
Toward Scalable Statistical Service Selection*

Lijun Mei
The University of Hong Kong

Pokfulam, Hong Kong
ljmei@cs.hku.hk

W.K. Chan†
City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

T.H. Tse
The University of Hong Kong

Pokfulam, Hong Kong
thtse@cs.hku.hk

Abstract

Selecting quality services over the Internet is tedious
because it requires looking up of potential services, and yet
the qualities of these services may evolve with time.
Existing techniques have not studied the contextual effect
of service composition with a view to selecting better
member services to lower such overhead. In this paper, we
propose a new dynamic service selection technique based
on perceived successful invocations of individual services.
We associate every service with an average perceived
failure rate, and select a service into a candidate pool for a
service consumer inversely proportional to such averages.
The service consumer further selects a service from the
candidate pool according to the relative chances of
perceived successful counts based on its local invocation
history. A member service will also receive the perception
of failed or successful invocations to maintain its perceived
failure rate. The experimental results show that our
proposal significantly outperforms (in terms of service
failure rates) a technique which only uses consumer-side
information for service selection.

1. Introduction

Using service-oriented (SO) architecture is increasingly
popular in developing business software applications. In
these applications, various components (known as services)
publish their interfaces, discover useful peer components,
and dynamically communicate with one another. A
particular temporal and spatial collection of these
components is usually known as a service composition.

The quality of a service composition [1][2] depends,
however, on the quality of the belonging services [3][5]
and how they are weaved together. In a cross-
organizational environment, a service composition may use
a service provided by an external organization. The
evolution of such an external service may not be under the
control of the organization of the former. To ease the
presentation of the paper, we refer to a service composition
and an external service used by this service composition as

a service consumer and a service provider, respectively.
Let us consider an example. Suppose a customer

purchases an air ticket from the website of a carrier, and
pays by credit card. The de facto solution is to use a card
service provided by a financial institution. Any failure in
the latter service can be directly observed by the customer.
Suppose, for instance, that BankX has newly implemented
an additional online user authentication for its card services.
In one scenario, the authentication service may return a
blank webpage rather than continuing to execute the e-
business application. Using other buttons in the end-user
browser such as the “back” button may not work because
the application may have implemented certain business
policies such as preventing malicious code to steal secure
information from expired browser caches. The customer
may then be uncertain whether the ticket purchase has
succeeded. Even if the carrier indicates that the ticket
purchase is unsuccessful, owing to the privacy issue1, the
customer still needs to obtain the credit status from the
BankX directly. Selecting a quality service in time helps
improve the overall impression of the service composition
to the customer.

In a cross-organizational environment, the number of
external candidate services that offer the same functionality
can be large. For instance, more than 16,600 financial
institutions may provide VISA credit card services. The
quality of each individual service may evolve. It is
impractical for an organization to monitor all these services.
Furthermore, some organizations may be unwilling to
disclose such information publicly because of commercial
reasons.

Researchers have studied the problem of automated
service selection from many different perspectives using
static approaches such as pattern recognition [14], Petri
nets [13], and graph network analysis [7]. Dynamic service
selection has also been experimented in context-aware
computing [11], mobile computing [9], and e-commerce
[4][10].

Many existing automated techniques select services by
comparing nonfunctional aspects of services. The
functional aspect has not been explored.

This paper presents a statistical approach to selecting
services dynamically. It addresses the challenges of evolv-

1 We of course do not want an organization to access our financial
position just for the sake of a business transaction.

* This research is supported in part by the General Research Fund of the
Research Grant Council of Hong Kong (project nos. 111107, 717308,
and 717506).

† Corresponding author.

2008 IEEE International Symposium on Service-Oriented System Engineering

978-0-7695-3499-2/08 $25.00 © 2008 IEEE

DOI 10.1109/SOSE.2008.22

166

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 21:53 from IEEE Xplore. Restrictions apply.

ing qualities of services. We consolidate the historical
failures of a service provider perceived by all service
consumers to the perceived failure rate of the service
provider. A service consumer selects candidate service
providers supplying the required functionality in
decreasing order of these perceived failure rates. The
service consumer further maintains its own perceived
successful invocation count of each candidate service (reset
if the service has left the candidate pool), and apportions
the chances of selecting member services among all
candidate services inversely proportional to a combination
of such counts and the minimum chance to select any
candidate service. Such a combination ensures that even a
new candidate service (which has no perceived successful
invocation history) can still be selected, albeit occasionally.
The status of successful invocation of the resultant service
composition (or its failure counterpart) will be fed back to
the concerned service providers. Both service consumers
and providers can therefore update their statistics
dynamically.

The novelty of our approach is that it only needs to use
summary execution information to select services. The
local summary serves as a good approximate solution to
reduce the network overhead in collecting a global and
more detailed quality measurement of candidate services.

The main contribution of this paper is twofold: (i) It
presents a new dynamic approach to service selection.
(ii) We report a simulation experiment to evaluate the
approach. It shows that our approach delivers promising
results.

The rest of the paper is organized as follows: Section 2
outlines the challenges for dynamic service selection via a
motivating example. Section 3 presents our approach to
addressing the challenges. Section 4 reports the experi-
mental result, followed by a literature review and the
conclusion in Sections 5 and 6, respectively.

2. Motivating example

In this section, we present a motivating example adapted
from the SOAShop application [8] to illustrate the chal-
lenges in service selection. The SOAShop application
handles purchase requests from service consumers, includ-
ing the following workflow steps.
(i) Product Querying: to invoke the product query

service and check the availability of the requested
product.

(ii) PriceQuerying: to invoke the price query service and
check if the offered price satisfies consumer’s request.

(iii) OrderBooking: to invoke the order booking service.
(iv) CreditCheck: to invoke the credit service and check

the required balance for the order transaction.
(v) BillPayment: to invoke the payment service to pay for

the bill. Finally, the application returns a statement to
the consumer.

Figure 1 shows the structure of SOAShop. A solid
undirected line separates different types of services. A
solid arrow shows a workflow transition. A dotted arrow
means a service invocation.

Receive PO

eBay Amazon Yahoo!
Shopping
Services

PriceQuery

ProductQuery

OrderBook

PriceQuery

ProductQuery

OrderBook

PriceQuery

ProductQuery

OrderBook

Purchase Order
Process

Invoke Product Service

Invoke OrderBooking

Return Statement

Visa Card

Master Card

CreditCheck

CreditCheck

Credit Services

Invoke Price Service

Invoke CreditCheck Service

BillPayment

BillPaymentInvoke BillPayment Service

Figure 1. SOAShop example.
Through this application, we present three scenarios to

illustrate the challenges in dynamic service selection:
Scenario A (Changing Contexts and Service Quali-

ties). The context of a service composition, such as data
storage and bandwidth, may affect the performance.
Suppose the context of SOAShop determines that the maxi-
mum response time allowed for invoking PriceService is
10 seconds. If an invoked service does not respond within
this limit, it is deemed to be a timeout failure. Suppose
further that the average response time to invoke the
Amazon service is smaller than that of eBay (4 vs. 6
seconds), and the maximum response time of Amazon is
larger than that of eBay (12 vs. 10 seconds). If all other
factors are equal, using Amazon will produce more failures
than using eBay, because the Amazon service may produce
timeout failures.

However, if the context of SOAShop is changed to allow
the maximum response time of invoking PriceService to be
12 seconds, then the Amazon service is preferred to the
eBay service because neither service produces timeout
failures, and the Amazon service gives a better average
response time than the eBay service.

Service providers such as eBay and Amazon may
upgrade their services without prior notification of all
service consumers. When Amazon upgrades its system,
qualities such as the failure rate may change. The question
is: how can we address the issues of changing contexts and
service qualities in service selection?

Scenario B (Long Evaluation Time). Suppose we want
to select a credit card service from a service pool. A simple
means is to rank these services based on specific criteria
[1][12]. Such handling can be time-consuming when the
number of service providers increases. For instance, if the
average testing of a service provider takes 2 seconds, we
need 332,000 seconds (or 9.22 hours) to evaluate 16,000
financial services. The time needed for evaluation and the
cost to pay (we may need to pay for service invocations
such as the credit service) can be high, making such an
approach less attractive.

167

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 21:53 from IEEE Xplore. Restrictions apply.

Scenario C (Refreshing Evaluation Information). In
scenario B, we have highlighted the problem of long
evaluation periods. If we can reduce the evaluation time in
SOAShop to a reasonable range, can we use such
evaluation information to guide service selection? Owing
to evolving service qualities (as in scenario A), SOAShop is
required to perform such evaluations from time to time to
collect the latest quality information of service providers.
Because SOAShop is designed for long-term running, even
if a single round of evaluation of all candidate services is
affordable, it is still too expensive to continuously repeat
endless rounds of evaluations. Furthermore, individual
applications do not share the evaluation workload. Thus, if
there are 1000 SOAShops in a network, such redundant and
repetitive evaluations will put a huge burden to individual
service providers (and the underlying networks).

In summary, it is critical to develop a dynamic service
selection technique to address the above challenges.

3. Statistical service selection
This section presents our approach in dynamically

selecting service using statistical analysis.

3.1. Our contextual model
A service consumer often selects a provider that offers a

service to its workflow step. Such a service selection
consists of at least two phases. Phase 1 is the ability of a
service consumer c to discover a service s from a provider
and to judge whether c may use s. Phase 2 is the ability of
c to select and bind to s among all previously collected
services in Phase 1. A service usage is successful if the
service consumer experiences no failure; otherwise, the
service usage is said to have failed.

We propose to compute statistically the perceived
invocation results as passed or failed. The perceived failure
rate of individual service providers can be used for Phase 1.
The relatively local (with respect to a service consumer)
perceived frequency of passed invocations of each
candidate service can be used for selections in Phase 2. It
lets the service consumer select quality services locally. It
helps service consumers avoid the trap of binding to a
particular service provider in the presence of newcomers
with a better quality.

Definition 1 (Statistical Property of Service Consumer).
Given a service pool S modeling a network of services
visible to a service consumer c, the statistical property
STPc of c is a tuple 〈Sc, Tc〉, where Sc (⊆ S) is the candidate
service set that c may invoke, and Tc is the collection of
Tc(s) for every s ∈ Sc. Each Tc(s) is a triple 〈s, P, PR〉,
where s ∈ Sc; P is the most recent consecutive number of
passed invocations of s by c; and PR is the probability that
c selects s from Sc.

In particular, P in 〈s, P, PR〉 records a summary of the
invocation results of s by c. We refer to P as a consecutive
pass count (or simply a pass count). When a candidate
service s is unavailable or behaves abnormally, it may be
replaced by another service (not from the candidate set)
after the service consumer c has made N consecutive failed

attempts to invoke it. We say that c has N-Tolerance if it
allows N (≥ 1) failures before replacement. We say that c
has 0-Tolerance if it accepts no failed service in the next
service selection.

The selection probability PR in 〈s, P, PR〉 serves two
purposes: (i) Suppose s has the highest value in P among
all candidate services. We heuristically deem that s should
be more dependable than other services in the candidate set.
Thus, our model hypothesizes that invoking this service is
more likely to result in successful usage. (ii) Every
candidate service should have a certain chance of being
selected, no matter how low the value of P is for this
service. Our algorithm includes a feature to address this
case. In Section 3.2, we will give an example to illustrate
this point.

We have assumed above that, when a service consumer
cannot tolerate a particular service provider, it can have a
means to find a replacement. This is supported by
statistical properties kept by service providers.

Definition 2 (Statistical Property of Service Provider)
The statistical property STPs of a service provider s is a
collection of STPs(c). Each STPs(c) is a 4-tuple 〈s, c, P, F〉,
where c is a service consumer that has invoked s at least
once, and P and F record the counts of successful and
failed invocations of s by c, respectively.

When a service consumer c needs to select a service
from the service pool S, it may assess the rankings of all
services in the pool to guide the selection. Therefore, how
to rank the services in S becomes a question. We note that
STPs records a summary of all invocation results requested
by any service consumers. Thus, by collecting each pair of
P and F of s in STPs, we can compute the average
perceived failure rate of s. We use these average failure
rates as ranking scores whenever any service consumer
selects its candidate services. The rate is calculated by the
formula Σc∈C Tc(s).F / (Σc∈C (Tc(s).P + Tc(s).F)), where C is
the set of service consumers.

Definition 3 (Statistical Model for Service Selection).
Given a set of service consumers C and a set of service
providers S, a statistical model for service selection is the
triple 〈STPC, STPS, R〉, where STPC is a collection of
statistical properties STPc of c ∈ C; STPS is a collection of
statistical properties of STPs of s ∈ S; and R (⊆ C × S) is a
set of consuming relations between C and S such that c
consumes s for any 〈c, s〉 ∈ R.

We have defined a model to facilitate the two phases of
service selection. In the next section, we will present an
algorithm that integrates the two phases.

3.2. Dynamic service selection algorithm
The following algorithm COMPUTE_SELECTION

implements our proposal for service selection. For the ease
of presentation, we denote the attribute y of x by “x.y”. The
algorithm assumes 0-Tolerance. The extension to N-
Tolerance can be achieved simply by adding a predicate
before line 10 that decides whether a service s invoked by c
has encountered N consecutive failed attempts (that is,
STPs(c).F).

168

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 21:53 from IEEE Xplore. Restrictions apply.

Algorithm COMPUTE_SELECTION
Input Statistical model 〈STPC, STPS, R〉,

Service Consumer c (∈C).
Output STPC and STPS
1 Select a candidate service s from Sc according to the selection

probabilities of all services in Sc.
2 Collect the invocation result of s as r.
3 if r is pass {
4 Tc (s).P ← Tc (s).P + 1.
5 STPs (c).P ← STPs (c).P + 1. // Update service provider
6 for each s’∈Sc
7 Tc (s’).PR ← ComputePR (Tc, s’).
8 }
9 else { // r is failure
10 Sc ← Sc – s. // Remove s from S
11 Tc ← Tc – {〈s, Ps, PRs〉}. // Remove record of s from Tc
12 STPs (c).F ← STPs (c).F +1. // Update service provider
13 sadd ← SelectService (S, Sc).
14 Sc ← Sc + sadd.
15 if STPsadd (c) is empty, then STPsadd (c) ← 〈sadd, c, 0 , 0〉.
16 Tc ← Tc + {〈sadd, 0, 0〉}. // PR of sadd is set to 0 initially
17 Tc(sadd).PR ← ComputePR (Tc, sadd). // Update PR for sadd
18 }
19 Function ComputePR (Tc, s) {
20 TotalCount ← 0.
21 for each candidate service s’ recorded in Tc
22 TotalCount ← TotalCount + Tc(s’).P + 1.
23 PR ← (Tc(s).P + 1) / TotalCount.
24 return PR.
25 }
26 Function SelectService(S, Sc) {
27 s ← {s∈S | ∀s’∈S, s’∉Sc, Σc∈C Tc(s’).F / Σc∈C (Tc(s’).P+Tc(s’).F)

≥ Σc∈C Tc(s).F / Σc∈C (Tc(s).P+Tc(s).F)}.
28 return s.
29 }

We use an example to illustrate the algorithm, partic-
ularly Phase 2. In Table 1, the two leftmost columns show
the round index and the action taken, respectively. The
third column presents the statistical information for service
providers experienced by c after the round stated in the
leftmost column. The rightmost two columns show the
consecutive pass count and the selection probability for
each service provider right after the stated round.

Table 1. Example of service selection.

Round Action,
Result

〈si, c, P,
F〉

Consecutive
Pass Count

Selection
Probability

Before
Round 1

━
〈s1, c, 0, 0〉 0 1/3
〈s2, c, 0, 0〉 0 1/3
〈s3, c, 0, 0〉 0 1/3

After
Round 1

Invoke s1,
Success

〈s1, c, 1, 0〉 1 2/4
〈s2, c, 0, 0〉 0 1/4
〈s3, c, 0, 0〉 0 1/4

After
Round 2

Invoke s2,
Success

〈s1, c, 1, 0〉 1 2/5
〈s2, c, 1, 0〉 1 2/5
〈s3, c, 0, 0〉 0 1/5

After
Round 3

Invoke s1,
Failure

〈s1, c, 1, 1〉 ━ ━

〈s4, c, 0, 0〉 0 1/4
〈s2, c, 1, 0〉 1 2/4
〈s3, c, 0, 0〉 0 1/4

After
Round 4

Invoke s3,
Success

〈s4, c, 0, 0〉 0 1/5
〈s2, c, 1, 0〉 1 2/5
〈s3, c, 1, 0〉 1 2/5

Each si (0 ≤ i ≤ 4) is a service provider. Suppose c
selects s1, s2, and s3 initially to form the set of candidate

services Sc in Phase 1. As we have discussed in Section 3.1,
the larger the consecutive pass count of a service provider,
the higher will be the chance that the service is re-selected.
Suppose the pass count of every service is 0 initially
(before round 1). To calculate the selection probability of
these services, c collects each of their counts and adds one
to their count values (line 23) so that each service has a
non-zero probability of being selected. Note that the pass
counts of the services kept in Sc remain unaffected.
Observing that s1, s2, and s3 have the same count values,
the selection probability of each service is apportioned to
1/3.

Suppose c invokes s1 in round 1 and is successful. The
consecutive pass count of s1 will change from 0 to 1 (line
4). This information will be passed to the service provider
so that the pass count at the service provider side will be
incremented by one (line 5). Thus, the pass counts of the
three services s1, s2, and s3 in Sc become 1, 0, and 0,
respectively. Their TotalCount is based on the sum after
adding the value of 1 to each pass count

2, giving (1+1) +
(0+1) + (0+1) = 4 (line 22). The algorithm then computes
the selection probability of s1 to be 2/4 (lines 6–7). In the
same manner, suppose c invokes s2 and achieves correct
results in round 2. The pass count of s2 in Sc will change
from 0 to 1. In round 3, c invokes s1 and encounters a
failure. As indicated by lines 10–17 in the algorithm, it
results in the removal of s1 (the gray row in Table 1).
Another service provider, say s4, is selected from S (lines
27–28) as the replacement of s1. The service s1 will
increment its failed count by one.

The function ComputePR calculates the probability that
a consumer c selects a service provider s. The function
SelectService selects a service from the service pool S. It
calculates the average failure rates of services (lines 27–28)
and chooses the one with the lowest rate. If a service does
not want to release such statistics information to consumers,
however, we may use other means (such as popularity or
other measures of goodwill in public service registries [10])
to rank services.

Intuitively, when the number of service invocations
increases, the algorithm will gradually provide increasingly
accurate estimations of the failure rates of service providers,
thus presenting better advices to consumers. We leave the
formal proof as future work. Our algorithm has not
considered the benefits and limitations of service providers,
and hence extension in this direction is envisaged.

4. Evaluation

4.1. Experimental design
We scale up the motivating example to evaluate our

approach. Our tool automates the evaluation and generates
100 shop service consumers and 1000 shop service provid-
ers in total. We randomly set the failure rate of a service
provider to a value between 0.0001 and 0.1. For each

2 This will ensure that new services without invocation history may
still have a chance to be selected.

169

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 21:53 from IEEE Xplore. Restrictions apply.

service consumer, the tool randomly selects a number of
service providers from the service pool and forms a
candidate set for the service consumer.

There are two important parameters in our approach: the
upper bound of P (consecutive pass count of invocations)
and the size of a candidate set. To study their impacts, we
design three techniques, namely, 1-P-1-C, 1-P-3-C, and
10-P-3-C. These three techniques set the upper bounds of P
to be 1, 1, and 10, and set the numbers of candidate serv-
ices to be 1, 3, and 3, respectively. The first two techniques
have the same upper bound of P and different sizes of
candidate sets, while the last two techniques have the same
size of candidate sets and different upper bounds of P.

We compare our approach with a basic strategy we call
clientsChoice, which only uses client-side information for
service selection as follows: A service consumer c selects a
set Sc of candidate services. Then, c computes the average
client-perceived failure rate of every s in Sc by fetching
each individual perceived failure rate of s from every
service consumer that has used s. Finally, c selects the
service that has the lowest average client-perceived failure
rate. Any tie is resolved randomly.

We have experimented with clientsChoice using candi-
date sets in two different sizes: 1 and 3. In this paper, we
report the results of clientsChoice with candidates of size 3
as they achieve better outcomes between the two settings.

To simulate the scenario of changing qualities, the tool
chooses 20% of service providers randomly, and changes
their failure rates to 0.1 after 214 invocations of our
algorithm. This case simulates a worsened service quality
after the deployment of services.

4.2. Data analyses
We conduct 223 service invocations in the experiment.

Figure 2 shows the results of our three techniques and
those of clientsChoice after 2i invocations (i = 0, 1, ..., 23).
The x-axis shows the number of invocations. The y-axis
shows the expected failure rate in abs(log2) scale,
calculated by abs(log2(Σc∈C(Σs∈Sc failureRate(s) / |Sc|) / |C|)).
We note that a larger value indicates a lower failure rate (or
better result).

After 223 invocations, as shown in Figure 2, the average
failure rates using 1-P-1-C, 1-P-3-C, and 10-P-3-C are
0.134%, 0.091%, and 0.060% at the points (23, 9.546),
(23, 10.101), and (23, 10.703), respectively. That of
clientsChoice is only 3.57% at point (23, 4.807). All our
three techniques outperform clientsChoice, indicating that
our techniques are more promising in selecting higher
quality services than clientsChoice.

Let us focus on our three techniques. At the initial stage
(x ∈ [1, 16]), 1-P-1-C performs better than the other two
techniques. However, other two techniques surpass 1-P-1-
C after 217 invocations. These two techniques both have a
larger size of candidate set than 1-P-1-C (3 vs. 1). The
result suggests that the size of candidate set should have a
high impact in service selection. 10-P-3-C outperforms 1-P-
3-C after the first 212 invocations. It indicates that the upper

bound of P should affect the service quality of a candidate
set.

Figure 3 shows a comparison of expected failure rates
with respect to changing service qualities. Its two axes can
be interpreted as per the axes of Figure 2. We observe that
the relative positions of the three lines, representing our
three techniques, remain the same as those in Figure 2.

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

A
ve

ra
ge

 F
ai

lu
re

 R
at

e
Ex

pe
ct

ed

(in
 a

bs
(lo

g 2
) s

ca
le

)

Number of Invocations (in 2i Scale)

clientsChoice
1-P-1-C
1-P-3-C
10-P-3-C

Figure 2. Comparison of selection ability (not evolving).

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Av
er

ag
e

Fa
ilu

re
 R

at
e

Ex
pe

ct
ed

(in
 a

bs
(lo

g 2
) s

ca
le

)

Number of Invocations (in 2i scale)

clientsChoice
1-P-1-C
1-P-3-C
10-P-3-C

Figure 3. Comparison of selection ability (evolving).

Owing to the page limit, we leave further experiment-
ation and analyses in future publications.

4.3. Threats to validity
In the experiment, we use failure rate as the metric to

distinguish the qualities of different services. Instead, our
technique may also pair with other metrics such as
response time or price. The effectiveness of these combin-
ations warrant more study. Our approach has recorded the
statistical information collected from the historical service
invocations. One may indeed collect the information of
other metrics during service invocation to address other
issues.

We randomly set up the initial scenarios to avoid biases.
While such a setting may not represent a realistic situation,
it may be good for evaluating a technique. We have not
studied the cost of maintaining statistical properties over
the network and at individual services. In the future, we
will find more real-life cases to evaluate our approach.

5. Related work

In this section, we review the literature related to our
work. We first review the service composition problem in

170

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 21:53 from IEEE Xplore. Restrictions apply.

general. Ardagna and Pernici [1] propose a general solution
for adaptive service composition aimed to enable flexible
processes. Mokhtar et al. [11] discuss the problem of
service composition in a pervasive computing environment,
and propose two steps in processing a dynamic context-
aware service composition: (i) discover a set of candidate
services and (ii) use the automata descriptions of services
and user tasks to generate composition schemes. Our
approach may substitute their first step.

Existing studies [9][10] have addressed the challenges of
obsolete, corrupted, or inaccurate context changes in
dynamic and noisy environments. Lee et al. [9] discuss the
problem of service composition in mobile network envi-
ronments. Our previous work [10] discusses a series of
scenarios for service composition concerned with evolving
service qualities. In this paper, we consider both the
environmental effects and changing service qualities in the
statistical model for service selection.

Casati et al. [4] point out that a static service binding is
often too rigid to enable the following aspects: (i) adaptive
to changes in user requirements; (ii) decoupling service
selection from process definition; and (iii) dynamically
discovering the best available service that satisfies a
specific process definition. Instead, they use rules and
policies to guide the selection of services. On the other
hand, we use the statistical information collected from
service invocations to guide service selection.

Zeng et al. [12] propose a middleware platform to select
web services. They perform service selection both at the
task level and globally, aiming to maximize user satisfac-
tion. Our previous work [10] proposes to use link analysis
to select reliable services. It explores the dimension of
service popularity in a snapshot of service network. It does
not, however, study the contextual effect of different
service compositions that may affect the performance of a
service [9][11]. Our statistical model can extensively
address such context issues in service selection.

6. Conclusion

In service computing, an organization may use external
services to form its service composition. The resultant
service composition should address the evolving qualities
of such services to make the service composition more
reliable. Since many such candidate services may have the
same functionality but different qualities, proper service
selection techniques are vital to the quality of service
composition. In this paper, we propose a dynamic service
selection technique using a statistical model. The model
collects information from service invocations. Both service
consumers and service providers use the feedback
information to maintain their respective perceived failure
rates. Based also on perceived consecutive passed counts,
we apportion the chance of selecting a service. The
experimental results show that our approach is promising
in selecting high quality services in the long run. In the
future, we will explore along this direction to formulate
statistical analysis for service selection to address other
quality dimensions, and perform more evaluations.

References

[1] D. Ardagna and B. Pernici. Adaptive service composition in
flexible processes. IEEE Transactions on Software Engin-
eering (TSE), 33 (6): 369–384, 2007.

[2] B. Benatallah, R. M. Dijkman, M. Dumas, and Z. Maamar.
Service composition: concepts, techniques, tools and trends.
In Service-Oriented Software System Engineering:
Challenges and Practices, Z. Stojanovic and A. Dahanayake
{editors), pages 48–66. Idea Group, Hershey, PA, 2005.

[3] A. Bucchiarone, H. Melgratti, and F. Severoni. Testing
service composition. In Proceedings of the 8th Argentine
Symposium on Software Engineering (ASSE 2007). Mar del
Plata, Argentina, 2007.

[4] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C.
Shan. Adaptive and dynamic service composition in eFlow.
In Advanced Information Systems Engineering, volume 1789
of Lecture Notes in Computer Science (LNCS), pages 13–
31. Springer, Berlin, Germany, 2000.

[5] H. Chen, G. Jiang, and K. Yoshihira. Failure detection in
large-scale internet services by principal subspace mapping.
IEEE Transactions on Knowledge and Data Engineering, 19
(10): 1308–1320, 2007.

[6] H. Foster, W. Emmerich, J. Kramer, J. Magee, D.
Rosenblum, and S. Uchitel. Model checking service
compositions under resource constraints. In Proceedings of
the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on
Foundations of Software Engineering (ESEC/FSE 2007),
pages 225–234. ACM Press, New York, NY, 2007.

[7] J. Gekas and M. Fasli. Automatic Web service composition
based on graph network analysis metrics. In On the Move to
Meaningful Internet Systems 2005: CoopIS, DOA, and
ODBASE, volume 3761 of LNCS, pages 1571–1587.
Springer, Berlin, Germany, 2005.

[8] M. D. Hansen. SOA Using Java Web Services. Prentice Hall,
Upper Saddle River, NJ, 2007.

[9] C. Lee, S. Ko, S. Lee, W. Lee, and S. Helal. Context-aware
service composition for mobile network environments. In
Ubiquitous Intelligence and Computing, volume 4611 of
LNCS, pages 941–952. Springer, Berlin, Germany, 2007.

[10] L. Mei, W. K. Chan, and T. H. Tse. An adaptive service
selection approach to service composition. In Proceedings of
the IEEE International Conference on Web Services (ICWS
2008). IEEE Computer Society Press, Los Alamitos, CA,
2008.

[11] S. B. Mokhtar, D. Fournier, N. Georgantas, and V. Issarny.
Context-aware service composition in pervasive computing
environments. In Rapid Integration of Software Engineering
Techniques, volume 3943 of LNCS, pages 129–144.
Springer, Berlin, Germany, 2006.

[12] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalag-
nanam, and H. Chang. QoS-aware middleware for Web
services composition. IEEE TSE, 30 (5): 311–327, 2004.

[13] J. Zhang, C. K. Chang, J.-Y. Chung, and S. W. Kim. WS-
Net: a Petri-net based specification model for Web services.
In Proceedings of ICWS 2004, pages 420–427. IEEE
Computer Society Press, Los Alamitos, CA, 2004.

[14] L.-J. Zhang, S. Cheng, Y.-M. Chee, A. Allam, and Q. Zhou.
Pattern recognition based adaptive categorization technique
and solution for services selection. In Proceedings of the 2nd
IEEE Asia-Pacific Service Computing Conference (APSCC
2007), pages 535–543. IEEE Computer Society Press, Los
Alamitos, CA, 2007.

171

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 21:53 from IEEE Xplore. Restrictions apply.

