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Abstract

Inhibition of HIF-1a activity provides an important strategy for the treatment of cancer. Recently, 3-(5 0-hydroxymethyl-2 0–furyl)-1-
benzyl indazole (YC-1) has been identified as an anti-HIF-1a drug in cancer therapy with unclear molecular mechanism. In the present
study, we aimed to investigate the effect and mechanism of YC-1 on HIF-1a in a hepatocellular carcinoma cell line under hypoxic con-
dition, which was generated by incubating cells with 0.1% O2. The phenotypic and molecular changes of cells were determined by cell
proliferation assay, apoptosis assay, luciferase promoter assay, and Western blot analysis. YC-1 arrested tumor cell growth in a dose-
dependent manner, whereas it did not induce cell apoptosis. Hypoxia-induced upregulation of HIF-1a was suppressed by YC-1 admin-
istration. YC-1 inhibited HIF-1a protein synthesis under normoxia and affected protein stability under hypoxia. YC-1 suppressed the
expression of total and phosphorylated forms of murine double minute 2 (Mdm2), whereas this inhibitory effect was blocked by over-
expression of Mdm2. In conclusion, YC-1 suppressed both protein synthesis and stability of HIF-1a in HCC cells, and its inhibitory
effects on HIF-1a were dependent on Mdm2.
� 2006 Elsevier Inc. All rights reserved.
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Hepatocellular carcinoma (HCC) is one of the five most
common malignancies in the world, with an increasing inci-
dence in both Asian and Western countries [1]. Only a
small proportion of patients are suitable candidates for liv-
er transplantation, surgical resection or other surgical
treatments due to the advanced stage of tumor or poor
hepatic functional reserve. Transarterial chemoemboliza-
tion is one of the major alternatives for the treatment of
HCC patients with an advanced stage [2,3]. However, the
long-term survival is unsatisfactory and the role of hypoxia
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in stimulating cancer growth is thought to be one of the
reasons that lead to treatment failure [4].

Hypoxia is a common phenomenon in solid tumors,
as oxygen supply usually does not meet the demand of
tumor cells during progression [5]. The reduced oxygen
levels in tumor tissues induce serial changes of hypox-
ia-related molecules that promote angiogenesis, among
which hypoxia inducible factor-1a (HIF-1a) is the most
predominant one [6,7]. Overexpression of HIF-1a was
associated with angiogenesis, tumor invasion, and poor
prognosis of various types of cancers [8–12]. In HCC,
it was reported that activation of HIF-1a promoted
upregulation of VEGF, a key player during angiogenesis
[13,14]. In addition to hypoxic condition, HIF-1a could
be upregulated by some therapeutic approaches, such
as transarterial chemoembolization, resulting in treatment
failure and poor outcomes [15]. Due to the importance
of HIF-1a in tumor progression and angiogenesis,
xia inducible factor-1a (HIF-1a) by YC-1 ..., Biochemical and
06.08.015.
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targeting HIF-1a becomes a potential approach of cancer
therapy that has attracted great interest [12,16–18].

A number of chemicals and drugs have been discovered
in recent years for targeting HIF-1a, one of which is 3-(5 0-
hydroxymethyl-2 0-furyl)-1-benzyl indazole (YC-1). YC-1
was first identified as an activator of platelet guanylate
cyclase in 1994 and was used as a vessel dilator in circula-
tion disorders [19]. Under hypoxic condition, YC-1 exhib-
ited anticancer effects through inhibition of HIF-1a activity
[20]. However, little is known about the possible mecha-
nism of YC-1-mediated HIF-1a suppression. As the rela-
tionship between murine double minute 2 (Mdm2) and
HIF-1a has been demonstrated by some studies, we
designed the present study to investigate the potential role
of Mdm2 in YC-1-mediated HIF-1a suppression.
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Materials and methods

Cell lines. HepG2 human HCC cell line was purchased from the
American Type Culture Collection (Manassas, VA). Cells were main-
tained as monolayer culture in Dulbecco’s modified Eagle’s medium
(DMEM) with 10% fetal bovine serum (FBS) and 1% penicillin (Life
Technologies, Carlsbad, CA) at 37 �C in a humidified atmosphere of 5%
CO2 in air.

Cell proliferation assay. Cell proliferation was determined by 3,[4,5-
dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay. The
HepG2 cells (1 · 104) were inoculated into 96-well plates, and treated with
1% dimethylsulfoxide (DMSO) in 10% FBS-DMEM or different doses (1,
5, and 10 lM) of YC-1 (dissolved in 1% DMSO-10% FBS-DMEM),
respectively, for 12 h before incubating in a humidified atmosphere of 95%
N2/5% CO2 (the final oxygen content estimated to be 0.1%) for 24 h. MTT
was then added into each well and the cells were incubated for another 4 h.
The reaction was stopped with 0.04 M hydrochloride (in isopropanol) and
measured at A570–630 nm in a Vmax kinetic microplate reader (Molecular
Devices Corporation, Sunnyvale, CA). The cell proliferation index was
expressed as means ± SD.

Cytofluorometric apoptosis analysis. The HepG2 cells (5 · 105) were
inoculated into each well of a six-well plate, and treated with 1%
DMSO in 10% FBS-DMEM and different doses (1, 5, and 10 lM) of
YC-1, respectively, in a hypoxic condition for 24 h. The cells were then
labeled with Annexin V-FITC (BD Biosciences Pharmingen, San Diego,
CA), and detected in a FACS Calibur (Becton Dickinson Immunocy-
tometry Systems, San Jose, CA). Unstained cells were used as a neg-
ative control.

Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling

(TUNEL) assay. The TUNEL technique was performed to detect apop-
totic cells using the in situ cell death detection kit (Roche Diagnostics,
Indianapolis, IN). Briefly, the HepG2 cells were cultured on cover slides
with different treatments. After 24-h incubation, cover slides were fixed
with 4% paraformaldehyde for 1 h and permeabilized by 0.1% Triton X-
100 at 4 �C for 2 min. The slides were then incubated with TUNEL
reaction mixture for 1 h at 37 �C. After washing, the slides were incubated
with horse-radish peroxidase-conjugated anti-fluorescein antibody for
30 min at 37 �C. After substrate reaction, slides were counterstained with
hematoxylin, and the number of apoptotic nuclei was examined under a
light microscope with the magnification of 400.

Western blot. The HepG2 cells (5 · 105) were inoculated into each well
of a 6-well plate, and treated with 1% DMSO in 10% FBS-DMEM and
10 lM of YC-1, respectively, for different time intervals under hypoxic
condition according to the experimental design. After exposure of cells to
the indicated agents and time courses, reactions were terminated by
addition of lysis buffer (Cell Signaling Technology, Beverly, MA). The cell
lysates were electrophoresized on 8–12% SDS–PAGE. The primary anti-
bodies were anti-HIF-1a (Calbiochem, San Diego, CA), anti-b-actin
Please cite this article as: Chi Keung Lau et al., Suppression of hypo
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(Santa Cruz Biotechnology, Santa Cruz, CA), anti-Mdm2 and anti-
phosphorylated Mdm2 (P-Mdm2) (Cell Signaling Technology). The rela-
tive protein level was expressed by a ratio to b-actin.

HIF-1a protein synthesis and protein stability. In the protein synthesis
experiment, to determine the optimal doses and time intervals of protea-
some inhibitor, MG132 (Sigma–Aldrich, St. Louis, MO), at different
doses, was added into the cell line, and incubated for different time peri-
ods, respectively. The expression of HIF-1a was examined by Western
blot. Based on the findings of the above protocols, the dose of 40 lM
MG132 and incubation time of 4 and 6 h was chosen for the following
experiments. The HepG2 cells were pre-treated with 10 lM YC-1 for 12 h
before adding 40 lM MG132 and incubated for 4 and 6 h, respectively,
and the expression of HIF-1a was determined by Western blot. In the
protein stability experiment, the HepG2 cells were incubated under hyp-
oxic condition (0.1% O2) for 4 h before administration of 100 lM protein
synthesis inhibitor, cycloheximide (Sigma–Aldrich) with or without 10 lM
YC-1, and incubated for another 30 and 60 min, respectively. Cells were
lysed and protein was extracted for Western blot analysis of HIF-1a
expression.

Cell transfection. Cytomegalovirus (CMV)-Mdm2 plasmid (a gift from
Dr. Bert Vogelstein) [21] and empty vector were transfected for 24 h before
being treated with 5 lM YC-1 under hypoxic condition. The levels of
HIF-1a, Mdm2 and P-Mdm2 were also detected by the standard Western
blot protocol.

Transfections and luciferase reporter assay. The HepG2 cells (1 · 105)
were transfected with 1 lg of pGL3-Mdm2 reporter plasmid (a gift from
Dr. Jason M. Shohet) [22] and 1 lg of pRL-TK (Renilla luciferase, Pro-
mega, Madison, WI) as a normalization control. Cell transfection was
achieved by using Fugene 6 transfection reagent (Roche Diagnostics,
Indianapolis, IN). The luciferase activities were measured by luminometer
using the Dual-Luciferase Reporter Assay System according to the man-
ufacturer’s instruction (Promega).

Results

Under hypoxic condition, YC-1 exerted a dose-depen-
dent inhibition of cell growth in the HepG2 cells with
IC50 of 5 lM (Fig. 1A). To further examine whether the
effect of YC-1 on tumor cells was cytostatic or cytotoxic,
cytofluorometric apoptosis assay was performed. Under
the same experimental conditions, YC-1 exhibited no sig-
nificant effect on tumor cell death even with a concentra-
tion of 10 lM in a 24-h treatment (Fig. 1B). Similar to
the results of Annexin-V staining, TUNEL assay did not
identify any difference in the number of apoptotic cells
between the groups with and without YC-1 treatment in
the HepG2 cells, even with the highest dose tested
(10 lM) (Fig. 1C).

When the tumor cells were pre-treated with 10 lM YC-1
for 12 h before incubating in 0.1% O2 for another 4 h, the
protein expression of HIF-1a was significantly decreased in
the HepG2 cells, compared with that without YC-1 treat-
ment (data not shown).

As HIF-1a protein is subjected to rapid degradation
under normoxia by the process of pVHL-mediated ubiqui-
tin-proteasome pathway, whereas the hypoxic condition
blocks the effect of degradation and leads to accumulation
of HIF-1a protein. A proteasome inhibitor, MG132, was
used to prevent proteasome-mediated HIF-1a protein deg-
radation under normoxia and the effect of YC-1 on HIF-1a
protein synthesis was determined by measuring the accu-
mulation of protein at certain time points using Western
xia inducible factor-1a (HIF-1a) by YC-1 ..., Biochemical and
06.08.015.
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Fig. 1. YC-1 inhibited tumor cell growth under hypoxic condition. (A)
The HepG2 cells were treated with different doses (1, 5, and 10 lM) of
YC-1 for 12 h before incubating under 0.1% O2 for another 24 h. The cell
viabilities were assayed using MTT as described in the Materials and
methods. The number of apoptotic cells was determined by (B) cytoflu-
orometric apoptosis assay (Annexin V–FITC labeling) and (C) TUNEL
assay. Under the conditions with or without YC-1 treatment, no
significant difference in the number of apoptotic cells was detected by
both assays. The percentage of Annexin V-FITC positive cells was
expressed as means ± SD. Arrows pointed to the apoptotic nuclei.
DMSO, dimethyl sulfoxide.
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Fig. 2. (A) YC-1 inhibited HIF-1a protein synthesis under normoxic
condition. To inhibit the HIF-1a protein degradation, a proteasome
inhibitor, MG132, was used. (a) and (b) The HepG2 cells were treated
with different doses (10, 20 or 40 lM) of MG132 for 4 h, or incubated for
different time periods (1, 2 or 4 h) before determination of HIF-1a protein
levels using Western blot. MG132 exhibited a dose and time dependent
suppression of HIF-1a protein degradation. (c) After treated with 10 lM
YC-1 and MG132 (40 lM) for 4- or 6-h, a downregulation of HIF-1a was
detected. (B) YC-1 inhibited HIF-1a protein stability under hypoxic
condition. The HepG2 cells were pre-treated with 0.1% O2 for 4 h before
cyclohexmide (100 lM) was added with or without YC-1 (10 lM), and
incubated for 30 or 60 min. Cells were harvested and the HIF-1a protein
levels were detected using Western blot. DMSO, dimethylsulfoxide.
Representative of three independent experiments.
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Cblot. The effect of MG132 on proteasome inhibition was in
a dose and time dependent manner (Fig. 2A-a). As MG132
at the dose of 40 lM (Fig. 2A-a) and with the incubation
time of 4 h (Fig. 2A-b) had the most significant inhibitory
effect (with no obvious morphological changes of the cells),
these dose and time point were chosen for the YC-1 exper-
iment. Compared to the control groups, the protein synthe-
sis of HIF-1a in the HepG2 cells was affected by YC-1 and
a significant inhibitory effect was observed at the 6-h time
point (Fig. 2A-c).

In addition to the effect of YC-1 on HIF-1a protein syn-
thesis, its effect on protein stability was also tested. After
incubating the cells under hypoxic condition for 4 h, a pro-
tein synthesis inhibitor, cycloheximide, was added into the
culture medium with or without YC-1 treatment. It was
Please cite this article as: Chi Keung Lau et al., Suppression of hypo
Biophysical Research Communications (2006), doi:10.1016/j.bbrc.20
found that the expression of HIF-1a protein in the DMSO
control group was much higher than that in the YC-1 treat-
ed HepG2 cells (Fig. 2B).

As both the HIF-1a protein synthesis and stability could
be affected by YC-1 in the HepG2 cells and Mdm2 was a
potential upstream molecule that regulated HIF-1a expres-
sion, the possible link between Mdm2 and YC-1-mediated
HIF-1a suppression was investigated. The HepG2 cells
were treated with 10 lM YC-1 under hypoxia for 1, 2,
and 4 h, respectively, and the expression of HIF-1a, total
Mdm2, and P-Mdm2 was detected by Western blot. A
concurrent downregulation of HIF-1a, total Mdm2, and
xia inducible factor-1a (HIF-1a) by YC-1 ..., Biochemical and
06.08.015.
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P-Mdm2 was detected with YC-1 treatment for 2 and 4 h
under hypoxic condition (Fig. 3A).

In order to further examine whether YC-1 mediated its
effect on HIF-1a expression through suppression of
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Fig. 3. (A) YC-1 suppressed the expression of HIF-1a, total and
phosphorylated forms of Mdm2 under hypoxic condition in a time
dependent manner. The HepG2 cells were treated with 10 lM YC-1 under
hypoxia for different time intervals (1, 2 or 4 h). Cells were then harvested
for the detection of HIF-1a, Mdm2, and P-Mdm2 expression using
Western blot. (B) Upregulation of Mdm2 by transfection reversed YC-1-
mediated HIF-1a suppression. The HepG2 cells were transfected with
either empty vector or CMV-Mdm2 for 24 h. After transfection, the cells
were treated with DMSO or 10 lM YC-1 and incubated under 0.1% O2

for 4 h before determination of HIF-1a, Mdm2, and P-Mdm2 expression
using Western blot. (C) YC-1 suppressed the promoter activity of Mdm2
in the HepG2 cells. Cells were co-transfected with 1 lg of pGL3-Mdm2
reporter plasmid and 1 lg of pRL-TK as a normalization control. The
luciferase activity or Renilla luciferase activity was measured by lumino-
meter using Dual-Luciferase Reporter Assay System according to the
manufacturer’s instruction. DMSO: dimethyl sulfoxide. The Firefly
luciferase activity was normalized with Renilla luciferase activity.
*P < 0.05, compared with DMSO control under hypoxia (Student’s t

test). Representative of three independent experiments.
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Mdm2, under hypoxia, cells were transfected with CMV-
Mdm2 plasmid for 24 h before DMSO or YC-1 was added.
The transfection of Mdm2 induced a significant increase in
the expression of total Mdm2 and P-Mdm2. In addition,
the enhanced expression of Mdm2 by transfection could
increase HIF-1a level despite the presence or absence of
YC-1 treatment in the HepG2 cells (Fig. 3B).

The previous experiments revealed that YC-1 might
mediate its inhibitory effect on HIF-1a expression by
downregulation of Mdm2 protein. It was of interest to
know whether YC-1 affected Mdm2 expression at the tran-
scriptional level or protein level. Therefore, wild type
Mdm2 promoter constructed in luciferase reporter plasmid
was transfected before YC-1 administration. It was found
that 10 lM YC-1 significantly suppressed Mdm2 transcrip-
tion in hypoxic HepG2 cells by an average of 2-fold com-
pared with DMSO control (Fig. 3C).

Discussion

In the present study, we demonstrated that YC-1
inhibited the growth of HCC cells. This was consistent
with the study of Wang et al., [23], which suggested that
YC-1 exhibited an anti-proliferative effect by arresting
the cell cycle in the G0–G1 phase in HCC cells. Similar
effect was also found in endothelial cells and mesangial
cells [24,25]. However, our data did not support a previ-
ous finding in prostate cancer that YC-1 could induce
apoptosis of tumor cells [26]. Even with the dose of
10 lM, YC-1 exhibited no effect on induction of cell
apoptosis examined by both TUNEL assay and cytoflu-
orometric apoptosis assay, suggesting that YC-1 inhibited
the activity of HCC cells through a cytostatic pathway
rather than a cytotoxic one.

Although the anti-HIF-1a effect of YC-1 has been
well demonstrated in several studies, the molecular basis
of YC-1-mediated HIF-1a suppression remains largely
unclear. The present study revealed that YC-1 could
affect both protein synthesis and protein stability of
HIF-1a, suggesting dual effects of YC-1 on suppressing
HIF-1a expression. To further explore the suppressive
effect of YC-1 on protein synthesis, we performed anoth-
er set of experiments to investigate whether this inhibito-
ry effect was related to the mammalian target of
rapamycin (mTOR) signaling pathway, as several down-
stream molecules of mTOR, such as ribosomal S6 kinase
and eukaryote initiation factor 4E binding protein 1,
were key regulators in protein translation and synthesis
[27,28]. However, we did not detect any changes of these
molecules after YC-1 treatment (data not shown), imply-
ing that YC-1-mediated inhibition of protein synthesis
was independent of mTOR signaling pathway. Therefore,
further studies are needed to explore other pathways that
are related to protein synthesis.

Based on some studies demonstrating that Mdm2 might
play a potential role in HIF-1a protein stability [29,30], we
investigated the relationship among YC-1, HIF-1a, and
xia inducible factor-1a (HIF-1a) by YC-1 ..., Biochemical and
06.08.015.
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Mdm2 in the present study. With the downregulation of
HIF-1a, the protein level of Mdm2 was significantly
decreased with YC-1 administration in a time dependent
manner, indicating that Mdm2 might be involved in YC-
1-mediated HIF-1a suppression. To further prove this
hypothesis, we induced upregulation of Mdm2 in the
HepG2 cells by transfection before DMSO or YC-1 admin-
istration, and found that the increased expression of Mdm2
could reverse the inhibitory effect of YC-1 on HIF-1a
expression, suggesting that YC-1 regulated HIF-1a expres-
sion was Mdm2 dependent. To further explore whether
YC-1 functioned on Mdm2 at a transcriptional level, we
measured the promoter activity of Mdm2 under the condi-
tions with or without YC-1 treatment, and found that YC-
1 could decrease the promoter activity of Mdm2, suggest-
ing that YC-1 might act on the transcriptional level of
Mdm2. In addition, by detecting a downregulation of Fli-
1, an upstream transcriptional regulator of Mdm2 [31], this
study suggested that YC-1 functioned on the transcription-
al level of Mdm2 in the cells with endogenous Mdm2.

In conclusion, YC-1 retarded cell growth and exhibited
a cytostatic effect in the HCC cells under hypoxic condi-
tion. YC-1 downregulated HIF-1a expression by affecting
both protein synthesis and stability, and the inhibitory
effects of YC-1 on HIF-1a were dependent on Mdm2.
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