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Finding the Constrained Delaunay Triangulation and Constrained

Voronoi Diagram of a Simple Polygon in Linear Time:?

Francis Chin ? and Cao An Wang ® and

Abstract

In this paper, we present a O(n) time worst-case deterministic algorithm for finding the constrained
Delaunay triangulation and constrained Voronoi diagram of a simple n-sided polygon in the plane.
Up to now, only an O(n log n) worst-case deterministic and an O(n) expected time bound have been
shown, leaving an O(n) deterministic solution open to conjecture.

1 Introduction

Delaunay triangulation and Voronoi diagram, duals of one another, are two fundamental geometric
constructs in computational geometry. These two geometric constructs for a set of points as well as
their variations have been extensively studied [PrSh85, Aure9l, BeEp92]. Among these variations,

Lee and Lin [LeLi86] considered two problems related to constrained Del y Iriangulation *: (1) the

Delaunay triangulation of a set of points constrained by a set of non-crossing line segments and (2) the
Delaunay triangulation of the vertices of a simple polygon constrained by its edges. They proposed
an O(n?) algorithm for the first problem and an O(n log n) algorithm for the second one. While
the O(n?) upper bound for the first problem was later improved to ©(n log n) by several researchers
[Chew87, WaSc87, Seid88], the upper bound for second has remained unchanged and the quest for an
improvement has become a recognized open problem [Aggr88, Auredl, BeEp92].

Recently, there have been some results related to this open problem on the Delaunay triangulation
of simple polygons. Aggarwal, Guibas, Saxe, and Shor [AGS589] showed that the constrained Delaunay

triangulation of a convex polygon can be constr 'cted in linear time. Chazelle [Chaz90] presented a

*This work is supported by NSERC grant OPG0041629.

?Department of Computer Science, The University of Hong Kong, Hong Kong.

3Department of Computer Science, Memorial University of Newfoundland, St.John’s, NFLD, Canada A1C 5S7.
*Same as generahzed Delaunay triangulation as defined in [LeList]
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linear-time algorithm for finding an ‘arbitrary’ triangulation of a simple polygon. Klein and Lingas
showed that this problem for L; metrics can be solved in linear time [KILi92], and this problem for the
Euclidean metrics can be solved in expected linear time by a randomized algorithm [KILi93]. These
efforts all seem to point toward a lincar solution to the Delaunay triangulation of simple polygons and
support the intuition that the simple polygon problem is casier than the non-crossing line segment
problem.

In this paper, we settle this open problem by presenting a deterministic linear-time worst-case
algorithm. Our approach follows that of [KILi93]: (i) first decomposing the given simple polygon
into a set of simpler polygons, called pseudo-normal histograms, then (ii) constructing the constrained
Delaunay triangulation of each normal histogram, and finally (iii) merging the constrained Delaunay
triangulations of all these normal histograms to get the result. In this 3-step progress, the first and
third were shown to be possible in lincar time, but the second step was done in expected lincar time
by a randomized algorithm. Our contribution is to show how this second step can be done in linear
worst-case time deterministically.

The organization of the paper is as follows. In Section 2, we review some definitions and known
facts, which are related to our method. In Section 3, we concentrate on how to construct the con-
strained Delaunay triangulation or constrained Voronoi diagram of a normal histogram in linear time.

We conclude the paper in Section 4.

2 Preliminaries

In this section, (i) we explain the constrained Delaunay triangulation problem and its dual, the con-
strained Voronoi diagram problem, (ii) we define pseudo-normal histograms, and (iii) to put our
solution of how to construct the constrained Voronoi diagram of a pseudo-normal histogram into

perspective, we explain the approach taken to first divide any simple polygon into pseudo-normal



histograms and then merge constrained Voronoi diagrams of these pseudo-diagrams for the solution

of the original polygon.

2.1 Constrained Delaunay Triangulations and Constrained Voronoi Diagrams

The Constrained Delaunay Triangulation [LeLi86, Chew87, WaSc87, Seid88] of a set of non-
crossing line segments L, denoted by CDT(L), is a triangulation of the endpoints § of L satisfying the
following two conditions: (a) the edge set of C'DT(L) contains L, and (b} when the line segments in L
are treated as obstacles, the interior of the circumcircle of any triangle of CDT(L), say Asd's”, does
not contain any endpoint in § visible to all vertices s,s’, and s”. Essentially, the constrained Delaunay
triangulation problem is Delaunay triangulation with the further constraint that the triangulation must
contain a set of designated line segments. Figure 1(a) gives the constrained Delaunay triangulation
of two obstacle line segments and a point (a degenerated line segment). In particular, if L forms a
non-intersecting chain C, monotone w.r.t. a horizontal line [, we are only interested in the portion of
CDT(C) between C and . If L forms a simple polygon P, only the portion of CDT(F) internal to P
will be considered.

Given a set of line segments L, we can define the Voronoi diagram w.r.t. L as a partition of
the plane into cells, one for cach of the endpoint set § of L, such that a point p belongs to the cell
of an endpoint v if and only if v is the closest endpoint visible from p. Figure 1(b) illustrates the
corresponding Voronoi diagram for the set of line segments given in Figure 1(a). Unfortunately, this
Voronoi diagram is not the complete dual diagram of CDT(L) [Aure9l], i.e., some of the edges in
CDT(L) may not have a corresponding edge in this Voronoi diagram.

In [Seid88, Ling89, JoWa93], the proper dual for the constrained Delaunay triangulation problem

has been defined as the Constrained (or called Bounded) Voronoi diagram of L, denoted by

Ve(L). It extends the standard Voronoi diagram by: (i) imagining two sheets or half planes attached to
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Figure 1: Constrained Delaunay triangulation and Constrained Voronoi diagram

each side of the obstacle line segments; (ii) for each sheet, there is a well-defined Voronoi diagram that
is induced by only the endpoints on the other side of the sheet excluding the obstacle line segment
attached to the sheet; (iil) the standard Voronoi diagram is augmented by the Voronoi diagrams
induced by the sheets. Figure 1{c) gives an example of V.(L), the Voronoi diagrams on the plane and
on the two sheets of the obstacle line segment ab. Note that the Voronoi diagrams on the two sheets
of the obstacle line segment ¢d happened to be the same as the Voronoi diagram on the plane. With
this definition of V,(L), there is a one-to-one duality relationship between edges in V(L) and edges
in CDT(L). It was further proved in [Seid88, JoWa93] that the dual diagrams, CDT(L) and Vi(L),
can be constructed from each other in linear time. For simplicity, we omit the word ‘constrained’ over

Voronoi diagrams in this paper as all the Voronoi diagrams are deemed to be constrained unless they



are explicitly stated to be standard Voronoi diagrams.

2.2 Pseudo Normal Histograms (PINH)

(a) a normal histogram, (b) a pseudo-normal histogram.

Figure 2: Normal histogram and pseudo-normal histogram

A normal histogram (NH) [DjLi89] is a monotone polygon w.r.t. one of its edges, called bottom
edge, such that all the vertices of the polygon lie on the same side of the line extending the bottom
edge (Figure 2(a) gives an example). A pseudo-normal histogram (PNH) [KILi93] can be defined
as a normal histogram with the first or last edge not monotone w.r.t. the bottom edge. Intuitively,
a PNH can be viewed as a N H missing one of its bottom corners, i.e., a PN H can be transformed

into an N H by adding a right-angle triangle at its bottom (Figure 2(b)).

2.3 Decomposition of a simple polygon into PNH’s

Figure 3 illustrates how a polygon P is decomposed into 13 PN H’s. PN H, is associated with the
vertical bottom edge e missing its upper bottom corner; PN Hz, associated with the horizontal bottom
edge €', is missing its left bottom corner, etc.

A simple polygon P with n vertices can be decomposed into PN H’s in O(n) time according
to [KILi93] when provided with what are known as the horizontal and vertical visibility maps of P
(Figure 4), which in turn can be obtained in linear time according to [Chaz90]. A diagonal of P

is a line segment joining two vertices of P and lying entirely inside P, while a chord of P is a line



Figure 3: A decomposition of P into a tree of PN H’s

segment: (i) lying entirely inside P, (ii) parallel to the designated bottom edge, and (iii) joining a
vertex and a boundary point of P (such a boundary point is called pseudo-vertex). The horizontal
visibility map of a simple polygon P is a set of chords trapozoidalizing P so that every vertex of P
is associated with at most two chords. The vertical visibility map can be defined similarly.

The decomposition starts with an arbitrary edge e of P as the bottom edge of the first PNH.
The interior of the PN H refers to the part of P illuminated by the parallel lights vertically to e and
emanating from e U e,, where e, is one of the two edges (if any) incident to e at an interior angle
between 90° and 180°. The boundary edges of the PN H that are not edges of P will be the bottom
edges in the next step.

The decomposition of P can then be represented by a tree such that each tree node is a PNH
and each tree edge represents the adjacency of two PN H'’s sharing a chord. PN Hy, with an edge of
P as its bottom edge, is classified as the root. For each edge in PN H, which is not an edge of P,
we regard it as the bottom edge for a son of PN H. PN Hjy, PN Hs, and PN Hy are sons of PN H,

and whose bottom edges are all horizont#l. Sirﬂilarly, the grandsons of PN H; are those with vertical



bottom edges and adjacent to sons of PN Hy, ete.

2.4 Merging the Voronoi diagrams of PNHs

It has been proved [K1Li93] that the Voronoi diagrams of every two PN H’s would not interfere with
each other as long as these two PN H'’s are (i) at the same depth not facing each other, or (ii) with
their corresponding depths more than two apart. Since the sons of a PN H on opposite sides facing
each other can be separated by a horizontal (or vertical) line, the Voronoi diagram of the PN H is first
merged with the Voronoi diagrams of all its sons on one side and then with the Voronoi diagrams of
all the remaining sons on the other. Condition (i) ensures that merging Voronoi diagram of the PN H
with all those of its sons in this way can be done in time linearly proportional to the total size of the
PNH and all its sons. Condition (ii) ensures that the Voronoi diagrams of adjacent PN H’s can be

repeatedly merged together to obtain V.(P) in time linearly proportional to the size of P.

Figure 4: Horizontal and vertical visibility maps of simple polygon P

In order to find V,(P) in deterministic linear time, what remains to be solved is the construction of
the constrained Voronoi diagram of a psendo-normal histogram efficiently. In [KILi93], a randomized
algorithm is introduced to find the Voronoi diagram of an N H in expected linear time. The Voronoi
diagram of the corresponding PN H can then be obtained by removing the bottom vertex from the

Voronoi diagram of this N A and this can be done in time linearly proportion to the size of the NH.



In the next section, we shall concentrate our effort to design a linear-time deterministic algorithm for

constructing the Voronoi diagram of an N 4.

3 Finding the Constrained Voronoi Diagram of an NH

Given a normal histogram H with a horizontal bottom edge e, H is decomposed recursively into a
tree, say Ty, of smaller normal histograms called influence normal histograms (INH), where a
node of Ty corresponds to an /¥ H and an edge of 77 indicates an adjacency between two IN Hs.
In Figure 5, node 0 (the root INH) is (v, v}, 3,5, Vs, V6, U7, U8, Vo, V10, %12, V12, V13, Vg, Vs, Vhs,
Vog, Vg, Va3, V34, ¥35). Nodes 1-6 form the second level and are sons of node 0. Node 1 = (v}, v4,v3), node
2 = (v3, v, vY), node 3 = (v],,v11,%12), node 4 = (v13, V14, 8]y, U]3), node 5 = (v, vog, Vor, vhs), and
node 6 = (w28, Vg, Va0, Vhy, Uiz, vhg). Nodes 7-9 form the third level with node 7 = (v14, %15, v16, v17, v 7,
V19, V20, V21, V22, V23, V24, V1 q), Node 8 = (why, vag, va0), node 9 = (vhy, va, vay). Node 10 = (vi7, vis, ;)
is on the fourth level.

The decomposition ensures that the portion of Voronoi diagram V.(H) in each INH can only
be affected by its own vertices and the vertices of its sons and nothing beyond. In general, the
Voronoi cells of V.(H) associated with vertices of an I'N H might cross its bottom edge and share
edges with Voronoi cells associated with vertices of its parent, but not with those of its brothers nor
its grandparents. Similarly, the Voronoi cells of an [N H would not share any boundary with those
of its grandsons. This property implies that, should the Voronoi diagrams of the IN H's (V.(IN H))
be given, the repeatedly merging of the Voronoi diagrams of the adjacent IN H’s can be done in time
linearly proportional to the sum of their sizes.

Let V(p) denote the Voronoi cell associated with vertex p in a Voronoi diagram. A point p in a
normal histogram H is called an influence point if the Voronoi cell V(p) in V,(H U {p}) will cross

H’s bottom edge e. The set of influence points is called the influence region /R w.r.t. bottom



edge e. Consider Figure 5, the IR of H w.r.t. 7733 (the bottom edge €) is the region enclosed by:

T5Ts, TeT5, Trls, Uals, DaU10, Viotas, Vasvas, Vssbad, U34035, and Tasby, where Zg and Zy represent
respectively the straight line and the arc joining vertices = and y. The root (or root INH) of Ty is
defined as the N H enclosing all influence points of H and containing only edges (or parts of edges)
and chords of H such that all its horizontal chords would intersect the I R of H (i.e., the smallest NH
containing TR). As an example, the root INH is indicated by the white region in Figure 5. Let us
now consider the part of H excluding the root /¥ H, which consists of zero or more disjoint polygons.
Fach polygon is also an N H with a chord as its bottom edge. As given in Figure 5, H is decomposed
MA For example, the N H above chord E@ is (a8, V29, Vap, U31, Va2, Vog). The decomposition can
be recursively applied to each of these N H's.

Since any node of T does not contain the influence points of its parent by the definition of INH,
the Voronoi cell associated with a vertex of any node in 7t could not cross the bottom edge of its
parent. Thus, the part of V.(H) within the root can be formed by merging the Voronoi diagram of the
root I N H with those of its sons. As the Voronoi cells associated with the internal vertices of an INH
never share any edges with the Voronoi cells of its brother TN H (Theorem 1), the merging can be
performed in O(mg + 3 &, m:) time, where mq is the number of vertices of the root, s is the number

of its sons and m; is the number of vertices of its sth son.

Theorem 1 Let v; be a vertex of IN Hy with bottom edge U7y and vo be a vertex of IN Hy with

bottom edge Tiziw;. Assume that IN Hy and IN H, are brothers in Ty, vy # %1, v # wy, v # ug, and

vy # we. Then, the Voronoi cell of vy will never share any point with the Voronoi cell of v;.

Proof By the property of normal histograms, without loss of generality, assume that %77 is on the
lefthand side of uzw3, i.e., w3 < w; < 1z < Wy according to their z—~coordinates. We show that there

does not exist a point p in H which is equidistant to v; and v; and no other vertex in H is closer to p



than to v; and v,. Since pis in H, p has to lie directly under @@y in order to be closer to v; than to
uy or wy, i.e., u; < p < wy. Similarly, p has to lie directly under %33, i.e., uz < p < w,. Obviously, P

cannot simultaneously satisfy both conditions. a

For example, the Voronoi cell of v14 or v}, in /N Hy never share any point with the Voronoi cell of
v26 OF o7 in IN Hs. Let M(n) denote the merging time for constructing V.(H) with | H |= n when
provided with the Voronoi diagram of every /N H in T;. Then, we have M(n) = C * (mg + Y0, m;)
+ 2oi-; M(n;) where C is a constant and n; is the number of vertices of the ith subtree. As n =
mo + 3_i=) i, We can show that M(n) = C(2n — mg) by induction. Thus, the total merging time is
O(n). Note that in the above calculation, the pseudo-vertices are also counted. Since n is at most
thrice the actual number of vertices of H (as each vertex of H might associate with at most two
pseudo-vertices), the total merging time is still linearly proportional to the actual number of vertices

of H.

A tree of INH's of H

1 the bottom edge of H Vas(vy)

Figure 5: Decor;x‘position of H into IN H’s and T}
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In the following sections, we shall prove the properties of influence region (I B) and influence normal

histogram (/N H) which allow us to do efficient merging and identification.

3.1 Influence Region.

Let Hy be a subpolygon of normal histogram H, consisting of the bottom edge of H and all those
vertices of H with the property that their associated Voronoi cells in V.(H) cross the bottom edge of
H. Hy can be also viewed as the maximum subsequence of the vertices of H having this property.
As H is an NH, Hy will also be an N H sharing the same bottom edge as H. Let us consider
the example given in Figure 5 again, Hy is indicated by the sequence of vertices (%, vs, vs, ¥7, Us, Vo,

10, V25, 28, U34, U35)-

Lemma 1 All points in Hy are influence points.

Proof By the definition of Hy, the bisector of two adjacent vertices {except the two vertices of the
bottom edge) of Hy, which forms part of the V(H), always crosses the bottom edge of H. In other
words, Hy are partitioned by these bisectors into cells, each of which is associated with one of its
vertices. These cells resemble the Voronoi cells of V,(H). In fact, each of these cells in V.(Hv) always
includes its corresponding Voronoi cell in V.(H'). These bisectors also partition the bottom edge into
segments according to their closest vertices in H or Hy. It is sufficient to prove this lemma by showing
that given any point z in Hy, there always exists a point on the bottom edge which is closer to =z
than to any vertex in H, i.e., V{z), the Voronoi cell of z, in V.(H U {z}) crosses the bottom edge.
Let z be a point in Hy, in particular, in a Voronoi cell V(u), corresponding to vertex u in V(Hy).
Furthermore, let the extended line of 7% intersect the boundary of this Voronoi cell V(u) at y, which
may be a point on the bottom edge or a point on a bisector. If y is on the bottom edge, let 2z be v,
otherwise let z be the intersection point of that bisector and the bottom edge. As Luzz > 90°, z is

closer to 2 than to ». It is easy to see that z is closer to z than to any other vertices in H, thus zis a
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point on the bottom edge that belongs to V(z), i.e., V(z) crosses the bottom edge. Thus, z belongs

to TR. ]

In general, I R includes some regions not belonging to Hy. Let e be a boundary edge of Hy. If e
is also an edge of H, then e must be an edge of IR, e.g., 757, Ts¥7, 7778, ctc. in Figure 5. However, if
e is a diagonal of H, then IR could include some region of H above e. Each of these regions is defined
as follows. Assume e = W is a diagonal. Oy, denotes the region in i above e (i.e., outside Hy) and
below the circular arc @@ where its center is on the bottom edge. Oujuys Ovyguzss Ovaguns a0d Oy,

are such examples in Figure 5.
Theorem 2 IR = (UgzenOuw) UHv, where D is the set of edges of Hy which are diagonals of H.

Proof By Lemma 1, we need to prove IR — Hy = UgzepOuw (35 Hy N Ouw = ). Consider a point
p in H, but not in Hy. Then, point p must lic above an edge 7w of Hy which is a diagonal of H.
On one hand, if point p € O, then by, and by, will cross the bottom edge before intersecting each
other, where b, denotes the perpendicular bisector of vertices z and y. Thus p belongs to IR, i.e.,
IR - Hy 2 UzgepOuw. On the other hand, if p & Oy, then by, and by, will intersect each other

above the bottom edge. Thus, p does not belong to IR, i.e., IR ~ Hy C UspepOuy- [m]

Collorary Given a normal histogram H and let Hy = (v, 1, ..., %), influence region IR w.rt. H

can be defined by the same sequence of vertices of Hy by replacing all diagonals 77o37 of H in the
sequence of Hy by an arc vi%;3,. O
3.2 Influence Normal Histogram (INH)

By definition, an TN H would contain all the edges of /R or Hy (Theorem 2) which are also edges
of H (e.g., 7576, Uo7, v70s ctc. in Figure 5). As Oy, is part of IR for every T € D (Theorem 2),

the remaining edges of an ¥ H would be those chords and edges of H enclosing O,,.. Let Hp be the

12



part of IN H above each diagonal W@ and enclosing O.,,. For example, as in Figure 5, the Hp’s are
(vl,vg, vg,vg, '05), (v10, v{z,vn, ?/‘13,'15{3, v25), (1725,1-’55,1123) and (vzs, 'Uf'm, V33, ’0‘34)-

Now, we can have a precise description of JNH. There are two types of vertices in IN H, the
vertices of Hy and the vertices of Hp’s, with one Hp for each edge in D. Thus, any vertex in INH
that is not in Hy will be in Hp, and the endpoints of any edge in D will be vertices in both Hy
and Hpg. In the following we shall describe the properties of Hp and Hy and show that the Voronoi
diagram of an IN H can be constructed in linear time.

A monotonic histogram is an NH such that if the bottom edge is on the z-axis, then the
z—coordinates of the vertices along the boundary are monotonically non-decreasing, and the y— coor-
dinates of the vertices (except the last vertex) along the boundary are monotonically non-decreasing
or non-increasing. A bitonic histogram is a composition of two monotone histograms such that
the z—coordinates of the vertices along the boundary are monotonically non-decreasing, and the
y—coordinates of the vertices along the boundary are first monotonically non-decreasing on one side

and then monotonically non-increasing on the other.
Lemma 2 Hpg is bitonic.

Proof Since Hp is the smallest NH enclosing Oy, all its internal horizontal chords will intersect
with Oy, i.e., all its vertices, (except the top vertex and its associated pseudo-vertex/vertices),
should be horizontally visible from O,,. As Hp consists of only edges (or parts of edges) and chords
of H, all edges of Hp should be monotonically non-decreasing in the z— and y—coordinates on one
side and monotonically non-decreasing in the z~coordinate but monotonically non-increasing in the

y~coordinate on the other. Thus, Hp is bitonic. a

Lemma 3 The Voronot diagrams of Hg and Hy can be constructed in linear time.

Proof It is shown in [DjLi89] that the Voronoi diagram of a monotonic histogram can be constructed

13



in linear time. By the fact that Hp can be partitioned into two monotonic histograms by the vertical
line through its highest vertex or edge (Lemma 2), the Voronoi diagrams of two such monotonic
polygons can be merged in linear time [Wang93,KILi93]. Thus, V.(Hp) can be found in linear time.

The Voronoi diagram of 2 Hy can be constructed in linear time due to [AGSS89]. [a}

Note that in the construction of the Voronoi diagrams of Hp and Hy, all the pseudo-vertices are
ignored. Thus, the resulting Voronoi diagrams do not contain any Voronoi cell of pseudo-vertices.
This approach is different from that proposed in [KILi93], which requires the removal of the Voronoi
cells of pseudo-vertices.

The following lemma shows that the Voronoi diagrams of two Hpg’s cannot affect each other.

Lemma 4 Given an IN H with its attached Hp’s, and let x and y be two vertices not belonging to Hy

but in two different Hp's, then the Voronoi cells, V(z) and V(y), cannot share any point in V(Hv).

Proof As z and y are vertices in two different Hp’s but not belonging to Hy, z and y must be
separated by some vertex z in Hy. By the definition of Hy, the Voronoi cell V(z) must cross the

bottom edge. Thus, V(z) cannot share any point with V{(y) above the bottom edge. ]

Theorem 3 The Voronoi diagram of an IN H can be constructed in time linearly proportional to its

stze,

Proof By Lemma 3, the Voronoi diagrams of Hy and Hpg’s can be constructed in time linearly
proportional to their sizes. Since each Hp shares an edge with Hy, the Voronoi diagrams of each
Hp and Hy can be merged in time proportional to the number of Voronoi edges shared by them
[Wang93,K1Li93]. As different Hg’s do not interfere each other (Lemma 4}, the total merging time is
linearly proportional to the number of Voronoi edges shared by Hp’s and Hy, i.e., the size of INH.

w}
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3.3 Region Identification

In this section, we shall present an algorithm which can identify the /N H in an NH in time linearly
proportional to the size of the IV H. Chazelle’s linear time algorithm [Chaz90] is first applied to the
N H to obtain its horizontal visibility map (Figure 6). Because of the property of a normal histogram,
H can be represented by a partition tree Tp, in which each tree node represents a chord in the map
and each tree edge represents the adjacency of two chords. Let n(v) denote the chord(s) associated
with vertex v of H. If there are two chords in n(v), 2%(v) and n®(v) denote the left chord and right
chord respectively (Figure 6). With the partition tree, the INH to be identified can be represented
as a rooted subtree of Tp 5. For example, the /N H indicated by the shaded area can be represented
by the rooted subtree as marked in Figure 6. The algorithm to identify the INH is based on tree
traversal. In order to achieve linear time complexity, only those tree nodes relevant to the JN H will
be traversed. Thus, one of the key steps in the tree traversal is the pruning condition, i.e., when the
traversal of a subtree can be terminated. The other key step is the identification of the vertices of
Hy so that we can partition the IN H into Hp’s and Hy for the construction of Voronoi diagrams as
described in the previous section.

Let 7, be the line segment from v perpendicular to the bottom edge. The following two lemmas
give sufficient conditions for a vertex v of H to be and not to be a vertex of Hy. Based on Theorem 2
and the definition of Hp, we can ensure that a visited vertex, that is not a vertex of Hy, shall be a

vertex of Hg.

Lemma 5 For any vertez v of H, if I, does not intersect with any bisector b, where u € (H — {v}),

then v is a vertez of Hy.

Proof Line segment I, will lie entirely in the Voronoi cell associated with v, and the lemma follows

directly from the definition of Hy. Vertices vs and vy in Figure 5 are such examples. u]

®A rooted subtree of ¢ has the property that the root of £ is also the root of the subtree.
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Figure 6: An /N H and its tree Tp.

Note that even though v does not satisfy the condition in Lemma 5, v can also be a vertex of Hy

as long as we can show that the Voronoi cell V(v) crosses the bottom edge.

Lemma 6 Let u,v, and w be vertices of H in this ordering. If v lies outside O, or equivalently,

bisectors b, and by, intersect each other above the bottom edge, then v cannot be a vertez of Hy.

Proof Vertex v lies outside O, iff perpendicular bisectors b,, and b,,, intersect each other above
the bottom edge (case (2) of Figure 8). So the Voronoi cell of v would not cross the bottom edge and

the claim follows directly from the definition of Hy. (]

Vertex v can lie outside O, in two different ways, with n(v) intersecting and not intersecting 0.
As Oyy C IR (Theorem 2), if n(v) intersects Oy, v will become one of the boundary vertices of IN H.
Since v is not in Hy, it must be a vertex of Hg. If n(v) does not intersect O, any vertex above v
cannot be a vertex of IN H as its associated chord will not intersect O,,. Thus the tree traversal can
be terminated at v. In fact, only the first (lowest) vertex during the tree traversal, whose chord does
not intersect Oy, can be a vertex of INH or Hg. Based on this pruning condition, all the visited
vertices will be either in Hy or in H3.4

Without loss of generality, assume the parent of n(v) intersects I R and n(v) is being visited. Based
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on Lemma 5 and Lemma 6, vertex v is tested and classified into one of the three types:

(a) a vertex in Hy (Lemma 5),

(b) a vertex in Hp (Lemma 6), or

{c) a potential vertex if we cannot decide whether it is in Hy or Hp yet.

Basically, if »(v) intersects /R then we shall identify v as a vertex of the INH and continue the
tree traversal to visit v’s son(s). If v is the left(right)-endpoint of the chord, i.e., the IR is on its right
(left)s, then the INH to be identified must be on the right(left)-hand side of v and v belongs to the
left (right) boundary of the JNH. If v is a potential vertex, then v is put to the left (right) stack
Lz(Lg) of vertices. As the chords of these two stacks of vertices always intersect IR, vertices in Lp
and Ly will eventually form the boundary of the /N H. These potential vertices in the stack will be
determined later whether they belong to Hy or Hp. In order to do so, the bottom element of the left
(right) stack must be the latest left (right) vertex known to be in Hy. Let us consider the example
given in Figure 5, initially the left endpoint v; and the right endpoint @35 of the bottom edge of H
form the bottom elements of stacks Ly and Ly respectively. After vs has been identified to be in Hy,
it can replace v; to be the bottom element of stack Ly. Lemma 7 gives an important property of the
potential vertices. Based on this property, the potential vertices are stored in the form of stacks, Lp
and Lg. The classification of » can be performed by only examining the two top elements, u. and
., of the left and right stacks, Ly, and Lg. Without loss of generality, let us consider only Ly in the

following lemma.

Lemma 7 Let Ly, = (o, %1,....,ux) be the stack of potential vertices, where uo is the bottom element
of L1, and the only vertez of Ly in Hy. The set of bisectors, bugu, s bujuys -vos Dugyup s Buyuws, would not

intersect each other above the bottom edge, where w. is the top element i Lp.

Proof By induction on 7 < k. Base step: when i = 1, bisectors byyy, and by, would not intersect

SNote that if there are two chords associated with v, » can be the right endpoint of one and the left endpoint of the
other. The following discussion will still hold if we consider the chord one at a time.
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each other above the bottom edge, otherwise u; would not be in Ly, and would be in Hg (Lemma 6).
Let uzy; = w. and assume that all bisectors by ,,, for 1 €7 <2~1and 1 <1 < k do not intersect
each other above the bottom edge, then they should not intersect by,,,,, either. Otherwise b, ,, “
would have intersected b,,_,,, above the bottom edge, vertex u, should be in Hg (Lemma 6) and

would not be in Lz. Thus the lemma is proved. &)

When n(v) is visited, there are two actions to be taken: (Action A) Vertices of Ly, and Ly are
tested one by one against v to determine whether any of these vertices belong to Hpg, and (Action B)
vertex v is then tested against Ly and Lg in order to classify whether or not » is a vertex in Hy, a
vertex in Hg, or a potential vertex. With the property described in Lemma 7, we shall show that the
above tests can be carried out on the two top elements, %. and w., of Ly, and Lg respectively, instead
of all vertices in Ly and Lg or all vertices in H as stated in Lemma 5 and Lemma 6. Before describing
the tests in detail, we shall consider an example as given in Figure 7 to illustrate the possible scenarios
for how v is tested against Ly and Lg. Starting with ug, a vertex in Hy, as the bottom element in
Ly, and after visiting n(u;), n{us2) and n{ug), we still cannot decide whether or not u;, 4, and u3 are
vertices of Hy or Hp. Thus, vertices 1y, uz and ug are potential vertices and pushed to the stack L.

When v is visited, four different scenarios shown in Figure 7 are possible:

v ul (=u¥%) v
o L. w* ' ‘ A w*
t s
' u2 '
1 i
uZ, ¢ ! .\ H ! ~
ul \ ! ul ! '
Y + t h
v 1 ! '
. ' 1 h
. 3 i ’
N ' o, b 3
: '
uo (=u%) A ; ; ‘
A @ . ®
N N v .
v g,
u3 v , wx ud (=u )\\ S w
1 ‘
' - Ny
u2 (= u*, ' { . u2 ‘. K \
! ’
ul H ’ ul Y
' ! '
\ ! !
N ,' v
'
uo AN i o, )
\ ¢ i
L
© @

Figure 7: Some possible scenarios when v is visited
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(a) 1, 2, and ug are all popped from Ly, as they are vertices in Hp (Action A), and vertex v as
a potential vertex will be pushed to Ly (Action B),

(b) all vy, ug, and us remain in Lz as potential vertices (Action A). We can show later that »
belongs to Hv by Lemma 5 when w, is also considered (Action B),

() ma and ug remain in Ly, as potential vertices, and vertex ug is popped from Ly as it is in Hp
by Lemma 6 (Action A). We can show later that v belongs to Hy by Lemma 5 when w., is considered
(Action B),

(d) same as (b) except that we can show that v is in Hp by Lemma 6 (Action B), and the tree
traversal can be terminated at v.

Let Ly = {up,u1,...,%x) be the left stack of potential vertices just before v is visited. Action A
is to remove from Ly, those vertices identified to be in Hpg. Vertex uy is first tested against v to see
whether u; is in Hp or remains in Ly. Vertex u; is in Hp if b,,_ ., and b, intersect each other
above the bottom edge (Lemma 6). If uy is found to be in Hp, the test will be carried on with ug_y
and s0 on until we find the first up, 0 < & < k, that remains in Ly, i.e., by,,_ 4, does not intersect

with by,,, above the bottom edge.

Action A: while ((k > 1) and (by,_, 4, intersects by, above the bottom edge)) do

begin pop uy off Ly, as u; is a vertex of Hp; k «— k—1 end

Lemma 7 gunarantees that if by, ., does not intersect by, above the bottom edge, by, _;u, would
not intersect with by, above the bottom edge for all p, 0 < p < k. Thus the test can be stopped at
the first element in Lz that cannot be identified as a vertex in Hp.

Note that some vertices in Ly, might be known to be in Hy, but for the simplicity of the algorithm,
they remain in Ly, as potential vertices and be recognized as vertices in Hy later.

After applying Action A to Ly, vertices in Ly, should possess a stronger property than that stated
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in Lemma 7. (Note that the value of £ may be smaller after Action A.)

Lemma 8 After the application of Action A on Ly, assume Ly, = {uo, ..., ux} when v is visited. Then,
the set of bisectors, bugu,, buguys s bup_yups Dupr, would not intersect each other above the bottom

edge.

The following lemma and theorem show that we can classify v as a vertex in Hy, in Hg, ora

potential vertex by considering the top elements of Ly, and Lg (Action B).

Lemma 9 After the application of Action A on Ly, let u. and w, be the top elements in Ly and Lg
respectively when v is visited,

(@) by, does not intersect with |, iff by, does not intersect with 1, for all zely,

(b) by, does not intersect with |, iff by, does not intersect with L, for all 2z¢Lp, and

(c) both b, and b, do not intersect with [, iff bz, does not intersect with l, for all zeH.

Proof (a) "If” part is straightforward. "Only if” part: Let Ly = (uo,u1, ..., ug) With #. = u¢. The
proof is by induction on 7 that b,,_ . would not intersect with I,. It is true for i = 0 as b,,, does not
intersect with [,. By Lemma. 7, the set of bisectors bugu;, buyuyy -+ duy_yu, would not intersect each
other above the bottom edge. Assume the hypothesis is true for some ¢ > 0, i.e., bisector b,, _ does
not intersect with /,. As bisector bu;,..(.“)u must lic between bisectors buk-—(wl)uk—: and b, ., bisector
buy(uqayv cannot intersect £,. Thus, (a) is true for i + 1.

(b) Similar to {(a).

(c) For the visited vertices 2 visible from v and identified to be in Hy, bisector b5, cannot intersect
I, by a similar argument as given in (a).

As for those vertices z visible from v and identified to be in Hpg, if z lies between two vertices
%~ and u, in Ly or Lg, then bisector by, must lic between bisectors by, _,, and by,,. From (a), we
have that bisector b,,, does not intersect with {,, b, cannot intersect I,. The proof is similar if = lies

between two vertices in Hy.
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For those unvisited vertices z above v, i.e., whose chords are in the subtree of Tp rooted at n(v),
and visible from v, bisector by, will slope further away from /, and hence cannot intersect with ,,.

For those vertices z invisible from v, there must exist a vertex y which satisfies the following
properties: (i) y lies between z and v when traced along the boundary of P, (ii) y belongs to one of
the above mentioned types of vertices with the property that bisector b,, does not intersect with /,,,

and (iii) y is visible from v. As by, will lie further away from [, than by, bz, cannot intersect [,. O

Theorem 4 After the application of Action A on Ly when v is visited, let u. and w, be the top
elements in Ly, and Lg respectively. Then, one of the following cases can happen (note that n”(v) and
nf(v) might be null)

{a) if none of b,,, and b,,,, intersect with l,, then v € Hy,

(b) if both by,, and by, intersect each other above bottom edge, then vcHp, and

(c) if neither (a) nor (b) is satisfied, then v is a potential vertex.

Proof (a) By Lemma 9(¢), by, would not intersect with [, for all z € H and v would be a vertex in
Hy (Lemma 5). (b) The intersection of b,,, and by, above the bottom edge implies that v would
lie outside Oy,u,. Since it is assumed that the parent of n(v) intersects IR, either n{v) intersects IR
or n{v) is the first (lowest) chord during the tree traversal not intersecting fR. Thus veHp by the

definition of INH. (c) By the definition of potential vertex. o

Before describing the whole algorithm in detail, we shall consider how and why the tree traversal
works. The pruning only applies to those chords above edges in D, i.e., edges in Hy and diagonals
of H and that do not go through the IR. For example, as shown in Figure 5, n{v3) above diagonal
T10s, nv12) and n(vi3) above diagonal Tigoz5, nwos) above diagonal T35 and n{vas) above diagonal
T75034. By the time the nodes in Tp corresponding to these chords are visited, the endpoints of their
associated diagonals, i.e., edges in D, should have been traversed and identified. For example, when

n(v12) and n(v13) are visited, n(vio) and nves) should have been visited, Thus we can determine the
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IR extended above the diagonal Tig7zs, i.e., Ougus, and whether a chord above that diagonal can be
pruned or not. When v is visited, and after the application of Action A on Ly, and Lg, the bisectors,
by, and by, , are closely related to the pruning. If b,,, intersects [, above the bottom edge, O,,,
would lie totally below nL('u) and pruning can be applied at nl'(v). Alternatively, if b,,,, intersects the
bottom edge and not [,, some portion of O,,, would lie above nL(v) and pruning cannot be applied

at 2L(v). Similarly for by, and L.

Theorem 5 After the application of Action A, let u. and w. be the top elements in Ly and Lp
respectively. We have the following cases will happen when v is being visited (note that nl(v) and
n®(v) might be null) (refer to Figure 8)

(a) The subtree rooted at nt(v) is pruned during tree traversal iff by, crossesl,,

(b) The subtree rooted at nP(v) is pruned during tree traversal iff b, crossesl,,

() 3

H
'
v
i
i
'
i
i
.
i
'
'
'
i
'
i

Case (1) Case(2) Case (3)

Figure 8: The cases on pruning

Proof The proofs for (a) and (b) are similar and only the proof for (a) is shown. Bisector b,,,
intersects with [, iff O,,, lies totally below v iff all chords above n’(v) do not intersect IR iff nl(v)

can be pruned. a

The above theorem describes the condition when a subtree can be pruned. Subtrees are pruned
as long as their corresponding INH’s do not contain any IR region. When a subtree is pruned,
the corresponding pruned portion of the normal histogram is a smaller normal histogram with the

pruned chord, i.e., the root of the subtree, as its bottom edge. For example, the pruned portion
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(a8, V29, V30, V31, Va2, Vag) 1s an N H with T2gT2g7 (the pruned chord) as bottom edge. The Voronoi
diagrams of pruned portions can then be constructed recursively.

We shall describe Action B to be taken when v is visited after the application of Action A on I,
and Lgp. Note that in the following discussion, the tree traversal will be pruned at nL('v) or nR(v) if
they are null.

(2) If by,u and by, do not cross I, then we have v € Hy (Theorem 4). The tree traversal will be
continue with the subtree rooted at n(v), Ly, remained as its left stack and v as the bottom element
in its right stack. Similarly, the traversal of the subtree rooted at nf(v) will have Lg remained as its
right stack and v as the bottom element in its left stack.

(b) If by, and by, intersect each other above the bottom edge, then v is in Hp, otherwise, if at
least one of them crosses [, v is a potential vertex {Theorem 4).

o If b, intersects I, then n¥(v) is pruned (Theorem 5) and the N H represented by the subtree
rooted at n {v) will be solved recursively if nZ(v) is not null. If b,,, does not intersect I,, the tree
traversal on n”(v) will be continued with v pushed into the right stack, Lg.

o If by, intersects I, then n®(v) is pruned (Theorem 5) and the N H represented by the subtree
rooted at nR(v) will be solved recursively if nR(v) is not null. If by, does not intersect Z,, the tree
traversal on n®(v) will be continued with v pushed into the left stack, L.

(c) If both nP(v) and nP(v) are pruned, all the vertices in Ly, and Lg will become vertices in Hy.

3.4 Complexity analysis

Our method for constructing the Constrained Voronoi diagram of a simple polygon P mainly relies
on the efficiency of the identification of the /N Hs from an N H. Since the identification for different
IN Hs is executed recursively, we shall only consider the root INH of an NH.

As described previously, when we traverse tree Tp of an N H to identify an INH, we visit each



vertex of the /N H exactly once. Those vertices have not been visited in the traversal of Tp cannot
belong to the root /N H. Therefore, we only need to show that each visited vertex is tested in constant
times in order to classify it as a vertex in Hy or in Hp.

Let us consider a vertex v. In the test, v can be classified into one of the three types: (i) veHy,
(1) veHp, and (iii) v is a potential vertex. In type (i}, v is stored in the list of vertices representing
Hy. In type (ii), v is stored in the hst of vertices corresponding to a particular Hg. Note that each
vertex in Hy or potential vertex can have a list of vertices corresponding to its associated Hp. If the
potential vertex, separating the two lists of vertices corresponding to two Hg’s, has been determined
to be in Hp, then these two lists of vertices have to be merged together. Vertex v will never be tested
again. In type (iii), v is stored in the left or right stack and could be repeatedly tested when the
descendants of v are visited (Action A). However, once vertex v is identified to be a vertex in Hy or
Hp, v will never be tested again. Thus, we can argue that the time for visiting a vertex is constant
when amortized over a sequence of tests. To see this, our analysis assumes that one unit credit should
have been assigned to each potential vertex in Ly, and Lr. Two unit credits are needed for each test,
one for the cost in carrying the test itself and the other is for assigning to the vertex should it be
identified as a potential vertex. The test on a vertex in Ly, or Lg to determine whether or not it is in
Hpg (Action A) will be paid by the unit credit associated with the vertex.

It is not difficult to see that linked lists can be used to keep track the vertices in Hy and Hp’s. In
particular, insertion and concatenation operations on Hy and Hg’s can be executed in constant time.
The time complexity analysis for constructing of Voronol diagrams of INH, NH, and P is obvious as

described in the previous sections. We shall conclude the above analysis by the following theorem.

Theorem 6 CDT(P) can be found in @(| P |) time for simple polygon P.
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4 Concluding Remarks

In this paper, we presented a deterministic algorithm for finding the Constrained Delaunay triangula-
tion of a simple polygon with n sides in ©(n) time in the worst case. This may be the first linear-time
algorithm for non-arbitrary triangulation of a simple polygon.

In the definition of Delaunay triangulation, we can check whether a triangulation is Delaunay by
studying vertices within local proximity. It should not be surprising that the Delaunay triangulation
and the constrained Voronoi diagram of a simple polygon can be done in linear time after given the
Chazelle’s horizontal visibility map, which links vertices within proximity together. The horizontal
visibility maps are helpful to decompose the polygon into components such that ‘divide and conquer’
approach can be applied. However, if the decomposition of the polygon into components is not
carefully done, interaction of the Voronoi diagrams of the components may be more than linear (even
quadratic time). From Theorem 1, the partition of the polygon into components by chords has the
advantage that the Voronoi diagrams of the components at the same level would not interact each
other, i.e., horizontal interaction can be reduced. Moreover, because of the property of Hy, interaction
of Voronoi diagrams of components at different levels can also be confined, i.e., vertical interaction
can be eliminated.

With our linear-time algorithm, the following related problems can also be solved efficiently.

(1) All nearest (mutual visible) neighbors of the vertices of a simple polygon.

(2) A shortest diagonal of a simple polygon.

(3) A largest inscribing circle of vertices of a simple polygon.

(4) The nearest vertex from a query point.

(5) Finding DT'(S) if the Euclidean Minimum Spanning tree for a point set 5 is given.

(6) Finding standard Voronoi diagram for S’ if the Voronoi diagram of a point set S is known,

where §' C §.
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Appendix: The algorithm

The following global algorithm summarizes the above ideas.

Algorithm Find(CDT(P))

Input: A simple polygon, denoted by P.

Output: CDT(P).

Method:

(1) Construct a tree T’ of psendo-normal histograms from P.

(* The decomposition is based on the horizontal and vertical visibility map of P
which can be obtained in [Chaz90). Each PN H is converted into an NH. *)

(2) For (every NH in T, say H) Do
(a) Obtain a tree Tp.

{(* By using the horizontal visibility map of NH. *)

(b) Identify the IN H w.r.t. the bottom edge n(v,) of NH by INH(Tp, n(v,));

(* The procedure INH traverses Tp from root n(0) to produce an Hy and

a set of attached Hg’s. The non-traversed part of Tp consists of a set of

subtrees representing the smaller ¥ H’s of H that contain the /N H’s of high levels. *)
(c) Recursively apply procedure INH to each remaining subtree.

(* The recursion results in a tree Tr of IN H's, where each IN H consists of an Hy and
a set of attached Hg’s. *)

(3) Construct V(N H) by merging V.(INH)’s in Ty, and V(P) by merging V(N H)’sin T.
(* Obtain V.(Hv) and V(H ) [AGSS89, DjLi89]. Then, for all N H’s obtain V(IN H)
by merging V.{Hy) and its V.(Hg)’s. Merge all V.(H) to get V.(P) *)

(4) Convert V{ P) into CDT(P).

In the procedure INH(Tp,n(v,)), the normal histogram H is represented by tree Tp with root

n() (the bottom edge). The resulting Hy is stored in a linked-list, denoted by C, each resulting Hp
is stored in a linked list, denoted by Q. For cach potential vertex z in Ly, (Lg), @ stores all those
vertices in Hp between z and its next vertex in Ly (Lgr). We use the notation @ « v to represent
the action of inserting v to the linked list Q.. When a potential vertex z in Lz(Lg) is identified as in
Hp, the two adjacent linked lists, @, and Q,, will be concatenated together, where y is the preceding

vertex of z in Ly, (Lg). Procedure Action A is to process Ly, and Lg as described in page 19, the

vertices identified are put into its corresponding Q..

U = U1y W = U Vo = V13 C o (01,0, )8 ST — (L, — vy, Lp + vy); (* Initialization *)
Procedure INH(T,n(v,)) (* return (C,Q) *)

1 Action A (v,Lg, L, %, W)
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case (a) (by,, crosses by, above n(v)) Then Q, « v;
If (both b, and by, cross [,) Then Ezst.
(* This branch contains no vertex of the JNH *)
2 Action B
case (b) (both b,,, and b,,, do not cross I,) Then C « ».
(* v belongs to the vertices of Hy. *)
case (€) (by,u Of byw, crosses I} Then Push(s,5T);
(* v is put on the potential vertex stack Ly or Lp. *)
3 If (by, does not cross I, and T% is a diagonal) Then
INH(zR(v), n(v,)):
4 I'f (by, does not cross I, and T4 is a diagonal) Then
INH(n (v), n{v,)):
(* further examine the subtrees of n(v) according to Theorem 4 *)
EndProcedure
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