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ABSTRACT

Solid-shell elements are often equipped with two layers of nodes. Thus, the thickness (normal)
strain along the thickness direction is essentially constant. When these elements are subjected to
pure bending, the shrinkage/expansion induced by the in-plane strain and the Poisson’s ratio
coupling in the upper and lower halves of the elements cancel each other. With a constant thickness
strain, the plane strain state is resulted that leads to thickness locking. In this paper, a modified
generalized laminate stiffness matrix is devised to resolve not only the thickness locking but also
some abnormalities of solid-shell elements in laminate analyses. Associated with the modified
matrix, a set of generalized stresses can be defined and a modified Hellinger-Reissner functional
can be derived by treating the generalized stresses as the independent variables. Based on the
functional, an eigenteen-node hybrid-stress solid-shell element suitable for laminate analyses is
proposed via a stabilization approach. All the benchmark tests indicate that the present stabilized

element is close to the reduced integration element in accuracy.
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1. INTRODUCTION

Solid-Shell elements which possess no rotational d.o.f.s and are applicable to thin plate/shell
analyses have attracted considerable attention [1-9]. Compared to the degenerated-shell elements,
solid-shell elements are advantageous in the following aspects. Firstly, solid-shell elements are
simpler in their geometric and kinetic descriptions. Secondly, no special effort is required for
matching the translations in solid elements and rotations in shell elements when a structure is
composed of solid and thin-walled regions. The laborious task of defining algebraic constraints or
introducing solid-to-shell transition elements can be exempted. Thirdly, the complication on
handling finite rotations can be avoided. Nevertheless, formulating robust solid-shell elements is
indeed more demanding than formulating robust degenerated-shell elements. While the latter
elements are only bothered by shear and membrane lockings, the former elements can also be

plagued by thickness and trapezoidal lockings [10,11].

To resolve thickness locking in homogeneous elements, enhanced assumed strain modes [5,6],
hybrid-stress formulation [3,9,12] and the plane stress enforcement [1,2,4,7,8] have been resorted to.
Among them, only hybrid-stress formulation and the plane stress enforcement remain effective to
secure the plane stress condition in laminate plates/shells. Unfortunately, the conventional hybrid-
stress method is not suitable for formulating laminated degenerated-shell and solid-shell
formulations due to the zig-zag nature of the stresses which cannot be easily accounted for in the
assumed stress shape functions. On the other hand, the plane stress enforcement gives rise to
incorrect thickness strain and sharp discontinuities in the thickness stress when the elements are

sandwiched.

To be computationally efficient, most solid-shell elements are formed by only two layers of
nodes. Hence, the thickness strain is essentially constant along the thickness direction and can only
represent the thickness average of its pointwise value. In this paper, a constitutive relation is
derived for the bending strain, membrane strain, average thickness strain, bending stress, membrane
stress and the thickness stress by assuming that the thickness stress is independent of the transverse
coordinate. The assumption is indeed adopted in some hybrid-stress elements that overcome
thickness locking [3,9,12]. It will be demonstrated that the relation can resolve some inconsistent

predictions associated with the enhanced assumed strain method and the plane stress enforcement.

As mentioned, conventional hybrid-stress method is not suitable for formulating laminated
degenerated- and solid-shell elements. Hence, hybrid-strain or assumed-strain elements dominate
the laminated shell analysis [2,13] though hybrid-stress elements are generally more accurate and

efficient, e.g. see [14]. By employing the proposed constitutive relation, a hybrid variational



functional can be derived by introducing a set of generalized stresses as independent variables.
Using the functional, a stabilized hybrid-stress eighteen-node solid-shell element previously derived
by Sze, Yi & Tay [7] is extended to laminate analyses. The salient feature of the element is that the
element stiffness can be partitioned into a lower and a higher order matrices. While the former is
equivalent to the reduced integrated element, the latter plays the role of stabilizing the former. The
stabilized element is computationally efficient as the higher order matrix can be formed in the

element subroutine without resorting to numerical integration.

2. THE CONVENTIONAL EIGHTEEN-NODE SOLID-SHELL ELEMENT

In this section, formulation of the conventional eighteen-node solid-shell element will be briefed.
Without losing generality, the natural coordinate (e[-1,+1] is always aligned with the transverse
direction of the shell as shown in Figure 1. For the element, the geometric and displacement can be

obtained from standard interpolation as :

XG0 =Y NEM-CooX, +2X,) =NEm- X, + NG X, (1)

> 1+ 1-
UEN,0) =D Ni(Em)( 2(; U, + 2C U,.)=NEm)-q, +CNE M) -q, (2)
i=1
where
N;’s are the two-dimensional nine-node Lagrangian interpolation functions,
X; and U; are respectively the coordinate and displacement vectors of the i-th node,
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As the material properties of shells are often defined in a local orthogonal frame x-y-z, it is
necessary to obtain the local physical strains from the covariant ones. It will be assumed as usual
that the z-axis and the x-y-plane are parallel to the {-axis and mid-surface of the shell, respectively.

Hence, the relations between the covariant strains and the local physical strains when approximated

by the ones evaluated at the mid-surface are :
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where

e , e, and e_ are the unit vectors along the local x-, y- and z-axes.

By consolidating (3) and (4), the local Cartesian strain can be expressed as :
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where q = {U] ,---,Ufs ", €’s, y’s and B’s are self-defined. Moreover, B’s are independent of (.

With z being one of the principal material directions, the constitutive relation can be written as :
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The element stiffness matrix can be formulated via the elementwise potential energy functional :
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where V° is the element domain, P denotes the elementwise load potential and J is the Jacobian
determinant. In formulating the element stiffness matrix, the second order {-terms in €_ and all the
C-terms in the Jacobian determinant (a quadratic function of () are often truncated. We have
compared elements with and without the C-terms in Section 7 by a number of singly- and doubly-

curved shell problems. The noted differences are negligible. For higher computational efficiency,

the truncation is adopted and (7) can be simplified as :
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By invoking (5), the element stiffness matrix is :
B, B
K=(BC,B, +B,C,B,) where B =|B, | and B, = {BU} 9)
B n

Recalling that €,, ¢, , €,, vy, and vy, are independent of C, C, and C, relate the following



generalized stresses to the generalized strains as :
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In particular, N, 7 and M are respectively the membrane stress, the thickness-average of the

thickness stress and the bending stresses. C, will be termed as the generalized laminate stiffness

matrix.

3. PLANE STRESS ENFORCEMENT & ENHANCED ASSUMED STRAIN METHOD

In this session, thickness locking and the drawbacks of its existing remedies in laminate analyses
are discussed. For homogeneous materials, the generalized laminate stiffness matrix in (8) can be

evaluated to be :

c. C. 0
c.=|C’ ¢ 0
0 0 C./3

(11)

When N =0 and T = 0 are prescribed, we have

€,=0,¢=0, =3C'M and c,=(Cle, . (12)

m

Unless the Poisson’s ratio vanishes, magnitude of the above bending strain is always smaller than

the exact bending strain €;““ =3S_M where S_ is the plane stress compliance matrix, see (6).
Hence, the bending deflection predicted by KK or using C, is smaller than the exact solution.
Moreover, a plane strain state (g, =0) instead of the plane stress state (c, =0) is predicted. These

phenomena are sometimes referred to as thickness locking.

The plane stress enforcement [1,2,4,7,8] resolve the thickness locking by changing the

g_ ;1 2 01><3 ff_
H - LMH} ()

constitutive relation to :



which leads to the following plane stress generalized laminate stiffness matrix and element stiftness

matrix :
. st o0 ¢S
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As the inplane and out-of-plane normal stress-strain response are decoupled, the assumption gives

o, =¢,=0. On the other hand, the enhanced assumed strain method [5,6] enriches the thickness

strain with linear C-terms. In other words, we have
o, =C.(Ce,)+C (g, +Ce™) (15)

such that 5, = 0 becomes possible for €, # 0. Meanwhile, the hybrid-stress overcomes thickness
locking by assuming o, to be independent of C [3,12]. The displacement-derived thickness stress in

(12) will vanish in the assumed stress field.

The two problems depicted in Figure 2 are considered by the conventional, plane-stress (along
z-direction) enforcement, enhanced assumed strain and hybrid-stress six-node plane elements which
are the two-dimensional counterparts of the eighteen-node solid-shell elements. The rectangular
block is modelled by one element and comprised of two plies of isotropic materials designated as B
(bottom) and T (top) for z < 0 and z > 0, respectively. The block is subjected to uniform
compressive stress and end moment. Plane stress condition is assumed along the y-direction. After
examining the displacement-derived strains, the following enhanced assumed strain and hybrid-

stress modes are employed :
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in the respective elements. For homogeneous materials, both elements yield the exact stresses and
displacements in the two problems in Figure 2. On the other hand, Tables la and 1b list the
deflections and thickness stresses when the elements are laminated. None of the conventional, plane
stress, enhanced assumed strain and hybrid-stress elements can deliver accurate deflections and

thickness stresses simultaneously in all cases.

Table 1a : Deflections and thickness stresses of the rectangular block under compression (Figure 2a)

EB: l,ET: 10, VBZO, VTZO EB: l,ET: 10, VB:0.2, VT:0.3

formulation | deflection | o.forz<0 | o.forz>0 | deflection | o.forz<0 | o.forz>0




conventional -0.3636 -0.1818 -1.8181 -0.3325 -0.1731 -1.8268
plane stress -0.3636 -0.1818 -1.8181 -0.3636 -0.1818 -1.8182
EAS -0.7303 -0.3651 -3.6515 -0.6824 -0.3554 -3.7492
+0.4481z +4.4813z +0.4408z +4.6499z
hybrid stress exact exact exact 1.0515 exact exact
C, or K exact exact exact exact exact exact
analytical -1.1 -1 -1 1.051 -1 -1

Table 1b : Deflections at point A and thickness stresses of the rectangular block under bending (Figure 2b)

EB = 1, ET: 10, VB = 0, Vr= 0 EB = 1, ET: 10, VB = 02, Vr = 0.3
formulation deflection | o,forz<0 | o,forz>0 | deflection | 5,forz<0 | o,forz>0
conventional exact exact exact 25.5989 0.0484 0.7422
-0.1066z -1.6878z
plane stress exact exact exact exact exact exact
EAS exact exact exact 27.3246 -0.0073 0.1681
+0.0292z -0.2924z
hybrid stress 41.25 exact exact 41.25 exact exact
CL or K exact exact exact exact exact exact
analytical* 27.3859 0 0 27.3859 0 0

* based on Classical Lamination Plate Theory

4. MODIFIED GENERALIZED LAMINATE STIFFNESS MATRIX

Despite of the erroneous bending deflections predicted by the hybrid-stress element, the predicted
thickness stresses are exact in all cases. Moreover, the traction reciprocity condition at the ply
interface is satisfied with the thickness stress taken to be indepedent of {. A new method to
overcome thickness locking and the abnormalities in laminate analyses is here proposed. The

constitutive relation in (6) is first rewritten as :
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By assuming the element thickness stress to be independent of £, the above equation leads to
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By changing the equation objects of (17), we have

m
m
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The matrix C, will be termed as the modified laminate stiffness matrix.

We then recall that the thickness strain for elements possessing only two layers of nodes can
only be the thickness-average of its pointwise value. In this context, the second strain-displacement

relation in (5) can be re-written as :

g =Bq (19)

By introducing g, and C,, (8) is modified to be
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which leads to the following element :
K=(B'C,B, +B.C,B,). 21)

In the post-processing stage, the thickness stress should first be computed from (18) before the
inplane stress is computed by (16). The transverse shear stress can be calculated in the conventional

manner.

As noted in Tables la and 1b, the abnormalities bothering the conventional, plane stress,

enhanced assumed strain and hybrid stress elements are not observed in the element that employs

C . - Despite of the above successes, the fully integrated eighteen-node K suffers from shear and

membrane lockings whereas the reduced integrated K is plagued by commutable mechanisms. A
stabilization procedure will be formulated to suppress the commutable mechanisms of the reduced
integrated element via a modified hybrid variational functional. It should be remarked that
trapezoidal locking occurs in linear elements such as eight-node hexahedrons but not in the present

quadratic element.

S. ELEMENT FORMULATION USING A GENERALIZED HYBRID FUNCTIONAL

By introducing the generalized stresses N, c,, M, and Q’s as independently assumed field variables

>



in (20), the following modified elementwise Hellinger-Reissner functional is obtained :
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We assume that the generalized stresses can be partitioned into lower “L” and higher “H” order

modes and expressed as :
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The last two expressions are the orthogonality conditions on the lower and higher order generalized

stress modes [7,15]. After substituting (5), (19), (23) and (24) into (22), we have

.1
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In the functional, the flexibility matrices H’s and leverage matrices G’s are defined as :
H,, = <Ipr(~jll s Hiy = <PfHéll i) Hpy = <I]:DTTLC;1|]:DTL>L , Hyy = <I]:DTTHC;1 T 1 >
G, = <|]:DLTLBL>L , Gy = <[FDLTHBL>H , Gy = <PTTLBT>L , Gy = <[FDTTHBT>H . (26)

The subscripts “L” and “H” to the integral operator () indicate that the standard order of integration

[16] is the second (lower) and third (higher) order quadratures, respectively. Furthermore, all
integrations are conducted by using the standard orders of integration. The stationary nature of the

functional with respect to 3’s gives :

HLLBLL = GLLq > HLHBLH = GLHq > [H]TLBTL = GTLq > [H]THBTH = qu (27)

with which (25) becomes :
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It can be proved that at the second order quadrature point where PP ,, and P, vanish, the

generalized stresses derived from 3’s and the element displacement q are identical [7,15], i.e.

N
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It can also be shown by simply linear algebra that
GiLH]_ILGJ_L + G;LHEGTL = <BiCLBL + B;CT[EBT>L = IKL (30)

where [K , 1s the reduced integrated version of K in (21). Thus, (28) can be re-written as :
=Ly, + G MG, + GG, )q - P 31
" = 2(1 K, +G,,H G, + Gy H, Gy g - P (31)

In other words, G! ,H,". G, ,, and G., H;.G,, play the role of stabilizing IK .

6. HIGHER ORDER MODES FOR ASSUMED STRESS RESULTANTS

For a geometrically regular reduced integrated element with its natural co-ordinates parallel to the
global Cartesian co-ordinates, the commutable and incommutable mechanisms or zero energy

modes are [1,2,7] :

U, 1 ¢ 00 0 0] [U. pe ]
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in which p, =¢(3n*-1), p, =nB&’ -1, p, =GB —D(B3n’-1) and ¢/’s are coefficients. The

incommutable mechanisms are suppressed by the presence of adjacent elements and, thus, can be
ignored in real analyses. However, the commutable mechanisms may propagate in a mesh and

should be stabilized. The derived covariant strain from the commutable mechanisms is :
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As p’s vanish at all the second order quadrature points, the above strain modes do not induce any
strain energy in the reduced integrated element. To stabilize them, the higher order generalized
stress modes must be chosen such that their inner products with the strain modes derived from the
mechanisms must not be zero. In this light, the following higher order generalized stress modes can

be selected by modifying the strain modes :
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Matrices T, and T, have been defined in (4). They transform the contravariant stress components
into Cartesian stress components. The reciprocal of J, in P, and Pr is important in securing the
patch test fulfillment and simplifying the formulation of the higher order leverage matrices [15].

Following the definitions in (26) and consolidating (3), (5) and (34), we have
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Further expansion gives :
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n?

szq = XZMZqo + XZMan > Goq = XZM?&qo + XZ;M4qn b Gnq = X£M3qn + X:M4qn
(36)



where
+1+1 +1+1
M, =2 j j NN d&dn , M, =2 j j NN dédn
~1-1 -1-1

+1+1 +1+41
M, =2 [(pN'N, + pN'N Ydedn , M, =2 [ (p.NIN+ p, N N)dedn

—1-1 -1-1

It should be remarked that M’s are independent of the nodal coordinates and can be programmed
explicitly without resorting to any integration loop [7]. For the stress shape function matrix given in
(34), the flexibility matrix can be manipulated as :

T

1 PL 03><2 PL 03><2
[H]J_H = <|]:DfHC11 1_1-1> = <? 01><2 01><2 SJ_ 01><2 01><2 > D
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where

S, =diag. {TET,O,TST}-(Zl -diag {T_,0,T.} , S, =diag. {TYT,TYT}-C}1 ~diag {T,T,}.

Provided that the above flexibility matrices are still positive definite, it has been shown the element

is still robust [15]. The following approximations are adopted for higher computational efficiency :

JO = jg —JU ton0 ? SJ_ :§L =SJ_ tenco ® ST :§T =ST - (38)
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T
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where [S,,]=S, and [STi/]ng. Continuing from (31), the stabilized element stiffness matrix

would be :
~ ~ 15J 1 1 1 1
KS = KL + - (—_GrTmel +—_GrTnszz +__G£16b1 +__G§ZGb2)
32 8, Si» Sss S 6
T = — — — -1
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32 Gn Srai+Sran Sraz+ 814 Gn

The expensive 3x3 integration scheme is not required in computing element stiffness matrix.



7. NUMERICAL EXAMPLES

In this section, a number of benchmark problems will be studied by the following eighteen-node

solid-shell elements :

e PS R — thereduced integrated (by 2x2 rule) plane stress element K™ | see (14).
e PS zeta — the reduced integrated (by 2x2 rule) plane stress element that accounts for the
quadratic C-terms in the inplane strains and the all the C-terms in the Jacobian

determinant, third order quadrature is employed for the thickness integration.

e PS F — the fully integrated (by 3x3 rule) plane stress element K™ , see (14).
e present — the present stabilized element that employed the modified generalized
laminate

stiffness matrix, see (40).

Moreover, the predictions of the hybrid-strain eighteen-node element CSHEL9 for composite plates

and shells will be quoted as far as possible [13].

7.1 Patch Tests

All the four elements pass the constant moment, constant membrane stress and constant

transverse shear stress patch tests stipulated by MacNeal & Harder [17] for Mindlin plate elements.

7.2 Clamped Circular Plate

Figure 3 shows a quadrant of a clamped circular plate modelled by three and twelve elements.
The plate is loaded transversely by either a central point force or a uniformly distributed force. To
test the elements against shear locking, two radius R to thickness / ratios are considered. Table 3
lists the central deflections which have been normalized by the thin plate solutions. It can be seen

that only PS_F suffers from shear locking in this problem.



Table 2 : Normalized central deflections for centrally loaded clamped circular plate (Figure 3)

central point force uniformly distributed force
3 elements 12 elements 3 elements 12 elements
R/h 10 1000 10 1000 10 1000 10 1000
PS R* 1.142 1.047 1.127 1.006 1.032 0.995 1.037 0.999
PS F 0.935 0.056 1.067 0.636 0.941 0.628 1.027 0.656
present 1.100 1.025 1.092 1.001 1.043 1.004 1.038 1.001

* PS zeta is identical to PS_R under flat plate geometry

7.3 90°Pre-twisted Cantilever

Figure 4 depicts the twisted beam which is doubly-curved and modelled by only six elements. It
constitutes a good test for membrane locking [18] and examining the effect of including the higher
order C-terms in PS_zeta. At the clamped end, all nodal d.o.f.s are restrained. In-plane and out-of-
plane end forces are applied to the free end. To test whether the elements exhibit locking, two
thickness /’s are considered. The normalized end deflections with respect to the reference solutions
[18] are tabulated in Table 3. Only the fully integrated element exhibits locking in this problem.
Differences between the predictions of PS R and PS_zeta are limited to 0.2%.

Table 3 : Normalized end deflections for the twisted beam problem (Figure 4)

in-plane loading out-of-plane loading
h=0.32 h=0.0032 h=0.32 h=0.0032
PS R 1.006 1.015 1.003 1.004
PS zeta 1.006 1.016 1.002 1.006
PS F 0.982 0.007 0.984 0.007
present 1.003 1.010 1.001 1.009

7.4 Hemispherical Shell with a 18° Cutout at the Pole

Figure 5 shows a quadrant of a hemispherical shell with a 18° circular cutout at its pole. It can
be seen that this problem is also doubly curved. Two pairs of diametrical forces act along the X- and
Y-axes. As a result of symmetry, one quarter of the shell is modelled. Each element in the mesh
subtends equal incremental values of ¢ and 0. Deflections along the Y-axis at point A are
normalized by the reference solution [17] and listed in Table 4. Accuracy of PS R and the present
element are extremely close. Without being treated for membrane and shear lockings, PS F is very

poor in accuracy. Differences between the predictions of PSR and PS_zeta are less than 0.05%.



Table 4 : Normalized deflections for the hemispherical shell problem (Figure 5)

no. of elements 2x2 3x3 4 x4 6x6 7 x7
PS R 1.096 1.027 1.012 1.002 1.000

PS zeta 1.096 1.027 1.012 1.002 1.000

PS F 0.002 0.007 0.022 0.100 0.170
present 1.038 1.010 1.005 1.000 0.999

7.5 Pinched Cylindrical Shell

Figure 6 shows a cylindrical shell mounted over two rigid end diaphragms. At the midspane, the
shell is loaded by a pair of diametrically opposite point forces. Owing to symmetry, one octant of
the shell is analyzed. The deflections under the point force are computed and normalized by the
reference solution [18]. Table 5 lists the results. The present element is most accurate. The

differences between the predictions of PSR and PS_zeta are within 0.1%.

Table 5 : Normalized deflections for pinched cylindrical shell

no. of elements 2x2 4x4 8x8 12x12 16x16
PS R 2.461 1.075 1.016 1.019 1.020

PS zeta 2.460 1.074 0.016 1.018 1.020

PS F 0.046 0.156 0.560 0.805 0.903
present 0.763 0.949 0.998 1.006 1.009

7.6 Clamped Cross-Ply Square Plate

This problem was considered by Haas & Lee [13]. A fully clamped square plate under an uniform
distributed load ¢ is examined. The material properties are £, = 40E7, Grr= 0.5E7, vir = vrr= 0.25.
The -45°/45° lay-up is considered for a range of side length L to thickness /4 ratios. A uniform 8x8

mesh is wused to model the entire plate. The non-dimensional central deflections
w=1000wE,h’/ L'q are given in Table 6. Judging from four significant figures, PS R and the

present element yield identical results which get closer to that of CSHEL9 when L/A increases.

Table 6 : Non-dimensional central deflections 1000wE, 4’ / L'q for clamped cross-ply square plates

L/h 25 50 100 200 500 1000

PS R* 3.517 3.123 3.014 2.986 2.977 2.976
present 3.517 3.123 3.014 2.986 2977 2.976
CSHELD9 [13] 3.298 3.034 3.000 2.983 2.978 2977

* PS zeta is identical to PS_R under flat plate geometry




7.7 Clamped Cylinder under Internal Pressure

The clamped cylindrical shell in Figure 7 is subjected to internal pressure P and solved for the

maximum radial displacement. The material properties, pressure and geometry dimensions are £, =

7.5%10%psi, Er= 2.0x10° psi, Grr= 1.25x10° psi, G,7= 0.625x10° psi, v.7= vir= 0.25, P= (6.41/7)

psi, R = 20 in and L = 20 in. Two R/A ratios are considered. Since the laminations are symmetric,

only one octant of the cylinder is analyzed and a 8x8 uniform mesh is employed. The present

predictions are close to that of CSHEL9. PS R and PS_zeta differs by not more than 0.2%.

Table 7 : Maximum radial displacement a clamped 90° cylindrical shell, see Figure

lamination 0° (+45°/-45°)s (0°/90°)s

R/h=20 PS R 0.0003636* 0.0002357 0.0001739
PS zeta 0.0003636* 0.0002361 0.0001739

present 0.0003685* 0.0002399 0.0001795

CSHELO9 [13] 0.0003781* 0.0002402 0.0001783

PS R 0.002035 0.001064 0.0008375

R/h =100 PS zeta 0.002035 0.001064 0.0008375
present 0.002040 0.001068 0.0008414

CSHELO9 [13] 0.002044 0.001068 0.0008422

* the solution bases on a two-dimensional thin shell theory is 0.0003666 [13].

7.8 Clamped 90° Cylindrical Shell under Internal Pressure

Figure 8 shows a fully clamped 90° section of a cylinder. The material properties, pressure, radius

and longitudinal length are the same as the last example. Several R to 4 ratios are considered and

the results for the central radial deflection are presented in Table 8. Once again, the present

predictions are close to that of CSHEL9. In this example, PS R and PS_zeta differs by not more

than 0.05%.

Table 8 : Radial displacement at the center of clamped 90° cylindrical shell, see Figure 6

lamination 0° -45°/+45° (+45°/-45°)s (0°/90°)s

R/h =20 PS R 0.0004260 0.0002848 0.0002837 0.0002247
with 10x10 PS zeta 0.0004260 0.0002847 0.0002837 0.0002248
elements present 0.0004312 0.0002899 0.0002889 0.0002275
CSHEL9 [13] 0.0004367 0.0002916 0.0002909 0.0002300

R/h =100 PS R 0.001867 0.0008888 0.0008918 0.0007384
with 12x12 PS zeta 0.001867 0.0008888 0.0008918 0.0007383
elements present 0.001870 0.0008908 0.0008939 0.0007396
CSHEL?9 [13] 0.001877 0.0008936 0.0008965 0.0007424

R/h =300 PS R 0.006171 0.003331 0.003296 0.002603
with 12x12 PS zeta 0.006171 0.003330 0.003296 0.002603
elements present 0.006179 0.003335 0.003300 0.002606
CSHEL?9 [13] 0.006208 0.003351 0.003314 0.002621




8. CLOSURE

By assuming the thickness stress being independent of C, realizing that the thickness strain for
solid-shell elements with two layers of node can only represent its average value and neglecting the
second order {-terms in the inplane strain as well as all the C-terms in the Jacobian determinant, this
paper presents a modified generalized laminate stiffness matrix that can resolve thickness locking
without resorting to any advanced finite element technique. A modified potential energy functional
is devised that calculates the strain energy from the membrane, bending, average thickness and
transverse shear strains via the modified generalized laminate stiffness matrix. While the
assumption on the thickness stress can lead to a better satisfaction of the traction reciprocity at the
interlaminar interfaces, it is noted by comparing PS R and PS_zeta that the neglected C-terms in the
inplane strain and the Jacobian determinant do not lead to any marked difference in the element

predictions.

A modified Hellinger-Reisssner functional is formed by relaxing the constitutive relation in the
modified potential energy functional. With the former functional, the previous hybrid-stabilized
eighteen-node solid-shell element formulated for homogenous materials using plane stress
enforcement [7] is successfully extended to laminate plate/shell analysis. Compared to the
stabilized element of Lee & Haas [13], the present element is more efficient due to the energy
orthogonality of the lower and higher order stress modes and the explicit nature of the higher order

leverage matrices.

By discarding the thickness stress/strain and adopting the plane stress constitutive relation, the
modified Hellinger-Reissner functional given in Appendix can be employed for formulating

degenerated-shell elements for laminated plate and shell analyses.
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APPENDIX

For degenerated-shells, the plane stress condition is assumed and v, = 0. The corresponding

modified potential energy functional and the modified Hellinger-Reissner functional are

respectively :
e 1 €m ' em T e
Hmp = _< Cmb + ‘YU Cto‘Yo> - P
2 |e, €,
and
1 (N7 Nl (N) (e ] 1
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With the latter functional, hybrid-stress degenerated-shell elements for laminated plate/shell

analyses can be formulated.
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Figure 1 : An eighteen-node solid-shell element

@c © 9 < 0.5

e o —=> (.5

(b)

Figure 2 : A 10x2 two-ply six-node element subjected to (a) uniform compressive stress

and (b) end moment
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Figure 3 : Quadrant of a circular plate modelled by 3 and 12 elements
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Figure 4 : A 90° twisted beam modelled by a 1x6 elements.
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Figure 5 : A hemispherical shell with 18° cutout modelled by 9x9 elements
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Figure 6 : The pinched cylindrical shell problem modelled by 2x2 elements.
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Figure 7 : Clamped cylindrical shell subjected to internal internal pressure P.

Figure 8 : Clamped 90° cylindrical shell subjected to internal internal pressure P.
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