
A Tale of Clouds: Paradigm Comparisons and Some Thoughts on Research Issues*

Lijun Mei
The University of Hong Kong

Pokfulam, Hong Kong
ljmei@cs.hku.hk

W.K. Chan†
City University of Hong Kong
Tat Chee Avenue, Hong Kong

wkchan@cs.cityu.edu.hk

T.H. Tse
The University of Hong Kong

Pokfulam, Hong Kong
thtse@cs.hku.hk

Abstract

Cloud computing is an emerging computing paradigm.
It aims to share data, calculations, and services transpar-
ently among users of a massive grid. Although the
industry has started selling cloud-computing products,
research challenges in various areas, such as UI design,
task decomposition, task distribution, and task coordinat-
ion, are still unclear. Therefore, we study the methods to
reason and model cloud computing as a step toward
identifying fundamental research questions in this para-
digm. In this paper, we compare cloud computing with
service computing and pervasive computing. Both the
industry and research community have actively examined
these three computing paradigms. We draw a qualitative
comparison among them based on the classic model of
computer architecture. We finally evaluate the compar-
ison results and draw up a series of research questions in
cloud computing for future exploration.

Keywords: cloud computing, paradigm comparison.

1. Introduction

Cloud computing is a paradigm that focuses on sharing
data and computations over a scalable network of nodes.
Examples of such nodes include end user computers, data
centers, and Web Services. We term such a network of
nodes as a cloud. An application based on such clouds is
taken as a cloud application.

This paradigm is increasingly popular in the industry,
where industrial leaders such as Microsoft [26], Google
[2], and IBM [5] strongly promote the paradigm in recent
years. An early attempt to formulate cloud computing
dates back to at least 1997 [8]. However, to our best
knowledge, the adoption and promotion of cloud
computing has been slow until 2007 [9].

We observe that the history of early industrial
adoptions of cloud computing share some common

milestones with that of service computing [4]. For
example, it took service computing [27] a long time (ten
years or so) to receive worldwide support from leading
companies like IBM, Microsoft [25], BEA, and Oracle.
Similarly, it has been many years since the early
formalization effort [8] toward cloud computing.

Besides, the wide adoption of a computing paradigm
usually depends highly on the maturity of supporting
technologies and industry recognitions. Service comput-
ing has become much more popular since the success of
Web services, although a Web service is only one of the
technologies to fulfill the notion of service orientation [4].
Similarly, the distributed computing community has
pointed out that many distributed computing techniques
for cloud computing have been mature [7][10][11]. Many
companies such as Dell and IBM have begun to ship
cloud computing machines [5][10].

Last but not the least, in either service computing or
cloud computing, research developments lag behind
industrial adoptions. For instance, COSCON, a leading
international container shipper, has a successful adoption
of service computing. It successfully used service-oriented
architecture to improve the business responsibility to
customers in 2004 [3]. Yet, research studies in service-
oriented architecture from the software engineering
community [19] are still inadequate.

Despite our survey over the Internet, to our best
knowledge, there are few articles to pinpoint research
issues in cloud computing. This would slow down the
next research advances. We will alleviate this problem in
the present paper.

In this paper, we use the classic computer architecture
model [15] to provide a qualitative comparison framework
to compare cloud computing with pervasive computing
and service computing. The qualitative comparison
framework includes three features: input-output (I/O),
storage, and calculation. For each feature, we draw the
comparison using multiple characteristics. Through such
comparisons, we identify the connections between cloud
computing and the other two computing paradigms from
the perspective of software engineering. Based on the
connections, we draw up a few research issues and discuss
them in the paper to promote future exploration.

The main contribution of the paper is twofold: (i) To
our best knowledge, we provide the first qualitative

* This research is supported in part by the General Research Fund of the
Research Grant Council of Hong Kong (project nos. 111107, 717308,
and 717506).

† Corresponding author.

2008 IEEE Asia-Pacific Services Computing Conference

978-0-7695-3473-2/08 $25.00 © 2008 IEEE

DOI 10.1109/APSCC.2008.168

464

2008 IEEE Asia-Pacific Services Computing Conference

978-0-7695-3473-2/08 $25.00 © 2008 IEEE

DOI 10.1109/APSCC.2008.168

464

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

comparison on cloud computing, service computing, and
pervasive computing. (ii) We present a series of research
issues in cloud computing on top of the comparison
framework. These issues promote future explorations.

The rest of the paper is organized as follows: Section 2
presents the preliminaries of cloud computing, service
computing, and pervasive computing. Section 3 intro-
duces our qualitative framework to compare the above
three computing paradigms and present our efforts to
identify research issues in cloud computing. Finally, we
review related work in Section 4 and draw a conclusion in
Section 5.

2. Preliminaries

This section reviews the preliminaries of cloud
computing, service computing, and pervasive computing.

2.1. Cloud computing
As we have introduced in Section 1, a computing cloud

is a massive network of nodes. Thus, scalability should be
a quality feature of the computing cloud. It has at least
two dimensions, namely horizontal cloud scalability and
vertical cloud scalability (adapted from [9]).

 Horizontal cloud scalability is the ability to connect
and integrate multiple clouds to work as one logical
cloud. For instance, a cloud providing calculation
services (calculation cloud) can access a cloud
providing storage services (storage cloud) to keep
intermediate results. Two calculation clouds can also
integrate into a larger calculation cloud.

 Vertical cloud scalability is the ability to improve the
capacity of a cloud by enhancing individual existing
nodes in the cloud (such as providing a server with
more physical memory) or improving the bandwidth
that connects two nodes. In addition, to meet increasing
market demand, a node can be gradually upgraded from
a single power machine to a data center.
Scalability should be transparent to users. For instance,

users may store their data in the cloud without the need to
know where it keeps the data or how it accesses the data.

For simplicity, we will refer to horizontal and vertical
cloud scalability, respectively, as horizontal scalability
and vertical scalability in this paper.

2.2. Service computing
Service computing (or service-oriented computing) is

an emerging paradigm to model, create, operate, and
manage business services. In this paradigm, services
publish themselves in public registries, discover peer
services, and bind to the latter services to form service
compositions using standardized protocols [6]. To create a
service composition, engineers may use a specification,
such as WS-BPEL [30], to model the collaborative need
in workflows. To carry out individual workflow steps,
software developers may use Web services, the most

popular way to fulfill service-oriented architecture in the
industry. A set of service-oriented applications over the
Web services thus creates a network of services.

Service RegistryService

Register Service
to Registry

Discover Service
from a registry

Bind Service Associate Service
Figure 1. Service-oriented network [18].

We briefly describe a service-oriented network [18] to
facilitate the comparison in the rest of the paper. An
element in such a network is a service registry, service
consumer, or service provider. A service provider
registers itself in a service registry. A service consumer
first discovers the service from a registry, and then binds
to the service. A service provider may register itself to
more than one registry. A registry may also associate its
registered services to other registries, and acts as a service
itself. Such a treatment on a registry provides a generic
view among elements in service-oriented modeling.

2.3. Pervasive computing
Pervasive computing (or ubiquitous computing) [23][24]

is another emerging computing paradigm. Software (often
referred as pervasive software) can be embedded in a
constantly changing computing environment. Therefore,
pervasive software users do not need to be concerned
about how to adjust the software to adapt to the
surrounding computing environment. A well-developed
environment will enable users to use pervasive software
everywhere without extra effort.

To understand and react to a user, applications use
environmental features, known as contexts, extensively.
Sensors can capture these contexts. To allow ubiquitous
support to end users, smart sensors are placed around
users to preserve different information, such as the
locations, contexts, and user-relevant data.

Figure 2. Pervasive computing environment [22].

Figure 2 shows a pervasive computing example.
Sensors, mobile phones and PDAs, desktop computer, and
servers are interconnected logically to form an application.

465465

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

Suppose a nomadic user at the top left corner of Figure 2
moves from using a laptop to using a desktop computer.
The laptop and the desktop computer both serve as UI
portals to the tuple space maintained by the pervasive
software. The remarked information from various display
portals (such as the PDAs on the right-hand part) may
need adapting. For example, a desktop computer may be
equipped with a high-definition webcam. Thus, a
presentation display portal may display the contents with
a camera image kept in the tuple space of the application
when using a laptop.

3. Comparison of cloud, service, and
pervasive computing paradigms

This section presents a qualitative comparison among
the cloud, service, and pervasive computing paradigms.

Many researchers consider cloud computing as derived
from grid computing [12] and have provided many
comparisons between them [21]. To identify more issues
for cloud computing, we choose to compare it with
service computing and pervasive computing for the
following reasons. Service computing is useful in
modeling functionality and providing flexible services.
Pervasive computing enables users to use software
everywhere and provides self-adaptive capacity to the
software with respect to environmental contexts. Cloud
computing needs both functionality modeling and context-
sensitivity. Through comparison with service computing
and pervasive computing, therefore, we can gain insights
on cloud computing.

Researchers (such as [13]) have applied the notion of
virtual computers to model various computing entities and
their interconnections. Such a treatment motivates us to
analyze the key features of software applications (or
services) of cloud computing. We thus compare cloud
computing with service computing and pervasive
computing from the perspective of computer architecture.

In classic computer architecture [15], a computer has
three features: Input-Output (I/O), Storage, and Calculat-
ion. The descriptions of these features are as follows:
(i) The typical computer-Input entities include the keyboard
and mouse, and the computer-Output entities include, for
instance, the monitor, printer, and speaker. (ii) In the
Storage feature, there are storage entities such as the hard
disk (internal storage) and USB (external storage).
(iii) The key entity in the Calculation feature is the CPU.

We then show the representative characteristics in each
feature of the three computing paradigms from the
perspective of software engineering. Our understanding of
service computing and pervasive computing is mainly
based on our software engineering research [17][18][19]
in these two paradigms. Our understanding of cloud
computing is mainly based on our survey over the Internet.

We summarize the comparison results in Table 1. The
key findings are as follows. We note that at least three
notable likenesses of cloud computing from Table 1:

 The I/O feature of cloud computing resembles that of
service computing.

 The storage feature of cloud computing is closer to
that of pervasive computing than service computing.

 The calculation features of the three computing
paradigms are similar.

Table 1. Comparisons in the framework of the
classical model of computer architecture

 Model
Dimension General Characteristics

C
lo

ud

C
om

pu
tin

g I/O User requests and cloud responses
Storage Stored in the clouds collectively

Calculation Both intra-cloud calculations
and inter-cloud calculations

Se
rv

ic
e

C
om

pu
tin

g I/O Service requests and service responses
Storage Stored in specific service hosts

Calculation Performed by individual service
compositions

Pe
rv

as
iv

e
C

om
pu

tin
g

I/O Situation detections and setup

Storage Stored in the tuple space of the
application

Calculation
Mainly performed by the entities
embedded or connected to the
surrounding environments

We thus use the above-identified likenesses to extract
the main properties of service computing and pervasive
computing to study cloud computing. Although the three
paradigms are similar at a high-level, they still show
differences in the details, as we will present below.

Tables 2, 3, and 4 show the comparisons of the key
properties (that is, subfeatures) in the I/O, storage, and
calculation features, respectively. Owing to the page limit,
we will leave the comparisons of other properties in
further publications. We only pick the key points of the
main properties for discussions in this paper.

Table 2. Comparisons in the I/O feature

 I/O Attributes Description
(Research Question Index)

C
lo

ud

C
om

pu
tin

g

Interface Cloud interface (Q1, Q2)
(not yet formally defined)

Data Type Cloud data type (Q2)
(not yet formally defined)

Synchronization
Synchronous or asynchronous I/O
communication? (Not yet formally
defined) (Q2)

Se
rv

ic
e

C

om
pu

tin
g Interface Service interface

Data Type XML data which can be transferred
using certain protocols (e.g., SOAP)

Synchronization Providing both synchronous and
asynchronous I/O communications

Pe
rv

as
iv

e
C

om
pu

tin
g Interface

Interfaces with various devices in
the environments (e.g., PDAs,
mobile phones, and laptops)

Data Type Various data types (e.g., XML,
WAP, GPRS, and Bluetooth)

Synchronization Providing both synchronous and
asynchronous I/O communications

466466

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

Table 3. Comparisons in the Storage feature

 Storage
Attributes

Description
(Research Question Index)

C
lo

ud

C
om

pu
tin

g Location
Encapsulated in clouds. No explicit
distinction between local and remote
storage entities (Q2)

Scale The scale of intra-cloud storage and the
inter-cloud storage (Q1)

Access Through cloud access (Q2)

Se
rv

ic
e

C

om
pu

tin
g Location

Encapsulated within individual services.
Online storage is not the focus of service
computing

Scale Depending on the storage scales of
individual service hosts

Access Service requests

Pe
rv

as
iv

e
C

om
pu

tin
g Location Explicit storage in the surrounding

environments

Scale
Depending on the storage scales in the
environment or inter-connected to the
environment

Access Through context communications

Table 4. Comparisons in the Calculation feature

 Calculation
Attributes

Description
(Research Question Index)

C
lo

ud

C
om

pu
tin

g Location
Encapsulated in clouds. No explicit
distinction between local and remote
calculation entities. (Q1, Q2)

Context Environment of individual entities in
clouds. Unclear location of contexts. (Q3)

Granularity The entire cloud. (Q4)

Se
rv

ic
e

C

om
pu

tin
g

Location

Encapsulated within individual services.
Discovery of services via explicit service
publishing, discovering, and binding
mechanisms.

Context
Environment of individual services and
service compositions. Contexts are kept in
services.

Granularity Usually, a small subset of all available
services in a SON.

Pe
rv

as
iv

e
C

om
pu

tin
g Location Explicit calculation discoveries via

context communications.

Context Environment of individual computing
entities. Contexts are kept in tuple space.

Granularity Ad hoc aggregations due to the changing
nature of contexts and networks.

In the sequel, we will discuss the research questions
indexed in Tables 2, 3, and 4.

Q1. How do computing entities dynamically plug
into a computing cloud?

In service computing, service providers dynamically
register their services into the public service registries.
Service consumers discover services from the registries
and dynamically bind or unbind themselves to these
services [18]. In pervasive computing, a mobile entity can
move from one place to another and embed into different
environments [17].

Similarly, in cloud computing, computing entities
should be able to plug into a cloud dynamically. For
example, when a large cluster of computer workstations
and business services are attached to a cloud, the
availability of computing entities in the cloud may change
radically. How can a cloud application be entity-aware to
plug-in heterogonous computing entities (which may also
be different in modeling) with respect to various
application parts? Techniques to alleviate this problem
will strengthen the vertical scalability of applications.

We thus need to address Q1 under the interface
characteristic of the I/O feature, the scale characteristic of
the Storage feature, and the location characteristic of the
Calculation feature.

Q2. How do computing clouds store and access
large-scale data?

Because a mobile entity in pervasive computing often
has limited storage (see [23][24], for example), the entity
usually stores its data in the surrounding environment.
Similarly, every cloud has only a finite amount of
physical storage entities. Therefore, a cloud c1 may seek
help from another cloud c2 for shared storage entities to
fulfill some demands on storage. Such sharing may result
in storing a dataset using distributed data storage among
multiple clouds.

Nevertheless, the cloud user should not be aware of the
distributed storage of the data [14]. For instance, when the
stored data needs to be accessed, the user may directly
retrieve it from the cloud c1. Then c1 is responsible for
gathering the data from both c1 and c2, and returns the
collected data to the user. The cloud provides location
transparency to applications.

From this scenario, we note that cloud data storage and
access may need not only intra-cloud communications,
but also inter-cloud communications. To do so, we also
need a cloud-readable interface that supports extensible
data type (such as XML Schema). The WSDL approach in
Web services may not work because it codes the entities
explicitly in URL, which may not be compatible with the
notion of location transparency in cloud computing. The
scenario also raises the question of how a cloud applicat-
ion or service may publish its interface (such as where to
publish). Moreover, since a calculation does not know the
location of its required data, such data distribution among
clouds may impose a huge performance penalty.

Thus, we should address Q2 under the three
characteristics of the I/O feature, the location and access
characteristics of the Storage feature, and the location
characteristic of the Calculation feature.

Q3. How does a computing cloud become adaptive
to both external and internal changes?

Both service computing and pervasive computing may
meet environmental changes [16][18][24]. Besides, a
service-oriented application is concerned with the
evolving quality of individual services [18]. Pervasive
software also needs to address the quality of the mobile
entities involved [24].

467467

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

Whenever a cloud detects a change in the environment,
it should respond and adjust itself to achieve a better
performance in the new environment. Besides, the vertical
scalability of a node should evolve following the
advancement of technology.

Q3 entails a few subquestions: (i) What are the suitable
metrics to decide the effective adaption in cloud
computing? (ii) What is a good strategy to model a cloud
where the internal composition is intentionally blurry?
(iii) How may cloud application designers specify a blurry
calculation unit and its blurry environment? Traditional
state machines or process models that detail the internal
composition of a cloud may be inappropriate in
addressing such vertical scalability issues.

Handling Q3 allows a cloud and a cloud application to
strengthen their qualities and emergent properties in a
more scalable manner. Besides, Q3 also leads to question
Q4 below. Therefore, we need to address Q3 under the
context characteristic of the Calculation feature.

Q4. How can computing clouds self-discover their
quality?

The quality of either a service in service computing or a
mobile entity in pervasive computing can change
constantly (see [18][24], for example). Therefore, the
quality of the resultant service-oriented application or the
pervasive software may also change over time (see
[17][18][27], for instance).

In cloud computing, each cloud may involve different
computing entities. Because of the various types and
qualities of the involved entities, the qualities of clouds
can be different. For example, a cloud involving large
computer workstations provided by large business
companies are usually higher in quality than a cloud built
on personal computers by college students. Both the
internal status and external environment of a cloud change
constantly. The ability of self-discovery of the quality
features of the clouds provides opportunities for users to
use computing entities efficiently and effectively. Suitable
quality discovery mechanisms would help strengthen the
vertical scalability of a cloud application.

Thus, we need to address Q4 under the granularity
characteristic of the Calculation feature.

In summary, we present a few research issues that
cover the key characteristics of all three features in the
comparison framework. We note that the Calculation
feature is exciting. We have successfully identified
questions that are specific to it. Questions for the other
two features are still mixed. The fusion of features may
suggest that a good model of cloud computing application
may need blurry I/O and Storage modeling.

4. Related work
This section reviews the literature related to our work.
First, we briefly review grid computing in general. The

paradigm of grid computing is close to that of cloud
computing [29]. Foster and Kesselman [12] present their

understanding of grid computing. They [12] show how
grids can solve research problems such as diagnostic
problems and Aero-engine DP problems. Other researches
on grid computing, such as [7][11], focus on the
computing entity organization and computing task
distribution. It would be difficult for an ordinary user to
make use of such grid services. On the contrary, cloud
computing highlights user experience in cloud services
and encourages any users to use cloud services as if they
were using their own computing laptops or PCs.

Second, we review context-aware approaches in general.
Context-aware approaches are important in providing
adaptive behaviors to software applications. Lu et al. [17]
discuss testing pervasive software surrounded by different
services. Mokhtar et al. [20] explain the problem of
composition in the environment of pervasive computing.
Lee et al. [16] propose to use a smart middleware
architecture to hide the complexity involved with context-
aware and automated service composition. Besides,
Anhalt et al. [1] provide a general solution to address
context awareness.

In cloud computing, large-scale computing entities will
be placed on various host machines with different envir-
onmental contexts. The environmental contexts may
heavily affect the performance of clouds. To guarantee the
quality of cloud services, therefore, it is critical to develop
techniques to address the environmental effect.

Our previous work [18] proposes to solve the service
selection problem by link analysis techniques. In cloud
computing, different computing entities also need
evaluating and ranking. In this way, computing clouds
will only use qualified entities. Such filtering process will
increase the quality of computing clouds. Members in our
research group have been studying both pervasive
computing (in [17], for example) and service computing
(in [18][19], for instance). We look forward to applying
our privileged knowledge, achieved in studying pervasive
computing and service computing, to solve the research
problems in cloud computing.

5. Conclusion

Cloud computing is an emerging computing paradigm
that is increasingly popular. Leaders in the industry, such
as Microsoft, Google, and IBM, have provided their
initiatives in promoting cloud computing. However, the
public literature that discusses the research issues in cloud
computing are still inadequate. To identify the research
questions thus warrants more efforts.

In this paper, we have drawn up a qualitative
comparison framework to compare cloud computing with
pervasive computing and service computing. This
framework positions on the classic model of computer
architecture, which includes three features: input-output,
storage and calculation. We further present a detailed
comparison result for each feature and achieve the
following identifications: (i) The input-output feature of

468468

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

cloud computing resembles that of service computing.
(ii) The storage feature of cloud computing is closer to
that of pervasive computing than that of service
computing. (iii) The calculation features of the three
paradigms are similar. Based on the comparison, we have
drawn up a few research issues, such as pluggable
computing entities to cloud applications, data access
transparency, adaptive behavior of cloud applications, and
automatic discovery of application quality. We have
found the calculation feature to be interesting from the
software engineering perspective.

In the future, we will continue along the direction of
comparing cloud computing with other computing
paradigms, and identify other emerging research issues.
We also plan to provide a sound framework for reasoning
and analyzing computing clouds and explore technical
practices using our models.

References

[1] J. Anhalt, A. Smailagic, D. P. Siewiorek, F. Gemperle, D.
Salber, S. Weber, J. Beck, and J. Jennings. Toward context-
aware computing: experiences and lessons. IEEE Intelligent
Systems, 16 (3): 38–46, 2001.

[2] S. Baker. Google and the wisdom of clouds. Available at
http://www.businessweek.com/magazine/content/07_52/b406
4048925836.htm. (Last accessed on Sept. 15, 2008.)

[3] M. Barnes. COSCON improves business responsiveness via
service-oriented architecture. Gartner Research, 2006.
Available at http://www-128.ibm.com/developerworks/blogs/
resources/SOA_Off_the_Record/coscon_improves_business
_res_139656.pdf. (Last accessed on Sept. 15, 2008.)

[4] B. Benatallah, R. M. Dijkman, M. Dumas, and Z. Maamer.
Service-composition: concepts, techniques, tools and
trends. In Service-Oriented Software System Engineering:
Challenges and Practices, pages 48–66. Idea Group, 2005.

[5] Big blue goes for the big win. IBM. Available at http://
www.businessweek.com/magazine/content/08_10/b4074063
309405.htm. (Last accessed on Sept. 15, 2008.)

[6] M. Broy, I. H. Kruger, and Meisinger, M. A formal model
of services. ACM Transactions on Software Engineering
and Methodology, 16 (1): Article No. 5, 2007.

[7] R. Buyya. Economic-based Distributed Resource Manage-
ment and Scheduling for Grid Computing. PhD Thesis,
Chapter 2. Monash University, Melbourne, 2002.

[8] R. Chellappa. Cloud computing: emerging paradigm for
computing. In INFORMS 1997. Dallas, TX, 1997.

[9] Cloud computing. Wikipedia. Available at http://en.
wikipedia.org/wiki/Cloud_computing. (Last accessed on Sept.
15, 2008.)

[10] Dell cloud computing solutions. Available at http://www.
dell.com/cloudcomputing (Last accessed on Sept. 15, 2008.)

[11] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the
grid: enabling scalable virtual organization. International
Journal of High Performance Computing Applications, 15
(3): 200–222, 2001.

[12] I. Foster and C. Kesselman. The Grid: Blueprint for a New
Computing Infrastructure. Elsevier, Amsterdam, 2004.

[13] A. S. Grimshaw and Wm. A. Wulf. The legion vision of a
worldwide virtual computer. Communications of the ACM,
40 (1): 39–45, 1997.

[14] K. Hartig. What is cloud computing? SOA World Magazine.
Available at http://soa.sys-con.com/read/579826.htm. (Last
accessed on Sept. 15, 2008.)

[15] J. P. Hayes. Computer Architecture and Organization.
McGraw-Hill, New York, 1998.

[16] C. Lee, S. Ko, S. Lee, W. Lee, and S. Helal. Context-aware
service composition for mobile network environments. In
Ubiquitous Intelligence and Computing, volume 4611 of
Lecture Notes in Computer Science, pages 941–952.
Springer, Berlin, Germany, 2007.

[17] H. Lu, W. K. Chan, and T. H. Tse. Testing pervasive
software in the presence of context inconsistency resolution
services. In Proceedings of the 30th International
Conference on Software Engineering (ICSE 2008), pages
61–70. ACM Press, New York, 2008.

[18] L. Mei, W. K. Chan, and T. H. Tse. An adaptive service
selection approach to service composition. In Proceedings
of the IEEE International Conference on Web Services
(ICWS 2008). IEEE Computer Society Press, Los Alamitos,
2008.

[19] L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of
service-oriented workflow applications. In Proceedings of
the 30th International Conference on Software Engineering
(ICSE 2008), pages 371–380. ACM Press, New York,
2008.

[20] S. B. Mokhtar, D. Fournier, N. Georgantas, and V. Issarny.
Context-aware service composition in pervasive computing
environments. In Rapid Integration of Software
Engineering Techniques, volume 3943 of Lecture Notes in
Computer Science, pages 129–144. Springer, Berlin, 2006.

[21] P.S. Narayanan. From grid computing to cloud computing:
the IBM approach. Garuda Partner Meet, Bangalore, India,
March 4, 2008.

[22] Nomadic computing example. Available at http://www.uni-
marburg.de/fb12/verteilte_systeme/forschung/crossware.
(Last accessed on Sept. 15, 2008.)

[23] D. Saha and A. Mukherjee. Pervasive computing: a
paradigm for the 21st century. IEEE Computer, 36 (3): 25–
31, 2003.

[24] M. Satyanarayanan. Pervasive computing: vision and
challenges. IEEE Personal Communications, 8 (4): 10–17,
2001.

[25] Service orientation and its role in your connected systems
strategy. Microsoft Corporation. Available at http://
msdn.microsoft.com/en-us/library/ms954826.aspx. (Last
accessed on Sept. 15, 2008.)

[26] Software via the Internet: Microsoft in ‘cloud’ computing.
Microsoft Corporation. Available at http://www.nytimes.com
/2007/09/03/technology/03cloud.html. (Last accessed on Sept.
15, 2008.)

[27] M. Stevens. Service-oriented architecture introduction.
Available at http://www.developer.com/services/article.php/
1010451. (Last accessed on Sept. 15, 2008.)

[28] T. von Eicken. The three levels of cloud computing.
Available at http://pbdj.sys-con.com/read/581961. (Last
accessed on Sept. 15, 2008.)

[29] P. Wallis. Cloud computing: is the cloud there yet? — a
brief history. Available at http://soa.sys-con.com/read/
581838.htm. (Last accessed on Sept. 15, 2008.)

[30] Web services business process execution language version
2.0. Available at http://docs.oasis-open.org/wsBPEL/2.0/
wsBPEL-v2.0.html. (Last accessed on Sept. 15, 2008.)

469469

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:42 from IEEE Xplore. Restrictions apply.

