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Abstract 

Selecting quality services over the Internet is tedious 
because it requires looking up of potential services, and yet 
the qualities of these services may evolve with time. 
Existing techniques have not studied the contextual effect 
of service composition with a view to selecting better 
member services to lower such overhead. In this paper, we 
propose a new dynamic service selection technique based 
on perceived successful invocations of individual services. 
We associate every service with an average perceived 
failure rate, and select a service into a candidate pool for a 
service consumer inversely proportional to such averages. 
The service consumer further selects a service from the 
candidate pool according to the relative chances of 
perceived successful counts based on its local invocation 
history. A member service will also receive the perception 
of failed or successful invocations to maintain its perceived 
failure rate. The experimental results show that our 
proposal significantly outperforms (in terms of service 
failure rates) a technique which only uses consumer-side 
information for service selection. 

1.  Introduction 

Using service-oriented (SO) architecture is increasingly 
popular in developing business software applications. In 
these applications, various components (known as services) 
publish their interfaces, discover useful peer components, 
and dynamically communicate with one another. A 
particular temporal and spatial collection of these 
components is usually known as a service composition. 

The quality of a service composition [1][2] depends, 
however, on the quality of the belonging services [3][5] 
and how they are weaved together. In a cross-
organizational environment, a service composition may use 
a service provided by an external organization. The 
evolution of such an external service may not be under the 
control of the organization of the former. To ease the 
presentation of the paper, we refer to a service composition 
and an external service used by this service composition as 

a service consumer and a service provider, respectively. 
Let us consider an example. Suppose a customer 

purchases an air ticket from the website of a carrier, and 
pays by credit card. The de facto solution is to use a card 
service provided by a financial institution. Any failure in 
the latter service can be directly observed by the customer. 
Suppose, for instance, that BankX has newly implemented 
an additional online user authentication for its card services. 
In one scenario, the authentication service may return a 
blank webpage rather than continuing to execute the e-
business application. Using other buttons in the end-user 
browser such as the “back” button may not work because 
the application may have implemented certain business 
policies such as preventing malicious code to steal secure 
information from expired browser caches. The customer 
may then be uncertain whether the ticket purchase has 
succeeded. Even if the carrier indicates that the ticket 
purchase is unsuccessful, owing to the privacy issue1, the 
customer still needs to obtain the credit status from the 
BankX directly. Selecting a quality service in time helps 
improve the overall impression of the service composition 
to the customer. 

In a cross-organizational environment, the number of 
external candidate services that offer the same functionality 
can be large. For instance, more than 16,600 financial 
institutions may provide VISA credit card services. The 
quality of each individual service may evolve. It is 
impractical for an organization to monitor all these services. 
Furthermore, some organizations may be unwilling to 
disclose such information publicly because of commercial 
reasons. 

Researchers have studied the problem of automated 
service selection from many different perspectives using 
static approaches such as pattern recognition [14], Petri 
nets [13], and graph network analysis [7]. Dynamic service 
selection has also been experimented in context-aware 
computing [11], mobile computing [9], and e-commerce 
[4][10]. 

Many existing automated techniques select services by 
comparing nonfunctional aspects of services. The 
functional aspect has not been explored. 

This paper presents a statistical approach to selecting 
services dynamically. It addresses the challenges of evolv-
                                                                 

1 We of course do not want an organization to access our financial 
position just for the sake of a business transaction. 
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ing qualities of services. We consolidate the historical 
failures of a service provider perceived by all service 
consumers to the perceived failure rate of the service 
provider. A service consumer selects candidate service 
providers supplying the required functionality in 
decreasing order of these perceived failure rates. The 
service consumer further maintains its own perceived 
successful invocation count of each candidate service (reset 
if the service has left the candidate pool), and apportions 
the chances of selecting member services among all 
candidate services inversely proportional to a combination 
of such counts and the minimum chance to select any 
candidate service. Such a combination ensures that even a 
new candidate service (which has no perceived successful 
invocation history) can still be selected, albeit occasionally. 
The status of successful invocation of the resultant service 
composition (or its failure counterpart) will be fed back to 
the concerned service providers. Both service consumers 
and providers can therefore update their statistics 
dynamically. 

The novelty of our approach is that it only needs to use 
summary execution information to select services. The 
local summary serves as a good approximate solution to 
reduce the network overhead in collecting a global and 
more detailed quality measurement of candidate services. 

The main contribution of this paper is twofold: (i) It 
presents a new dynamic approach to service selection. 
(ii)  We report a simulation experiment to evaluate the 
approach. It shows that our approach delivers promising 
results. 

The rest of the paper is organized as follows: Section 2 
outlines the challenges for dynamic service selection via a 
motivating example. Section 3 presents our approach to 
addressing the challenges. Section 4 reports the experi-
mental result, followed by a literature review and the 
conclusion in Sections 5 and 6, respectively. 

2.  Motivating example 

In this section, we present a motivating example adapted 
from the SOAShop application [8] to illustrate the chal-
lenges in service selection. The SOAShop application 
handles purchase requests from service consumers, includ-
ing the following workflow steps. 
(i) Product Querying: to invoke the product query 

service and check the availability of the requested 
product. 

(ii) PriceQuerying: to invoke the price query service and 
check if the offered price satisfies consumer’s request. 

(iii) OrderBooking: to invoke the order booking service. 
(iv) CreditCheck: to invoke the credit service and check 

the required balance for the order transaction. 
(v) BillPayment: to invoke the payment service to pay for 

the bill. Finally, the application returns a statement to 
the consumer. 

Figure 1 shows the structure of SOAShop. A solid 
undirected line separates different types of services. A 
solid arrow shows a workflow transition. A dotted arrow 
means a service invocation. 
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Figure 1. SOAShop example. 
Through this application, we present three scenarios to 

illustrate the challenges in dynamic service selection: 
Scenario A (Changing Contexts and Service Quali-

ties). The context of a service composition, such as data 
storage and bandwidth, may affect the performance. 
Suppose the context of SOAShop determines that the maxi-
mum response time allowed for invoking PriceService is 
10 seconds. If an invoked service does not respond within 
this limit, it is deemed to be a timeout failure. Suppose 
further that the average response time to invoke the 
Amazon service is smaller than that of eBay (4 vs. 6 
seconds), and the maximum response time of Amazon is 
larger than that of eBay (12 vs. 10 seconds). If all other 
factors are equal, using Amazon will produce more failures 
than using eBay, because the Amazon service may produce 
timeout failures. 

However, if the context of SOAShop is changed to allow 
the maximum response time of invoking PriceService to be 
12 seconds, then the Amazon service is preferred to the 
eBay service because neither service produces timeout 
failures, and the Amazon service gives a better average 
response time than the eBay service. 

Service providers such as eBay and Amazon may 
upgrade their services without prior notification of all 
service consumers. When Amazon upgrades its system, 
qualities such as the failure rate may change. The question 
is: how can we address the issues of changing contexts and 
service qualities in service selection? 

Scenario B (Long Evaluation Time). Suppose we want 
to select a credit card service from a service pool. A simple 
means is to rank these services based on specific criteria 
[1][12]. Such handling can be time-consuming when the 
number of service providers increases. For instance, if the 
average testing of a service provider takes 2 seconds, we 
need 332,000 seconds (or 9.22 hours) to evaluate 16,000 
financial services. The time needed for evaluation and the 
cost to pay (we may need to pay for service invocations 
such as the credit service) can be high, making such an 
approach less attractive. 
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Scenario C (Refreshing Evaluation Information). In 
scenario B, we have highlighted the problem of long 
evaluation periods. If we can reduce the evaluation time in 
SOAShop to a reasonable range, can we use such 
evaluation information to guide service selection? Owing 
to evolving service qualities (as in scenario A), SOAShop is 
required to perform such evaluations from time to time to 
collect the latest quality information of service providers. 
Because SOAShop is designed for long-term running, even 
if a single round of evaluation of all candidate services is 
affordable, it is still too expensive to continuously repeat 
endless rounds of evaluations. Furthermore, individual 
applications do not share the evaluation workload. Thus, if 
there are 1000 SOAShops in a network, such redundant and 
repetitive evaluations will put a huge burden to individual 
service providers (and the underlying networks). 

In summary, it is critical to develop a dynamic service 
selection technique to address the above challenges. 

3.  Statistical service selection 
This section presents our approach in dynamically 

selecting service using statistical analysis. 

3.1. Our contextual model 
A service consumer often selects a provider that offers a 

service to its workflow step. Such a service selection 
consists of at least two phases. Phase 1 is the ability of a 
service consumer c to discover a service s from a provider 
and to judge whether c may use s. Phase 2 is the ability of 
c to select and bind to s among all previously collected 
services in Phase 1. A service usage is successful if the 
service consumer experiences no failure; otherwise, the 
service usage is said to have failed. 

We propose to compute statistically the perceived 
invocation results as passed or failed. The perceived failure 
rate of individual service providers can be used for Phase 1. 
The relatively local (with respect to a service consumer) 
perceived frequency of passed invocations of each 
candidate service can be used for selections in Phase 2. It 
lets the service consumer select quality services locally. It 
helps service consumers avoid the trap of binding to a 
particular service provider in the presence of newcomers 
with a better quality. 

Definition 1 (Statistical Property of Service Consumer). 
Given a service pool S modeling a network of services 
visible to a service consumer c, the statistical property 
STPc of c is a tuple 〈Sc, Tc〉, where Sc (⊆ S) is the candidate 
service set that c may invoke, and Tc is the collection of 
Tc(s) for every s ∈ Sc. Each Tc(s) is a triple 〈s, P, PR〉, 
where s ∈ Sc; P is the most recent consecutive number of 
passed invocations of s by c; and PR is the probability that 
c selects s from Sc. 

In particular, P in 〈s, P, PR〉 records a summary of the 
invocation results of s by c. We refer to P as a consecutive 
pass count (or simply a pass count). When a candidate 
service s is unavailable or behaves abnormally, it may be 
replaced by another service (not from the candidate set) 
after the service consumer c has made N consecutive failed 

attempts to invoke it. We say that c has N-Tolerance if it 
allows N (≥ 1) failures before replacement. We say that c 
has 0-Tolerance if it accepts no failed service in the next 
service selection. 

The selection probability PR in 〈s, P, PR〉 serves two 
purposes: (i) Suppose s has the highest value in P among 
all candidate services. We heuristically deem that s should 
be more dependable than other services in the candidate set. 
Thus, our model hypothesizes that invoking this service is 
more likely to result in successful usage. (ii) Every 
candidate service should have a certain chance of being 
selected, no matter how low the value of P is for this 
service. Our algorithm includes a feature to address this 
case. In Section 3.2, we will give an example to illustrate 
this point. 

We have assumed above that, when a service consumer 
cannot tolerate a particular service provider, it can have a 
means to find a replacement. This is supported by 
statistical properties kept by service providers. 

Definition 2 (Statistical Property of Service Provider) 
The statistical property STPs of a service provider s is a 
collection of STPs(c). Each STPs(c) is a 4-tuple 〈s, c, P, F〉, 
where c is a service consumer that has invoked s at least 
once, and P and F record the counts of successful and 
failed invocations of s by c, respectively. 

When a service consumer c needs to select a service 
from the service pool S, it may assess the rankings of all 
services in the pool to guide the selection. Therefore, how 
to rank the services in S becomes a question. We note that 
STPs records a summary of all invocation results requested 
by any service consumers. Thus, by collecting each pair of 
P and F of s in STPs, we can compute the average 
perceived failure rate of s. We use these average failure 
rates as ranking scores whenever any service consumer 
selects its candidate services. The rate is calculated by the 
formula Σc∈C Tc(s).F / (Σc∈C (Tc(s).P + Tc(s).F)), where C is 
the set of service consumers. 

Definition 3 (Statistical Model for Service Selection). 
Given a set of service consumers C and a set of service 
providers S, a statistical model for service selection is the 
triple 〈STPC, STPS, R〉, where STPC is a collection of 
statistical properties STPc of c ∈ C; STPS is a collection of 
statistical properties of STPs of s ∈ S; and R (⊆ C × S) is a 
set of consuming relations between C and S such that c 
consumes s for any 〈c, s〉 ∈ R. 

We have defined a model to facilitate the two phases of 
service selection. In the next section, we will present an 
algorithm that integrates the two phases. 

3.2. Dynamic service selection algorithm 
The following algorithm COMPUTE_SELECTION 

implements our proposal for service selection. For the ease 
of presentation, we denote the attribute y of x by “x.y”. The 
algorithm assumes 0-Tolerance. The extension to N-
Tolerance can be achieved simply by adding a predicate 
before line 10 that decides whether a service s invoked by c 
has encountered N consecutive failed attempts (that is, 
STPs(c).F). 
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Algorithm COMPUTE_SELECTION 
Input   Statistical model 〈STPC, STPS, R〉, 

Service Consumer c (∈C). 
Output   STPC and STPS 
1 Select a candidate service s from Sc according to the selection 

probabilities of all services in Sc. 
2 Collect the invocation result of s as r. 
3 if r is pass { 
4  Tc (s).P ← Tc (s).P + 1. 
5  STPs (c).P ← STPs (c).P + 1.   // Update service provider 
6  for each s’∈Sc 
7   Tc (s’).PR ← ComputePR (Tc, s’). 
8 } 
9 else {   // r is failure 
10  Sc ← Sc – s.   // Remove s from S 
11  Tc ← Tc – {〈s, Ps, PRs〉}.   // Remove record of s from Tc 
12  STPs (c).F ← STPs (c).F +1.   // Update service provider 
13  sadd ← SelectService (S, Sc). 
14  Sc ← Sc + sadd. 
15  if STPsadd (c) is empty, then STPsadd (c) ← 〈sadd, c, 0 , 0〉. 
16  Tc ← Tc + {〈sadd, 0, 0〉}.   // PR of sadd is set to 0 initially 
17  Tc(sadd).PR ← ComputePR (Tc, sadd).   // Update PR for sadd 
18 } 
19 Function ComputePR (Tc, s) { 
20  TotalCount ← 0. 
21  for each candidate service s’ recorded in Tc 
22    TotalCount ← TotalCount + Tc(s’).P + 1. 
23  PR ← (Tc(s).P + 1) / TotalCount. 
24  return PR. 
25 } 
26 Function SelectService(S, Sc) { 
27  s ← {s∈S | ∀s’∈S, s’∉Sc, Σc∈C Tc(s’).F / Σc∈C (Tc(s’).P+Tc(s’).F) 

≥ Σc∈C Tc(s).F / Σc∈C (Tc(s).P+Tc(s).F)}. 
28  return s. 
29 } 

We use an example to illustrate the algorithm, partic-
ularly Phase 2. In Table 1, the two leftmost columns show 
the round index and the action taken, respectively. The 
third column presents the statistical information for service 
providers experienced by c after the round stated in the 
leftmost column. The rightmost two columns show the 
consecutive pass count and the selection probability for 
each service provider right after the stated round. 

Table 1. Example of service selection. 
 

Round Action, 
Result 

〈si, c, P, 
F〉 

Consecutive 
Pass Count 

Selection 
Probability 

Before 
Round 1 

━ 
〈s1, c, 0, 0〉 0 1/3 
〈s2, c, 0, 0〉 0 1/3 
〈s3, c, 0, 0〉 0 1/3 

After 
Round 1 

Invoke s1, 
Success 

〈s1, c, 1, 0〉 1 2/4 
〈s2, c, 0, 0〉 0 1/4 
〈s3, c, 0, 0〉 0 1/4 

After 
Round 2 

Invoke s2, 
Success 

〈s1, c, 1, 0〉 1 2/5 
〈s2, c, 1, 0〉 1 2/5 
〈s3, c, 0, 0〉 0 1/5 

After 
Round 3 

Invoke s1, 
Failure 

〈s1, c, 1, 1〉 ━ ━

〈s4, c, 0, 0〉 0 1/4 
〈s2, c, 1, 0〉 1 2/4 
〈s3, c, 0, 0〉 0 1/4 

After 
Round 4 

Invoke s3, 
Success 

〈s4, c, 0, 0〉 0 1/5 
〈s2, c, 1, 0〉 1 2/5 
〈s3, c, 1, 0〉 1 2/5 

Each si (0 ≤ i ≤ 4) is a service provider. Suppose c 
selects s1, s2, and s3 initially to form the set of candidate 

services Sc in Phase 1. As we have discussed in Section 3.1, 
the larger the consecutive pass count of a service provider, 
the higher will be the chance that the service is re-selected. 
Suppose the pass count of every service is 0 initially 
(before round 1). To calculate the selection probability of 
these services, c collects each of their counts and adds one 
to their count values (line 23) so that each service has a 
non-zero probability of being selected. Note that the pass 
counts of the services kept in Sc remain unaffected. 
Observing that s1, s2, and s3 have the same count values, 
the selection probability of each service is apportioned to 
1/3. 

Suppose c invokes s1 in round 1 and is successful. The 
consecutive pass count of s1 will change from 0 to 1 (line 
4). This information will be passed to the service provider 
so that the pass count at the service provider side will be 
incremented by one (line 5). Thus, the pass counts of the 
three services s1, s2, and s3 in Sc become 1, 0, and 0, 
respectively. Their TotalCount is based on the sum after 
adding the value of 1 to each pass count 

2, giving (1+1) + 
(0+1) + (0+1) = 4 (line 22). The algorithm then computes 
the selection probability of s1 to be 2/4 (lines 6–7). In the 
same manner, suppose c invokes s2 and achieves correct 
results in round 2. The pass count of s2 in Sc will change 
from 0 to 1. In round 3, c invokes s1 and encounters a 
failure. As indicated by lines 10–17 in the algorithm, it 
results in the removal of s1 (the gray row in Table 1). 
Another service provider, say s4, is selected from S (lines 
27–28) as the replacement of s1. The service s1 will 
increment its failed count by one. 

The function ComputePR calculates the probability that 
a consumer c selects a service provider s. The function 
SelectService selects a service from the service pool S. It 
calculates the average failure rates of services (lines 27–28) 
and chooses the one with the lowest rate. If a service does 
not want to release such statistics information to consumers, 
however, we may use other means (such as popularity or 
other measures of goodwill in public service registries [10]) 
to rank services. 

Intuitively, when the number of service invocations 
increases, the algorithm will gradually provide increasingly 
accurate estimations of the failure rates of service providers, 
thus presenting better advices to consumers. We leave the 
formal proof as future work. Our algorithm has not 
considered the benefits and limitations of service providers, 
and hence extension in this direction is envisaged. 

4.  Evaluation 

4.1. Experimental design 
We scale up the motivating example to evaluate our 

approach. Our tool automates the evaluation and generates 
100 shop service consumers and 1000 shop service provid-
ers in total. We randomly set the failure rate of a service 
provider to a value between 0.0001 and 0.1. For each 
                                                                 

2 This will ensure that new services without invocation history may 
still have a chance to be selected. 
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service consumer, the tool randomly selects a number of 
service providers from the service pool and forms a 
candidate set for the service consumer. 

There are two important parameters in our approach: the 
upper bound of P (consecutive pass count of invocations) 
and the size of a candidate set. To study their impacts, we 
design three techniques, namely, 1-P-1-C, 1-P-3-C, and 
10-P-3-C. These three techniques set the upper bounds of P 
to be 1, 1, and 10, and set the numbers of candidate serv-
ices to be 1, 3, and 3, respectively. The first two techniques 
have the same upper bound of P and different sizes of 
candidate sets, while the last two techniques have the same 
size of candidate sets and different upper bounds of P. 

We compare our approach with a basic strategy we call 
clientsChoice, which only uses client-side information for 
service selection as follows: A service consumer c selects a 
set Sc of candidate services. Then, c computes the average 
client-perceived failure rate of every s in Sc by fetching 
each individual perceived failure rate of s from every 
service consumer that has used s. Finally, c selects the 
service that has the lowest average client-perceived failure 
rate. Any tie is resolved randomly.  

We have experimented with clientsChoice using candi-
date sets in two different sizes: 1 and 3. In this paper, we 
report the results of clientsChoice with candidates of size 3 
as they achieve better outcomes between the two settings. 

To simulate the scenario of changing qualities, the tool 
chooses 20% of service providers randomly, and changes 
their failure rates to 0.1 after 214 invocations of our 
algorithm. This case simulates a worsened service quality 
after the deployment of services. 

4.2. Data analyses 
We conduct 223 service invocations in the experiment. 

Figure 2 shows the results of our three techniques and 
those of clientsChoice after 2i invocations (i = 0, 1, ..., 23). 
The x-axis shows the number of invocations. The y-axis 
shows the expected failure rate in abs(log2) scale, 
calculated by abs(log2(Σc∈C(Σs∈Sc failureRate(s) / |Sc|) / |C|)). 
We note that a larger value indicates a lower failure rate (or 
better result). 

After 223 invocations, as shown in Figure 2, the average 
failure rates using 1-P-1-C, 1-P-3-C, and 10-P-3-C are 
0.134%, 0.091%, and 0.060% at the points (23, 9.546), 
(23, 10.101), and (23, 10.703), respectively. That of 
clientsChoice is only 3.57% at point (23, 4.807). All our 
three techniques outperform clientsChoice, indicating that 
our techniques are more promising in selecting higher 
quality services than clientsChoice. 

Let us focus on our three techniques. At the initial stage 
(x ∈ [1, 16]), 1-P-1-C performs better than the other two 
techniques. However, other two techniques surpass 1-P-1-
C after 217 invocations. These two techniques both have a 
larger size of candidate set than 1-P-1-C (3 vs. 1). The 
result suggests that the size of candidate set should have a 
high impact in service selection. 10-P-3-C outperforms 1-P-
3-C after the first 212 invocations. It indicates that the upper 

bound of P should affect the service quality of a candidate 
set. 

Figure 3 shows a comparison of expected failure rates 
with respect to changing service qualities. Its two axes can 
be interpreted as per the axes of Figure 2. We observe that 
the relative positions of the three lines, representing our 
three techniques, remain the same as those in Figure 2. 
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Figure 2. Comparison of selection ability (not evolving). 
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Figure 3. Comparison of selection ability (evolving). 

Owing to the page limit, we leave further experiment-
ation and analyses in future publications. 

4.3. Threats to validity 
In the experiment, we use failure rate as the metric to 

distinguish the qualities of different services. Instead, our 
technique may also pair with other metrics such as 
response time or price. The effectiveness of these combin-
ations warrant more study. Our approach has recorded the 
statistical information collected from the historical service 
invocations. One may indeed collect the information of 
other metrics during service invocation to address other 
issues. 

We randomly set up the initial scenarios to avoid biases. 
While such a setting may not represent a realistic situation, 
it may be good for evaluating a technique. We have not 
studied the cost of maintaining statistical properties over 
the network and at individual services. In the future, we 
will find more real-life cases to evaluate our approach. 

5.  Related work 

In this section, we review the literature related to our 
work. We first review the service composition problem in 
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general. Ardagna and Pernici [1] propose a general solution 
for adaptive service composition aimed to enable flexible 
processes. Mokhtar et al. [11] discuss the problem of 
service composition in a pervasive computing environment, 
and propose two steps in processing a dynamic context-
aware service composition: (i) discover a set of candidate 
services and (ii) use the automata descriptions of services 
and user tasks to generate composition schemes. Our 
approach may substitute their first step. 

Existing studies [9][10] have addressed the challenges of 
obsolete, corrupted, or inaccurate context changes in 
dynamic and noisy environments. Lee et al. [9] discuss the 
problem of service composition in mobile network envi-
ronments. Our previous work [10] discusses a series of 
scenarios for service composition concerned with evolving 
service qualities. In this paper, we consider both the 
environmental effects and changing service qualities in the 
statistical model for service selection. 

Casati et al. [4] point out that a static service binding is 
often too rigid to enable the following aspects: (i) adaptive 
to changes in user requirements; (ii) decoupling service 
selection from process definition; and (iii) dynamically 
discovering the best available service that satisfies a 
specific process definition. Instead, they use rules and 
policies to guide the selection of services. On the other 
hand, we use the statistical information collected from 
service invocations to guide service selection. 

Zeng et al. [12] propose a middleware platform to select 
web services. They perform service selection both at the 
task level and globally, aiming to maximize user satisfac-
tion. Our previous work [10] proposes to use link analysis 
to select reliable services. It explores the dimension of 
service popularity in a snapshot of service network. It does 
not, however, study the contextual effect of different 
service compositions that may affect the performance of a 
service [9][11]. Our statistical model can extensively 
address such context issues in service selection. 

6.  Conclusion 

In service computing, an organization may use external 
services to form its service composition. The resultant 
service composition should address the evolving qualities 
of such services to make the service composition more 
reliable. Since many such candidate services may have the 
same functionality but different qualities, proper service 
selection techniques are vital to the quality of service 
composition. In this paper, we propose a dynamic service 
selection technique using a statistical model. The model 
collects information from service invocations. Both service 
consumers and service providers use the feedback 
information to maintain their respective perceived failure 
rates. Based also on perceived consecutive passed counts, 
we apportion the chance of selecting a service. The 
experimental results show that our approach is promising 
in selecting high quality services in the long run. In the 
future, we will explore along this direction to formulate 
statistical analysis for service selection to address other 
quality dimensions, and perform more evaluations. 
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