readily be adapted to other ap-
plications, e.g., BST model reduction, to provide further speedup.

4. For simplicity and demonstrative purpose, only a single pj
is used in the numerical experiments, which is analogous to the
Smith method as a special case ofADI [6,8]. In our examples, us-
ing Amax (o) and Amin (o) to denote the maximum- and minimum-

modulus eigenvalues, we set p - Amax(A)Amin (A) -

--1 Amax(H)Amiri(H) |[8]. Here p is approximated by simple
power iterations whose impact on the overall cost is relatively in-
significant. It is expected that with multiple properly chosen pj s,

QADI and CFQADI will converge even faster despite a bigger
overhead in finding pjS and more explicit inversions. Research
is being done along this line.

5. CONCLUSION

This paper has devised a quadratic extension to the alternating di-
rection implicit (ADI) algorithm, called QADI, for the efficient
solution of (large scale) algebraic Riccati equations (AREs) com-
monly found in signal processing and some VLSI applications.
Well-posedness and convergence of QADI have been analytically
proven and characterized. It has been shown that QADI also fa-
cilitates a Cholesky factor variant, called CFQADI, to exploit low
rank system matrices in some ARE formulations, thus enabling
further memory savings and faster computation. Application ex-
amples have confirmed the remarkable computational efficiency of
QADI and CFQADI over conventional solvers.
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