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1 Introduction

The pioneering work of Markowitz in Ref. 1 introduced the mean-variance framework for

portfolio selection and risk management which are important problems in investment

finance. The mean-variance approach has become the foundation of modern finance

theory and inspired literally a substantial number of extensions and applications. From

a theoretical point of view, two challenges can be identified. The first is the extension of

the classical single-period mean-variance analysis to a multi-period or continuous-time

mean-variance analysis. A large part of literature focuses on maximizing some time-

additive utility of terminal wealth and/or consumption; see, e.g., Refs. 2–5. However,

enormous difficulties in solving dynamic mean-variance problems was reported; see,

e.g., Ref. 6. Consequently, Markowitz’s mean-variance formulation has not been fully

exploited in dynamic cases for a long time. Only in recent years, the dynamic mean-

variance problems have been solved analytically by Li and Ng in Ref. 7 and Zhou and

Li in Ref. 8, respectively, in a discrete-time and a continuous-time frameworks.

The second challenge lies on appropriate measure of risk. While there is no ambiguity

on the definition of return, the measure of risk is rather subjective. Consequently, many

variants of risk measures have been proposed. These include absolute deviation, semi-

variance, shortfall probability, safety-first, etc. Many of these measures are typically

based on the notion of downside risk concepts such as the lower partial moments. More

recently, some new risk measures such as the value at risk (VaR) (see Ref. 9), the

coherence risk (see Ref. 10) and the limited expected loss (see Ref. 11) have been

advocated. Despite its several drawback, VaR remains the most prominent risk measure

and its importance continues to grow since regulators accept it as a benchmark for

controlling market risk.

Besides its uses as a potential risk measure, VaR has also been applied in the context

of portfolio selection. For instance, in Refs. 12 and 13, the authors define a VaR-based

related concept known as Capital at Risk (CaR) and demonstrate how to incorporate

such measure in the portfolio optimization problem. Using a constant-rebalanced port-

folio (CRP) investment strategy, they formulated a mean-CaR portfolio optimization

problem and derived analytically the optimal solution and the efficient portfolio fron-

tier for the problem. A CRP strategy is an investment strategy which keeps the same

distribution of wealth among a set of securities from time to time (or from period to

2



period). That is, the proportion of total wealth invested in each of the underlying se-

curities is the same at any time point (or period); see, for example, Refs. 12–15. It

should be emphasized that such strategy does not imply that there is no trading. As the

stock prices evolve randomly one has to trade at every instant to ensure the fraction of

wealth invested in each security constant. Thus, following a CRP investment strategy

still means one must trade dynamically.

In order to demonstrate the power of constant-rebalanced portfolio investment strate-

gies, we cite the example in Ref. 15. Assume that only two securities are available. The

first one is riskless, whose price never changes. The second is highly volatile, whose

price doubles on even days and halves on odd days. Thus the price processes can be

described by the sequence {1, 1, 1, . . . , } for the first stock and by { 1
2 , 2,

1
2 , 2, . . . , } for

the second. Neither investing a single stock can increasing its wealth by more than

a factor of 2. However, a constant-rebalanced portfolio ( 1
2 ,

1
2) will increase its wealth

exponentially. The investment strategy trades stocks so that it has an equal wealth in

each stock at the beginning of each day and maintains this until the end of the day. On

odd days the total wealth will decrease by a factor of 1
2 × 1 + 1

2 × 1
2 = 3

4 and on even

days will increases by 1
2 × 1 + 1

2 × 2 = 3
3 . Thus, after two consecutive trading days the

investor’s wealth will grows by a factor of 3
4 × 3

2 = 9
8 . It takes only twelve trading days

to double the wealth, and over 2n days the wealth increases by a factor of
(

9
8

)n
.

In this paper, we investigate a dynamic portfolio selection problem in the framework

of (i) the Black-Scholes type financial market, (ii) a CRP investment strategy, and (iii)

a mean-EaR tradeoff. Section 2 describes the financial market which involves the Black-

Scholes settings and CRP investment strategies, and introduces a risk measure known

as Earnings-at-Risk (EaR). Some properties of EaR are provided in Section 3. Section 4

establishes a mean-EaR portfolio optimization model and derives analytically its optimal

solution and efficient frontier. A comparison with the classic mean-variance analysis,

the mean-CaR analysis, and the expected utility analysis is given in Section 5. Section 6

concludes the paper.

2 The Financial Market and EaR

Consider a standard Black-Scholes type financial market in which n + 1 assets (or

securities) are traded continuously in the horizon [0, T ] and indexed by i = 0, 1, . . . , n.

One of the assets, say i = 0, is the riskless bond whose price process P0(t) evolves
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according to the following (deterministic) ordinary differential equation

dP0(t) = P0(t)rdt for t ∈ [0, T ],

where r is the rate of interest and is assumed to be constant. The other n assets are risky

stocks whose price processes P1(t), . . . , Pn(t) follow the following stochastic differential

equations

dPi(t) = Pi(t)



bidt+
n
∑

j=1

σijdBj(t)



 for t ∈ [0, T ], i = 1, . . . , n,

where b = (b1, . . . , bn)′ is the vector of stock-appreciation rate, σ = (σij)n×n is the

matrix of stock-volatilities and B(t) = (B1(t), . . . , Bn(t))′ is a standard n-dimensional

Brownian motion. Here b and σ are assumed to be constant in time. Moreover, for

simplicity, we assume that σ is invertible and that bi ≥ r.

Let πi(t) be the fraction of the wealth W π(t) invested in asset i at time t. Let

π(t) = (π1(t), . . . , πn(t))′ ∈ R
n. Then π0(t) = 1 − π(t)′1, where 1 = (1, . . . , 1)′ is the

vector whose components are all units. The portfolio process π(t) is called a portfolio

strategy. The number of shares at time t invested in asset i is

N0(t) = W π(t)(1 − π(t)′1)/P0(t), i = 0,

Ni(t) = W π(t)πi(t)/Pi(t), i = 1, . . . , n.

Hence,

W π(t) =

n
∑

i=0

Ni(t)Pi(t).

Throughout the paper, we assume that transaction costs and consumption are not

considered and that portfolio strategy π(t) is self-financing. Thus

dW π(t) =

n
∑

i=0

Ni(t)dPi(t)

=

{

rN0(t)P0(t) +

n
∑

i=1

biNi(t)Pi(t)

}

dt+

n
∑

i=1

Ni(t)Pi(t)

n
∑

j=1

σijdBj(t)

=W π(t)
{

((1 − π(t)′1)r + π(t)′b)dt+ π(t)′σdB(t)
}

with W π(0) = w > 0 being the initial wealth of an investor.

As in Refs. 12–15 and many others, in what follows we restrict ourselves to constant-

rebalanced portfolio (CRP) strategies.4 As noted in the introduction, a CRP strategy

4In Refs. 2 and 3, Merton showed that this form of strategies are optimal to portfolio selection
problems of maximizing expected utility with constant relative risk-aversion.
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will be rebalanced at each time instant so that a fixed fraction of the wealth is held in

each of the underlying stocks. Therefore, a CRP strategy employs the same investment

vector π(t) = π = (π1, . . . , πn)′ at each t in the planning horizon [0, T ]. Such an

investment strategy still means that one must follow a dynamic trading strategy, since

at each time instant t the investment proportions are rebalanced back to the vector π.

Even it might result in vast amounts of trading. The advantage of CRP strategies is

two-fold: first we obtain, at least in a Black-Scholes setting, closed-form results; and,

furthermore, the economic interpretation of the mathematical results is comparably

easy.

Standard Itô integral and the fact that E[esBj (t)] = ets
2/2, where E is the expectation

operator, yields the following explicit formulae for the wealth process W π(t) for all

t ∈ [0, T ] (see, e.g., Ref. 13).

W π(t) = w exp((π′(b− r1) + r − ‖π′σ‖2/2)t + π′σB(t)), (2.1)

E[W π(t)] = w exp((π′(b− r1) + r)t), (2.2)

V ar[W π(t)] = w2 exp(2(π′(b− r1) + r)t)(exp(‖π′σ‖2t) − 1), (2.3)

where ‖ · ‖ denotes the Euclidean norm in R
n and V ar is the variance operator.

Associated with real number α ∈ (0, 1), initial wealth w, time horizon T and portfolio

π, we denote by ρ0(π,w, T ) the α-quantile of the terminal wealth W π(T ), that is, it is

implicitly defined by

P (W π(T ) ≤ ρ0(π,w, T )) = α, (2.4)

where P (·) is the probability. Using the notation ρ0, the expected shortfall or more

precisely the conditional tail expectation of W π(T ) is defined as

ρ1(π,w, T ) = E[W π(T )|W π(T ) ≤ ρ0(π,w, T )]. (2.5)

Furthermore, the conditional tail semi-standard derivation of W π(T ) is defined as

ρ2(π,w, T ) =
√

E[(W π(T ))2|W π(T ) ≤ ρ0(π,w, T )]. (2.6)

Using the risk measures ρk(π,w, T ), k = 0, 1, 2, we can define a class of Earnings-

at-Risk.

Definition 2.1 (Earnings-at-Risk). Earnings-at-Risk (EaR) of a CRP investment

strategy π with respect to ρk (k = 0, 1, 2) with initial wealth w and time horizon T is
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the difference between the mean terminal wealth E[W π(T )] and the risk measure ρk,

i.e.,

EaRk(π,w, T ) := E[W π(T )] − ρk(π,w, T ). (2.7)

Note that there are important distinctions between the proposed EaR and the

Capital-at-Risk (CaR) defined in Refs. 12 and 13. CaR is defined as the difference

between the terminal wealth of the pure bond (riskless) investment strategy and the

risk measure ρk(π). EaR measures risk relative to mean terminal wealth E[W π(T )]

while CaR measures risk relative to pure bond investment strategy. The mean terminal

wealth depends explicitly on the adopted investment strategy π while the pure bond

strategy is independent of π. EaR therefore provides a trade-off between investing in

the portfolio with position π and its expected shortfall as a result of adopting such in-

vestment strategy. When formulated as an optimization problem, both the mean return

and its risk measure are considered jointly. Hence it is a more relevant measure over

CaR which provides a trade-off between the risk-free investment and its associated risk

measure.

Let zα be the α-quantile of the standard normal distribution and Φ the distribution

function of a standard normal random variable.

Since π′σB(T )/(‖π′σ‖
√
T ) is a standard normal random variable, by using (2.1) and

(2.4)-(2.7) we can express explicitly the risk measures ρk, k = 0, 1, 2 as (see Ref. 12)

ρ0(π,w, T ) = w exp
(

(

π′(b− r1) + r − ‖π′σ‖2/2
)

T + zα‖π′σ‖
√
T
)

, (2.8)

ρ1(π,w, T ) = w exp
(

(π′(b− r1) + r)T
) Φ(zα − ‖π′σ‖

√
T )

α
, (2.9)

ρ2(π,w, T ) = w exp
(

(π′(b− r1) + r + ‖π′σ‖2/2)T
)

√

Φ(zα − 2‖π′σ‖
√
T )

α
. (2.10)

Consequently, closed-form expressions of EaRk for k = 0, 1, 2 are respectively given by

EaR0(π) = w exp
(

(π′(b− r1) + r)T
)

[

1 − exp
(

zα‖π′σ‖
√
T − ‖π′σ‖2T/2

)]

, (2.11)

EaR1(π) = w exp
(

(π′(b− r1) + r)T
)

[

1 − Φ(zα − ‖π′σ‖
√
T )

α

]

, (2.12)

EaR2(π) = w exp
(

(π′(b− r1) + r)T
)



1 −

√

exp(‖π′σ‖2T )
Φ(zα − 2‖π′σ‖

√
T )

α



 .

(2.13)

Here and hereafter we simply use EaRk(π) to stand for EaRk(π,w, T ) for k = 0, 1, 2.
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To avoid some subcases in the results of this paper, we make the following assump-

tion.

Assumption 2.1. The parameter α satisfies α < 0.5 and hence zα < 0.

3 Some Properties of EaR

The three EaRk’s have the following relations.

Proposition 3.1. For any portfolio π, initial wealth w and time horizon T ,

(1) ρ1(π,w, T ) ≤ ρ2(π,w, T ) ≤ ρ0(π,w, T ).

(2) EaR0(π,w, T ) ≤ EaR2(π,w, T ) ≤ EaR1(π,w, T ).

(3) For k = 0, 1, 2, EaRk(π,w, T )

{

= 0 if π = 0,

> 0 if π 6= 0.

Proof. For (1) see Ref. 12. Assertion (2) follows from (1) and Definition 2.1. Assertion

(3) follows from (2), (2.11)–(2.13) and the assumption that matrix σ is invertible. �

Denote by ϕ the density function of a standard normal random variable.

Lemma 3.2. Let x > 0. Then
(

1

x
− 1

x3

)

ϕ(x) < Φ(−x) < ϕ(x)

x
.

Proof. See Ref. 16. �

Define two functions g1 and g2 on (0,+∞) by

g1(ε) :=
1

α
exp(ε2T )Φ(zα − 2ε

√
T )

and

g2(ε) := εθT + rT + ln



1 −

√

exp(ε2T )
Φ(zα − 2ε

√
T )

α



 .

respectively, where θ = ‖σ−1(b− r1)‖. The following properties of these two functions

will be used in the sequel.

Lemma 3.3. The following statements are true:

(1) g1 is strictly decreasing, g1(ε) ∈ (0, 1) for all ε ∈ (0,+∞), and

lim
ε→0+

g1(ε) = 1, lim
ε→+∞

g1(ε) = 0.

(2) g2 is strictly increasing, g1(ε) ∈ (−∞,+∞) for all ε ∈ (0,+∞), and

lim
ε→0+

g2(ε) = −∞, lim
ε→+∞

g2(ε) = +∞.
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Proof. Let ε ∈ (0,+∞). Clearly g1(ε) > 0. Since EaR2(π,w, T ) > 0 for all

π 6= 0 by Proposition 3.1 (3), it follows that g1(ε) < 1. Noting 1 − Φ(x) = Φ(−x) and

ϕ(−x) = ϕ(x), setting x = 2ε
√
T − zα in the second inequality in Lemma 3.2 yields

ϕ(zα − 2ε
√
T ) > Φ(zα − 2ε

√
T )(2ε

√
T − zα). Thus we have

g′1(ε) =
1

α
exp(ε2T )(2εT )Φ(zα − 2ε

√
T ) +

1

α
exp(ε2T )ϕ(zα − 2ε

√
T )(−2

√
T )

=
2
√
T

α
exp(ε2T )

[

ε
√
TΦ(zα − 2ε

√
T ) − ϕ(zα − 2ε

√
T )
]

<
2
√
T

α
exp(ε2T )

[

ε
√
TΦ(zα − 2ε

√
T ) − Φ(zα − 2ε

√
T )(2ε

√
T − zα)

]

=
2
√
T

α
exp(ε2T )Φ(zα − 2ε

√
T )(−ε

√
T − |zα|)

< 0.

Hence g1(ε) is strictly decreasing on (0,+∞), and hence g2(ε) is strictly increasing on

(0,+∞) because g2(ε) = εθT + rT + ln
(

1 −
√

g1(ε)
)

. Obviously, limε→0+ g1(ε) = 1.

By using ϕ′(x) = (−x)ϕ(x) and L’Hopital, we have

lim
ε→+∞

g1(ε) = lim
ε→+∞

1

α
exp(ε2T )Φ(zα − 2ε

√
T )

= lim
ε→+∞

Φ(zα − 2ε
√
T )

α exp(−ε2T )

= lim
ε→+∞

ϕ(zα − 2ε
√
T )(2ε

√
T − zα)(−2

√
T )

−2Tεα exp(−ε2T )

= lim
ε→+∞

2ε
√
T − zα

ε
√
T

exp(ε2T )
√

2π exp
(

1
2 (zα − 2ε

√
T )2
)

= lim
ε→+∞

2ε
√
T − zα

ε
√
T

1
√

2π exp
(

1
2z

2
α − 2zαε

√
T + ε2T

) = 0.

Hence,

lim
ε→+∞

g2(ε) = lim
ε→+∞

εθT + rT + ln
(

1 −
√

g1(ε)
)

= +∞.

Lastly, limε→0+ g2(ε) = −∞ is evident. �

Now we give a extreme property of Earnings-at-Risk.

Proposition 3.4. For k = 0, 1, 2,

(1) supπ∈Rn EaRk(π) =

{

werT if b = r1,

+∞ otherwise.

(2) minπ∈Rn EaRk(π) = 0 and the minimum is only attained for the pure bond

strategy.
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Proof. We show only the case of k = 2.

(1) If b = r1, the conclusion is obvious. Now we assume that b 6= r1. We rewrite

the expression (2.13) of EaR2 in the following form:

EaR2(π,w, T ) =

{

wef(π) if ‖π′σ‖ > 0,

0 if ‖π′σ‖ = 0,

where

f(π) =
(

π′(b− r1) + r
)

T + ln



1 −

√

exp(‖π′σ‖2T )
Φ(zα − 2‖π′σ‖

√
T )

α



 .

Now consider the following optimization problem

max
π

f(π) subject to ‖π′σ‖ = ε (3.1)

for any given ε > 0. Over the (boundary of the) ellipsoid defined by the constraint in

problem (3.1), the objective function equals

f(π) =
(

π′(b− r1) + r
)

T + ln



1 −

√

exp(ε2T )
Φ(zα − 2ε

√
T )

α



 .

Hence, solving problem (3.1) is equivalent to solving the following problem

max
π

π′(b− r1) subject to π′(σσ′)π = ε2.

Using the Lagrangian method, this problem has the unique optimal solution

π∗ε = ε
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖
with

f(π∗ε) = εθT + rT + ln



1 −

√

exp(ε2T )
Φ(zα − 2ε

√
T )

α



 = g2(ε),

where θ = ‖σ−1(b− r1)‖. By Lemma 3.3,

lim
ε→+∞

f(π∗ε) = lim
ε→+∞

g2(ε) = +∞

which completes the proof of assertion (1).

(2) By Proposition 3.1 (3),

EaR2(π,w, T ) > 0 = EaR2(0, w, T ) for all π 6= 0

which implies the conclusion (2). �

Proposition 3.4 implies that EaR attains a lower bound of zero for the pure bond

strategy. It is bounded from above by werT in a risk-neural market and unbounded

above otherwise.

9



4 Optimal Portfolio Selection with EaR

Recall that one model of Markowitz’s mean-variance methodology is to minimize the

variance of the portfolio return under a given level of the expected portfolio return.

Analogously, our dynamic portfolio selection model is to minimize Earnings-at-Risk of

the terminal wealth with respect to one of ρk’s under a given level of the expected

terminal wealth. In this paper, we confine the discussion of the case k = 2. More

precisely, we solve the following problem:

(P ) min
π∈Rn

EaR2(π) subject to E[W π(T )] ≥ C,

where C > 0 is a predetermined level of the expected terminal wealth E[W π(T )]. We

refer the above optimization problem as the mean-EaR problem. Since the pure bond

policy yields a deterministic terminal wealth of w exp(rT ), it is natural to assume that

the expected wealth level C satisfies the following lower bound condition:

C ≥ w exp(rT ). (4.1)

In fact, if C < w exp(rT ), then, according to Proposition 3.4 (2), the optimal solution

of (P ) would be the pure bond strategy π = 0.

In the following we derive analytically the best CRP investment strategy; i.e., the

optimal solution to portfolio optimization problem (P ). As a by-product, we also obtain

a closed-form expression for the corresponding mean-EaR efficient frontier.

Theorem 4.1. Assume that b 6= r1. Then the unique optimal policy of problem (P ) is

π∗ = ε∗
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖ , (4.2)

where

ε∗ =
ln(C/w) − rT

‖σ−1(b− r1)‖T . (4.3)

The corresponding expected terminal wealth is E[W π∗

(T )] = C and Earnings-at-Risk is

EaR2(π
∗) = C



1 −

√

exp
(

ε∗2T
) Φ(zα − 2ε∗

√
T )

α



 . (4.4)

Proof. With the help of expression (2.13) for EaR2, we rewrite problem (P ) as

(P )















min w exp
(

(π′(b− r1) + r)T
)



1 −

√

exp(‖π′σ‖2T )
Φ(zα − 2‖π′σ‖

√
T )

α





s.t. w exp
(

(π′(b− r1) + r)T
)

≥ C.
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If C = w exp(rT ), it is obvious that the pure bond policy π∗ = 0 is a feasible solution

to problem (P ), with the global minimal Earnings-at-Risk EaR2(π
∗) = 0 by Proposi-

tion 3.4 (2). Hence, π∗ = 0 is the unique optimal solution of (P ), which means that the

conclusions asserted are true for this special case. Now we assume that C > w exp(rT ).

The feasible set of the problem is

Π =

{

π : (b− r1)′πT ≥ ln
C

w
− rT

}

.

Given ε > 0, the intersection of Π and the ellipsoid ‖π ′σ‖ = ε is

Π(ε) =

{

π : ‖π′σ‖ = ε, (b− r1)′πT ≥ ln
C

w
− rT

}

.

The hyperplane (b − r1)′πT = ln C
w − rT is tangent to the ellipsoid ‖π′σ‖ = ε if and

only if εθT = ln(C/w)− rT , that is ε = ε∗ := ln(C/w)−rT
θT > 0, where θ = ‖σ−1(b− r1)‖.

Consequently Π(ε) = ∅ if ε < ε∗ and hence Π =
⋃

ε≥ε∗
Π(ε). Thus problem (P ) is

equivalent to the following bilevel optimization problem

(P ′) min
ε≥ε∗

min
π∈Π(ε)

w exp
(

(π′(b− r1) + r)T
)



1 −

√

exp(ε2T )
Φ(zα − 2ε

√
T )

α



 .

For each fixed ε ≥ ε∗, we solve the problem

min
π∈Π(ε)

w exp
(

(π′(b− r1) + r)T
)



1 −

√

exp(ε2T )
Φ(zα − 2ε

√
T )

α





or equivalently

min
π∈Π(ε)

(b− r1)′πT.

When ε = ε∗, the optimal solution is the unique tangent point

π∗ = ε∗
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖

of the hyperplane (b−r1)′πT = ln C
w−rT to the ellipsoid ‖π′σ‖ = ε∗, with (b−r1)′π∗T =

ε∗θT . When ε > ε∗, min {(b− r1)′πT : π ∈ Π(ε)} = ln C
w − rT = ε∗θT , and every point

on both the hyperplane (b−r1)′πT = ln C
w −rT and the ellipsoid ‖π′σ‖ = ε is an optimal

solution. Therefore, we obtain the solution of problem (P ′) by solving the problem

min
ε≥ε∗

w exp ((ε∗θ + r)T )



1 −

√

exp(ε2T )
Φ(zα − 2ε

√
T )

α



 .
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Since the function 1 −
√

exp(ε2T )Φ(zα−2ε
√

T )
α = 1 −

√

g1(ε) is strictly increasing with

respect to ε by Lemma 3.3, the optimal ε for the above problem is the unique ε∗. This

completes the proof. �

As an immediate consequence, the analytic result in Theorem 4.1 provides an ex-

plicit relation between the optimal Earnings-at-Risk and the expected terminal wealth.

Letting ξ := E[W π∗

(T )], we have

EaR2(ξ) = ξ

[

1 −
√

1

α
exp

(

(ln(ξ/w) − rT )2

‖σ−1(b− r1)‖2T

)

Φ

(

zα − 2
ln(ξ/w) − rT

‖σ−1(b− r1)‖
√
T

)

]

(4.5)

for ξ ≥ w exp(rT ). The above relationship is known as the efficient frontier for the

mean-EaR problem in mean-EaR space.

We now make several remarks about the best CRP investment strategy and the

mean-EaR efficient frontier derived above.

Remark 4.1. Observe that the best CRP investment strategy is independent of the

confidence level α. However, the mean-EaR efficient frontier depends on α. Smaller α

is achieved at the expense of higher risk measured by EaR2 in order to maintain the

same expected terminal wealth. In other words, for a given level of expected terminal

wealth, EaR of the best CRP investment strategy is decreasing in confidence level α

when α < 0.5; see Appendix A for a proof.

Remark 4.2. Expression (4.5) of the efficient frontier also implies that for a given

level of expected terminal wealth, EaR of the best CRP investment strategy is strictly

decreasing in time horizon T , a behavior which is consistent with intuition. The reason

for this is that EaR2(ξ) is compounded by functions EaR2(ξ) = ξ
(

1 −
√

g1(ε)
)

and ε =

(ln(ξ/w) − rT ) /
(

‖σ−1(b− r1)‖T
)

and that g1(ε) is strictly decreasing by Lemma 3.3

and ε is strictly decreasing in T when T satisfies ξ ≥ exp(rT ).

Remark 4.3. The above mean-EaR efficient frontier is obtained by solving the opti-

mization problem (P). Alternatively, the same efficient frontier could have obtained by

maximizing the mean terminal wealth for a given level of EaR; i.e.,

(P ′) max
π∈Rn

E[W π(T )] subject to EaR2(π) ≤ C ′,

where C ′ is a given constant.

We now demonstrate a numerical example to end this section.

12



Example 4.1. Let the initial wealth be w = 1000 and assume that the market consists

of the bond and just one stock (i.e., n = 1). Assume that the rate of interest of the bond

is r = 0.05, the stock-appreciation rate is b = 0.1, and the stock-volatility is σ = 0.2.

Then θ = 0.25. As the level C of the expected terminal wealth we use the terminal

wealth of the pure bond policy at T = 5; that is, C = 1000 exp(0.05 × 5) = 1284.

Figure 1 shows the dependence of the best CRP investment strategy and the pure stock

strategy on the time horizon T (0 < T ≤ 5). The best CRP investment strategy always

contains a short position in bond when T < 2.5 and a long position in both bond and

stock when T > 2.5. Now we take three different confidence levels: α = 0.01, 0.05 and

0.1, which imply that the corresponding quantiles are zα = −2.326,−1.645 and −1.282

respectively. The EaR of the best CRP investment strategy for different confidence levels

and the EaR of the pure stock strategy as functions of the time horizon T (0 < T ≤ 5)

are plotted in Figure 2, where the increasing dash line describes the EaR of the pure

stock strategy, and the decreasing dotted line, solid line and bold line describe the

EaR of the best CRP investment strategy for confidence levels α = 0.01, 0.05 and 0.1

respectively. The three decreasing lines are even lower than the increasing line after T

is large appropriately. Clearly, the higher the confidence level α, the lower is the line

for EaR of the best CRP investment strategy.

0 1 2 3 4 5
0

5

10

15

20

Figure 1: The best CRP and the pure stock strategies as functions of the time horizon
T (0 < T ≤ 5)
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Figure 2: EaR of the best CRP and the pure security strategies as functions of the time
horizon T (0 < T ≤ 5)

5 A Comparison with Mean-Variance, Mean-CaR, and

Expected Utility Analyses

In this section we compare the proposed mean-EaR model to the classical mean-variance

portfolio selection model, to the mean-CaR model discussed in Ref. 13, and to the usual

expected utility model.

5.1 A Comparison with Mean-Variance Analysis

First we focus on a comparison with mean-variance analysis. In particular, we consider

the following mean-variance optimization problem:

(P̂ ) min
π∈Rn

V ar[W π(T )] subject to E[W π(T )] ≥ C,

where C, as in problem (P ), is the predetermined level of the expected terminal wealth

E[W π(T )] that satisfies condition (4.1).

The solution to the above optimization problem (P̂ ) is summarized in the following

theorem. We omit the proof since it is very similar to the proof of Theorem 4.1.

Theorem 5.1. Assume that b 6= r1. Then the unique optimal policy of mean-variance

problem (P̂ ) is

π∗ = ε∗
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖ , (5.1)

where

ε∗ =
ln(C/w) − rT

‖σ−1(b− r1)‖T . (5.2)

14



The corresponding expected terminal wealth is E[W π∗

(T )] = C and variance

V ar[W π∗

(T )] = C2
[

exp(ε∗2T ) − 1
]

. (5.3)

It follows immediately from the above result that the efficient frontier for the mean-

variance problem in mean-variance space is given by

ν = ξ2

[

exp

(

[ln(ξ/w) − rT ]2

‖σ−1(b− r1)‖2T

)

− 1

]

for ξ ≥ w exp(rT ), (5.4)

where ν := V ar[W π∗

(T )] and ξ := E[W π∗

(T )].

It should be pointed out that the continuous-time mean-variance model discussed in

Ref. 13 maximizes the expected terminal wealth for a given level of variance of the ter-

minal wealth. Although they also obtained a solution that has the same representation

as (5.1), the parameter ε∗ however was not obtained explicitly as in (5.2). In fact, in

their formulation ε∗ is expressed as the unique positive solution to a nonlinear equation.

Consequently, they did not obtain the mean-variance efficient frontier explicitly.

An interesting consequence of Theorems 4.1 and 5.1 is that for a given minimum level

C of the expected terminal wealth E[W π(T )], the optimal CRP investment strategies

for both the mean-EaR and the mean-variance problems are equivalent, as indicated

by (4.2) and (5.1). In fact, it can also be shown that similar optimal π∗ can also be

obtained if we had considered the risk measure CaR as in the mean-CaR optimization

problem. This implies all these risk measures yield similar optimal CRP investment

strategies as long as the preselected level C is identical.

The above observation also provides a linkage between the EaR and the variance of

terminal wealth. For instance, suppose we fixed the level of EaR. From the mean-EaR

efficient frontier (4.5), we derive the highest attainable expected return and hence the

optimal portfolio π∗ using (4.2). This in turn allows us to determine the corresponding

minimum variance of terminal wealth using (5.3). Similarly, if the level of variance of

terminal wealth is given, the mean-variance efficient frontier (5.4) can be used to obtain

the corresponding expected terminal wealth and hence the minimum acceptable EaR

using (4.4).

We now draw additional insights based on efficient frontiers (4.5) and (5.4) derived

respectively from the mean-EaR and mean-variance problems.

Remark 5.1. The global minimal EaR is zero and the minimum EaR portfolio strategy

is the pure bond strategy. This is also a consequence of Proposition 3.4. The global

15



minimal variance is zero and the minimum variance portfolio strategy is the pure bond

strategy.

Remark 5.2. On the efficient frontiers, both EaR and variance are strictly increas-

ing functions of the expected terminal wealth, as to be expected. For the reason,

we need only to note that EaR2(ξ) is a product of two functions. The first func-

tion is ξ which is strictly increasing. The second function is 1 −
√

g1(ε) with ε =

(ln(ξ/w) − rT ) /
(

‖σ−1(b− r1)‖T
)

. This function is also strictly increasing because

g1(ε) is strictly decreasing by Lemma 3.3 and because ε is strictly increasing in ξ.

Remark 5.3. For the mean-variance efficient frontier, the variance is always a convex

function of the expected terminal wealth. For the mean-EaR efficient frontier, the

situation is more complicated, depending on the data input. However, at least over a

infinite subinterval of the terminal wealth, EaR is a concave function of the expected

terminal wealth. See Appendix B for a proof. These facts imply that the marginal

risk (measured by variance) of the expected terminal wealth is always increasing on the

mean-variance efficient frontier, while the marginal risk (measured by EaR) is decreasing

at least on a infinite part of the mean-EaR frontier.

To end this subsection, we consider a numerical example to illustrate the difference

between the mean-EaR and the mean-variance efficient frontiers.

Example 5.1. The same as in Example 4.1, we let n = 1, w = 1000, T = 5, r = 0.05, b =

0.1, σ = 0.2. Then θ = 0.25. With these parameters, the mean-variance efficient frontier

is plotted in Figure 4 with the mean on the horizontal axis and the variance on the

vertical axis. Further, we take three different confidence levels: α = 0.01, 0.05 and

0.1, which imply that the corresponding quantiles are zα = −2.326,−1.645 and −1.282

respectively. Three corresponding mean-EaR efficient frontiers are depicted in Figure 3

with the mean on the horizontal axis and the EaR on the vertical axis. The dash line,

the solid line and the bold line describe the mean-EaR efficient frontiers for confidence

levels α = 0.01, 0.05 and 0.1 respectively. Clearly, the mean-EaR efficient frontiers

are increasing and concave while the mean-variance efficient frontier is increasing and

convex. And, the higher the confidence level α, the lower is the mean-EaR efficient

frontier.
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Figure 3: Mean-Variance efficient frontier
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Figure 4: Mean-EaR efficient frontier
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5.2 A Comparison with Mean-CaR Analysis

We now turn to a comparison with mean-CaR analysis. The concept of CaR (Capital

at Risk) proposed in Ref. 13 is defined as

CaR(π) = w exp(rT ) − ρ0(π,w, T )

= w exp(rT ) − w exp
(

(

π′(b− r1) + r − ‖π′σ‖2/2
)

T + zα‖π′σ‖
√
T
)

.

They formulated their mean-CaR model as maximizing the expected terminal wealth

for a given level of CaR of the terminal wealth. For the sake of a convenient and easy

comparison, as the above we formulate a mean-CaR model by minimizing the CaR of

the terminal wealth for a given level of the expected terminal wealth:

(P̌ ) min
π∈Rn

CaR(π) subject to E[W π(T )] ≥ C,

where C, again as in problem (P ), is the predetermined level of the expected terminal

wealth E[W π(T )] that satisfies condition (4.1).

Using a quite similar derivation as that in the proof of Theorem 4.1, we can also

obtain a closed-form solution for problem (P̌ ), which is summarized by the following

theorem stated without proof.

Theorem 5.2. Assume that b 6= r1. Then the unique optimal policy of mean-CaR

problem (P̌ ) is

π∗ = ε∗
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖ , (5.5)

where

ε∗ = max

{

ln(C/w) − rT

θT
, θ +

zα√
T

}

(5.6)

with θ := ‖σ−1(b− r1)‖.

Based on this result, the efficient frontier for the mean-CaR problem in mean-CaR

space is given by

CaR(ξ) = w exp(rT ) − ξ exp

(

ln(ξ/w) − rT

θT

(

zα
√
T − ln(ξ/w) − rT

2θ

))

(5.7)

where

ξ := E[W π∗

(T )] ≥
{

w exp(rT ) if θ
√
T < |zα|,

w exp
(

rT + θ
√
T
(

θ
√
T − |zα|

))

otherwise.
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We have seen that a substantial difference of the mean-CaR model from the mean-

EaR is that, in the case θ
√
T ≥ |zα|, the best CRP investment strategy is the same,

equal to

π∗ =

(

θ +
zα√
T

)

(σσ′)−1(b− r1)

‖σ−1(b− r1)‖
for all C that satisfies

w exp(rT ) ≤ C ≤ w exp
(

rT + θ
√
T
(

θ
√
T − |zα|

))

.

Corresponding to these C, the part of the efficient frontier for the mean-CaR problem

degenerates to only one point in mean-CaR space. The whole efficient frontier starts

only from this point where ξ = w exp
(

rT + θ
√
T
(

θ
√
T − |zα|

))

.

We have also noted that a common fact for the mean-variance, the mean-CaR, and

the mean-CaR models is that their efficient frontiers only depend on the stocks via

the norm ‖σ−1(b − r1)‖. There is no explicit dependence on the number of different

stocks. Therefore Theorems 4.1, 5.1 and 5.2 can be interpreted as a kind of mutual fund

theorems since there is no difference between investment in our multi-stock market and

a market consisting of the bond and just one stock with appropriate market coefficients

b and σ. This was observed by Emmer, Klüppelberg and Korn in Ref. 13 for their

mean-CaR model.

5.3 A Comparison with Expected Utility Analysis

How does an investor’s optimal CRP investment strategy change when he or she, pre-

viously using mean-EaR criterion, decides to use expected utility criterion?

We now show that, for risk-averse investors with constant relative risk-aversion, the

model of maximizing expected utility of terminal wealth results in the same optimal

CRP investment strategy as the mean-EaR model with appropriate levels of expected

terminal wealth.

Suppose that an investor has a strictly increasing utility function u : R+ → R

displaying constant relative risk-aversion and maximizes expected utility of terminal

wealth. The investor’s portfolio selection problem is

(UP ) max
π∈Rn

E [u (W π(T ))] .

Let u(W ) = W γ/γ, γ < 1 and γ 6= 0 or u(W ) = ln(W ) (the limiting case when γ

approaches 0) where −u′′(W )W/u′(W ) = 1 − γ is Arrow-Pratt measure of relative risk
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aversion. Then, in this particular case,

E [u (W π(T ))] = wγ exp
(

γ
(

π′(b− r1) + r − (1 − γ)‖π′σ‖2/2
)

T
)

/γ.

Theorem 5.3. Assume that b 6= r1. Then the unique optimal policy of expected utility

maximization problem (UP ) is

π∗ = (σσ′)−1(b− r1)/(1 − γ). (5.8)

Proof. The expected utility maximization problem is equivalent to

max
π∈Rn

π′(b− r1) − (1 − γ)‖π′σ‖2/2,

which can further be written as

max
ε≥0

max
‖π′σ‖=ε

π′(b− r1) − (1 − γ)ε2/2.

The optimal solution of the inner level optimization problem is given by Proposition 3.4

and is

π∗ε = ε
(σσ′)−1(b− r1)

‖σ−1(b− r1)‖
with

π∗ε
′(b− r1) = εθ.

Therefore, what is left is to solve the problem

max
ε≥0

εθ − (1 − γ)ε2/2.

Clearly, when γ < 1 its optimal solution is

ε∗ = θ/(1 − γ).

Thus, the optimal CRP strategy of expected utility maximization problem (UP ) is given

by (5.8). �

Thus, the optimal CRP strategy of expected utility maximization problem (UP ) is

the same as the one of mean-EaR problem (P ) when C = w exp
(

rT + θ2T/(1 − γ)
)

.

6 Conclusions

In this paper, we have introduced a risk concept known as Earnings-at-Risk to replace

the variance in mean-variance analysis, derived closed-form solutions to a mean-EaR
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dynamic portfolio optimization problem under the Black-Scholes setting, and compared

our mean-EaR analysis to the classical mean-variance analysis, to the mean-CaR anal-

ysis, and to the expected utility analysis. Our closed-form explicit formulae of optimal

CRP investment strategies to the mean-EaR, the mean-CaR, and the mean-variance

models facilitates the calculation and allow us to exactly and explicitly describe the

efficient frontiers for these models and to analyze economic implications. Our models

having the same constraint make it easier not only to derive closed-form solutions but

also to compare solutions to different portfolio optimization problems. Moreover, our

solution method and the idea of this paper also provide useful insights for some other

dynamic portfolio optimization problems such as the mean-VaR, Safety-First proposed

by Roy in Ref. 17, and other kinds of mean-EaR as well as mean-CaR type problems.

Appendix A

For any given level of expected terminal wealth, EaR of the best CRP investment

strategy is decreasing in confidence level α when α < 0.5.

According to (4.4), it suffices to show that the function Φ(zα−t)/α of α is increasing

when α < 0.5 for any given t ≥ 0. To this end, we consider the function ψ(t) :=

ϕ(zα − t)/Φ(zα − t) for t ≥ 0. We have

ψ′(t) =
−ϕ′(zα − t)Φ(zα − t) + ϕ2(zα − t)

Φ2(zα − t)

=
(zα − t)ϕ(zα − t)Φ(zα − t) + ϕ2(zα − t)

Φ2(zα − t)

=
ϕ(zα − t) [ϕ(t− zα) − (t− zα)Φ(zα − t)]

Φ2(zα − t)

> 0

by Lemma 3.2 with x = t− zα > 0. Hence, ψ(t) is strictly increasing when t ≥ 0. This

implies that
ϕ(zα − t)

Φ(zα − t)
>
ϕ(zα)

Φ(zα)
=
ϕ(zα)

α
for t > 0.

Since Φ(zα) = α, we have ϕ(zα)z′α = 1; i.e., z′α = 1/ϕ(zα). This together with the above

expression implies that

(

Φ(zα − t)

α

)′
=

αϕ(zα − t)z′α − Φ(zα − t)

α2

=
1

α2

[

αϕ(zα − t)

ϕ(zα)
− Φ(zα − t)

]

≥ 0
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for any t ≥ 0. It follows that the function Φ(zα − t)/α of α is increasing when α < 0.5

for any given t ≥ 0.

Appendix B

The mean-variance efficient frontier ν(ξ) given by (5.4) is convex on the whole interval

[w exp(rT ),+∞) while the mean-EaR efficient frontier EaR2(ξ) expressed by (4.5) is

concave at least on a infinite subinterval of the expected terminal wealth ξ.

For simplicity, we denote

e� = exp

(

(ln(ξ/w) − rT )2

‖σ−1(b− r1)‖2T

)

,

Φ = Φ

(

zα − 2
ln(ξ/w) − rT

‖σ−1(b− r1)‖
√
T

)

,

ϕ = ϕ

(

zα − 2
ln(ξ/w) − rT

‖σ−1(b− r1)‖
√
T

)

,

θ = ‖σ−1(b− r1)‖.

Using the formula (fg)′′ = f ′′g + 2f ′g′ + fg′′, expression (5.4) leads to

d2ν

dξ2
= 2(e� − 1) + 4ξe�

2
(

ln ξ
w − rT

)

θ2Tξ
+

ξ2






e�





2
(

ln ξ
w − rT

)

θ2Tξ





2

+ 2e�
1 −

(

ln ξ
w − rT

)

θ2Tξ2







= 2(e� − 1) + 6e�

ln ξ
w − rT

θ2Tξ
+ 4e�

(

ln ξ
w − rT

θ2T

)2

+ 2e�
1

θ2T

> 0

for ξ ≥ w exp(rT ). This implies that ν(ξ) is convex on [w exp(rT ),+∞). For expres-

sion (4.5), since

(

1 −
√

e�Φ

α

)′

= − 1

2
√

e�Φ/αα



e�Φ
2
(

ln ξ
w − rT

)

θ2Tξ
+ e�ϕ ·

(

− 2

θ
√
Tξ

)





= −
√

e�

αΦ

1

ξ

[

Φ
ln ξ

w − rT

θ2T
− ϕ

1

θ
√
T

]
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and

(

1 −
√

e�Φ

α

)′′

= −
(

2

√

e�

αΦ

)−1 e�
2(ln ξ

w
−rT)

θ2Tξ
Φ − e�ϕ ·

(

− 2
θ
√

Tξ

)

αΦ2

1

ξ

[

Φ
ln ξ

w − rT

θ2T
− ϕ

1

θ
√
T

]

−
√

e�

αΦ

(

− 1

ξ2

)

[

Φ
ln ξ

w − rT

θ2T
− ϕ

1

θ
√
T

]

−
√

e�

αΦ

1

ξ

[

ϕ
ln ξ

w − rT

θ2T

−2

θ
√
Tξ

+ Φ
1

θ2Tξ
+

−2

θ
√
Tξ

(

zα − 2
ln(ξ/w) − rT

θ
√
T

)

ϕ
1

θ
√
T

]

= −
√

e�

αΦ

1

ξ2

(

ln ξ
w − rT

)2
Φ2 − θ2Tϕ2

(θ2T )2Φ
+

√

e�

αΦ

1

ξ2

[

Φ
ln ξ

w − rT

θ2T
− ϕ

1

θ
√
T

]

−
√

e�

αΦ

1

ξ2





2
(

ln ξ
w − rT

)

ϕ

θ2T · θ
√
T

+
Φ − 2zαϕ

θ2T



 ,

we have

EaR′′
2(ξ) =

[

ξ

(

1 −
√

e�Φ

α

)]′′

= 2

(

1 −
√

e�Φ

α

)′

+ ξ

(

1 −
√

e�Φ

α

)′′

= −
√

e�

αΦ

1

θ2Tξ

[

Φ

θ2T

(

ln
ξ

w
− rT

)2

+
2ϕ+ θ

√
TΦ

θ
√
T

(

ln
ξ

w
− rT

)

+

Φ −
(

θ
√
T +

ϕ

Φ
+ 2zα

)

ϕ
]

.

We consider the term, [. . .], in the big bracket of the above expression. Let t :=

ln(ξ/w)−rT

θ
√

T
. Then it can be rewritten as

[. . .]

=Φ(zα − 2t)t2 +
[

2ϕ(zα − 2t) + θ
√
TΦ(zα − 2t)

]

t+

Φ(zα − 2t) − ϕ2(zα − 2t)

Φ(zα − 2t)
−
(

θ
√
T + 2zα

)

ϕ(zα − 2t)

=Φ(zα − 2t)
(

t2 + θ
√
T t+ 1

)

+ ϕ(zα − 2t)
(

2t− θ
√
T − 2zα

)

− ϕ2(zα − 2t)

Φ(zα − 2t)
.
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Using the first inequality of Lemma 3.2, it follows that

[. . .]

>

[

1

2t− zα
− 1

(2t− zα)3

]

ϕ(zα − 2t)
(

t2 + θ
√
T t+ 1

)

+

ϕ(zα − 2t)
(

2t− θ
√
T − 2zα

)

− (2t− zα)3

(2t− zα)2 − 1
ϕ(zα − 2t)

=
ϕ(zα − 2t)

(2t− zα)3 [(2t− zα)2 − 1]

{

[

(2t− zα)2 − 1
]2
(

t2 + θ
√
T t+ 1

)

−

(2t− zα)6 + (2t− zα)3
[

(2t− zα)2 − 1
]

(

2t− θ
√
T − 2zα

)}

.

In the bracket {. . .}, the highest power term is t6 and its coefficient is 16. Therefore,

when ξ and hence when t is large sufficiently, [. . .] > 0 and hence EaR ′′
2(ξ) < 0. This

means that EaR2(ξ) is concave on a infinite subinterval of ξ.
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