——COMPUTER STUDIES PUBLICATION —

FORMAL SPECIFICATION AND IMPLEMENTATION
OF A CHINESE DICTIONARY

K.P. Chow and C.T. Hung

Technical Report TR-87-06

April 1987

B
CENTRE OF COMPUTER STUDIES AND APPLICATIONS meemmmsnssd

UNIVERSITY OF HONG KONG
POKFULAM ROAD
HONG KONG

UNIVERSITY OF HONG KONG
LIBRARY

This book was a gift
from
Computer Centre, HKU

Formal Specification and Implementation of a Chinese Dictionary*

K. P. Chow and C. T. Hung"*

Computer Studies
University of Hong Kong

Abstract

Dictionary organization is a fundamental problem in computer
science. Numerous works have been done on specifying and
implementing the English dictionary. On the other hand, there is no
published work for the Chinese dictionary. Since the Chinese dictionary
is quite different from an English dictionary, we present here a formal
specification and an implementation for a Chinese dictionary.

A Chinese dictionary consists of four components: a set of zis
(ideographs), a zi dictionary, a set of cis (words), and a ci dictionary. The
set of zis and the set of cis is huge. The number of zis is more than
10,000 and there are about 6000 commonly used ones. The number of
commonly used cis is more than 20,000. On the other hand, the zi
dictionary and the ci dictionary is input method dependent. We present
here a input method independent formal specification and an
implementation based on the pinyin input method. The whole dictionary
is stored in less than 700 Kbytes.

*This research is partially supported by the Hong Kong and China Gas Company Lirmted
Research Grant.

"*An earlier version of this paper was prepared while the first author was visiting Univer-
sity of California, Los Angeles in 1985.

1. Imtroduction

Dictionary organization is a fundamental problem in computer
science. For practical use (e.g., for spelling checking) an efficient
implementation of the dictionary would save resources. For Chinese
information processing, such as Chinese word processing, an efficient
dictionary organization is very important. Since the processing of Chinese
characters or words is quite different from English, it is worthwhile to
study the implementation of a Chinese dictionary.

Before looking at the dictionary, let us consider different input
methods for Chinese. For an English dictionary, a string of characters
represent a word. On the other hand, there are over several thousands of
Chinese characters, each character is itself represented by a code-string.
Therefore, a character dictionary is required. In addition, we also need a
word dictionary to store Chinese words. Different methods have been
used for Chinese character input. Some of the popular ones are: codes
used in telegram, 4-corner code (A 75 15), pinyin ({3% =1), and
cang-xie (72 %F:). Table 1 gives examples for these different methods.

Character _ Pinyin ___ Cang-xie _ Telegram code _ 4-comer
i a NLMNR 0759 6102,
= ai YRHV 0755 0073,
b ai BBPE 1947 2044,
%= ai QIOK 2179 5303,
= an v 1344 3040,
5 ang AHUL 2491 6072,

Table 1. Examples of Different Input Methods

This paper emphasizes on the implementation of the dictionary instead of
input methods. Throughout the rest of the paper, pinyin is used for
illustration, while the general idea can be applied to any method.

Chinese words are divided into two categories according to the way
they can be represented: permanent and transient. The permanent words
are listable, though there is a large number of them. On the contrary,
there are unlimited number of transient words. For examples,

[|
EAEIES
o

+ 18 A

The permanent word dictionary requires an efficient implementation and
its design is presented first. The transient words can be generated from
regular expressions, presented last briefly. One important point is that the
regular expression not only generates the legal transient words, but also
generates some illegal words!

2. Terminology

Each Chinese character is stored as a bitmap (1deograph) Each
ideograph is called a zi (%). The collection of all the zis form the zi
universe (ZIu). Each zi is addressed by an index. Let charset be the
alphabet for input. Its actual value depends on the particular input method
being used. For example, 0-9 for 4-corner code, A-Y for (cang-xie), and
about 50 latin pinyin symbols! for pinyin. A code is a non-empty string
from charset. Codeset is the set of all possible input codes. In general,
each code may correspond to zero, one or more zis. In some input
methods, each zi has an unique code, e.g., cang-xie. The zi dictionary
(ZID) is a data structure implementing this relationship. Besides a zi
dictionary, there is also a Chinese word dictionary. A Chinese word is a
string make up of two or more zis, it is called a ¢i (?ﬁ). The collection
of common used cis form the ci universe (Clu). The relation between the
input codes (zis) and their corresponding cis is incorporated in the ci
dictionary (CID). Table 2 summarizes these definitions.

Ideograph :A chinese character (a bitmap).

Zhu : Set of all ideographs.

charset : Character set of input code (e.g. Pinyin characters and 4-corner
digits)

Codeset : charset™

ZICODE : An input code of a ZI. An element of Codeset.

Usually the English alphabet is used to represent the pinyin. Since the number of pinyin
symbols is larger than 26, some pinyin symbols are represented by more than one letter.

-4 -

ZICODEs :Set of input codes of ZIs. A subset of Codeset.

ZID : ZICODEs x 22/ A relation from set of input codes to the set
of ideographs.

CIL: %n orderéd%uple of ZIs (Ideographs).

Clu: W ZIW' where ZIu' means the set of ordered i-tuple of ZIu, N

=1
is the maximum number of zis in a c1. N is implementation
dependent.

CICODE : An input code of CI. An element of ZICODEs™.

CICODE:s :Set of all codes of Cls.

CID: CICODEs x Clu.

Table 2. Some Definitions

3. Specification of Chinese Dictionary

This section describes a formal algebraic specification for the Chinese
dictionary. We first describe different operations on the Chinese
dictionary. Then the formal algebraic specification is presented. The
method by Guttag and Horning [4] is used.

3.1. Zi dictionary

Following is the set of operations that can be performed on the zi
dictionary. New_ZID is the function that creates an empty zi dictionary.
A new zi with its corresponding code is added to the dictionary by the
function add_zi. With add_zi, the new ideograph is added to the ZIu, and
an index is returned. The index is then linked with the code and added to
the zi dictionary. Is_zi is a function to check if a given zi code
corresponds to an existing zi in the dictionary. It returns true if the zi has
been added to the dictionary before. Finally, retrieve_zi is to retrieve the
ideograph(s) corresponding to the given code in the zi dictionary. An
empty set is returned if no zi has been added for that code.

Table 3 is the formal definition of the zi dictionary:

Domain definitions

New_ZID :— ZIu x ZID

add_zi: ZICODE x Ideograph X ZIu X ZID — Zlu x ZID
is_zi: ZICODE % ZIu x ZID — Boolean

retrieve_zi :ZICODE x ZIu x ZID — Set of ideographs

Axioms

Declare X, xq : ZICODE,
y, ¥1 : Ideograph,
U : Zly,
D : ZID.

is_zi (x, New_ZiD) = False
is_zi (x, add_zi (x, y, U, D)) = True
add_zi (x, y, add_zi (x1,y1, U, D)) = add_zi (x,y,, add_zi (x, y, U, D))
retrieve_zi (x, U, D) =
If (U, D) == add_zi (x, y, Uy, D) (for some ZIu U and some ZID D)

then {y} w retrieve_zi (x, U,D1)
else &

Table 3. Zi Dictionary

3.2. Ci Dictionary

The operations for the ci dictionary are similar to those for the zi
dictionary. These operations depend on the operation for the zi
dictionary. For the function add_ci, all of the zis that occurs in the new
ci to be added must have been added to the zi dictionary. Otherwise, an
error will occur. Two ci checking functions are provided for convenience.

-6-

One is for checking if an input code corresponds to an existing ci in the
CID (is_ci_code). The other checks if an ordered list of zis forms an
existing ci (is_ci). Two functions are needed because one input code may
correspond to more than one zi. Table 4 summarizes the specification for
the ci dictionary.

Domain definition New_CID :— Clu x CID

add_ci: CICODEs x CI x Clu x CID — Clu x CID
is_ci: CI x CIu x CID — Boolean

is_ci_code :CICODEs x Clu x CID — Boolean
retrieve_ci :CICODEs x Clu x CID — A set of CIs

Axioms

Declare X, X, : CICODE,
Y, Y 11 CI,
U : Clu,
D: CID.

is_ci (Y, New_CID) = False
is_ci_code (X, New_CID) = False

add_ci (X, Y, U, D) = ERROR
if Not (V y € Y, is_zi (y, ziu, zid))
where ziu is the current ZIu, and zid is the current ZID.

add_ci (X, Y, add_ci (X,Y,, U, D)) =add ¢i (X1,¥, add ci (X, Y, U,
D))
if add_ci (X1,Y,, U, D) # ERROR
and add_ci (X, Y, U, D) # ERROR.

is_ci (Y, add ci X, Y, U, D)) = True
if add_ci (X, Y, U, D) # ERROR.

is_ci_code (X, add_ci (X, Y, U, D)) = True
if add_ci (X, Y, U, D) # ERROR.

retrieve_ci (X, U, D) =
If D==add ci (X, Y, Uy,Dy) (for some Clu U; and some CID D)
then {Y} w retrieve_ci (X, U,D)
else &

Table 4. Ci Dictionary

4, Implementation of the Chinese Dictionary

In this section, an implementation of the dictionary of permanent
words is discussed, and the storage analysis is given in the next section.
The whole dictionary consists of the following components:

* Zi Universe

e Zi Dictionary

¢ Ci Universe

o Ci Dictionary
The implementation of the dictionary presented here can be expanded
dynamically and the storage utilization is also efficient. Each part of the
dictionary consists of two components: the main data area and an overflow
area. During the initialization phase, e.g., an application software requests
usage of the dictionary, the dictionary is initialized with everything thing
in the main data area. Overflow area is for dynamic expansion.

The implementation of the dictionary given here is based on pinyin

input method. Table 5 gives some notations used throughout the paper.

Notation Representation Size Approximate
total number
abe phonetic symbols | 1 byte 26
F_t]ng] fci] | pinyins 2 bytes 500
A E ideographs 2 bytes 6,000
(A EE] | Chinese words 2 bytes 20,000

-8-

Table 5. Some Notations

The zis and cis are indexed by sequences of pinyin symbols. Each pinyin
corresponds to more than one zis. Details are given below.

4.1. Zi Universe (ZIu)

The ZIu initially consists of about 6000 commonly used ideographs.
Though each ideograph is a bitmap, it is treated as a single unit. Let us
consider the main ZIu area first. This area can be viewed as a set of
ordered pairs of indices and bitmaps (N, bitmap), such as:

(LY, QE),GE),4B), %), ..)2

Each ideograph is uniquely identified by its index. Since the zis are
stored sequentially in the main area, it is not necessary to store the index.
Furthermore, all zis with the same pinyin code are stored adjacent to each
other to facilitate searching. The overflow area is used for expansion, i.e.,
adding zis. In general, zis may be added in any order. Therefore, a
pointer is stored with each zi to link with other zis of the same code to
form a linear list in the overflow area. Fig. 1 shows part of the ZIu of a
pinyin dictionary. Fig. 2 shows part of the overflow area.

ey

5

a

& | &

Fig. 1 Part of the Zlu

This mapping depends on the pinyin input method. GB2312-80 is the standard coding
scheme used in China. A one-one mapping can be established between the index used here
and GB2312-80.

%

s
%?%}

i
&t

"

v

NI

Fig. 2 Part of the ZIu Overflow Area

The ZIu is indexed by the zi dictionary, ZID. Given an input code,
we can find the index to the ZIu from the ZID. In general, the input
codes of zis are of varying size, e.g., phonetic spellings for pinyin input
method. An appropriate data structure for ZID is the trie. This is called
the zi trie. A trie is a tree in which the branch at any level is determined
not by the entire key value but only by a portion of it [5]. In the zi trie,
the branching at the ith level is determined by the ith character of the
code. In our pinyin dictionary, the phonetic spellings of zis at the
beginning of the ZIu are:

{a, ai, an, ang, ao, ba, bai, ban, bang, }

Fig. 3 is a picture description for this part of the zi trie.

- 10 -

BEIADN

[[el Jolee)] [a]@a]]
o] [ol]

¢ e

Fig. 3 The Zi Trie

In order to utilize storage efficiently, we used a linear representation for
the zi trie instead of a pointer representation, i.e., the trie is stored using
an array.

Each node of the zi trie is a variable size list of structures. Each
structure is one of the three possible types:

¢ Grey: an ordered triple of a phonetic symbol, a pointer to
the next node, and a representation of the pinyin.

¢ Black: an ordered pair of a phonetic symbol and a pointer to
the next node.

o White: an ordered pair of a phonetic symbol and a
representation for the pinyin spelling.

Fig. 4 is a picture description of different kinds of structures.

- 11 -

Black
White

Fig. 4 Node Structure of the Z1 Trie

The phonetic symbol in each structure is part of the whole key, and it
1s used to construct the original key. Key values in structures along a
path from root to a grey node or a white node represent a valid pinyin
code. We called this vahd pinyin a coded-pinyin (the # in Fig. 4). In
implementation, it is the index to the zi universe. The nodes of the trie
are varied in size since the number of different phonetic symbols appears
as the ith character of a spelling is different. A node can bave at most 26
children (set of all possible phonetic symbols). The structure of a node
are stored together sequentially for sequential search through a node to
locate a correct partial key. Adding an extra field to the beginning of a
node and some modifications to the node structure allow binary search.
More modifications are required for a dynamic expandable dictionary. All
these modifications would be shown in the implementation of the ci
dictionary.

A more efficient implementation is available for pinyin zi dictionary.
This implementation may not be applicable to other input methods
because this method is based on some characteristics of the pinyin
structure. With some study of pinyin method of Chinese characters, we
found that the pinyin of a zi can be divided into 2 parts — an initial (%
T) and a final (%lé B) [7]. Intials and finals are the actual phonetic
symbols in pinyin while ‘‘phonetic symbols”” has been used to refer to the
possible characters used for pinyin in previous sections. There are also
different kinds of finals: single finals, nasal finals, and compound finals.
All initials and finals are non-empty strings of characters. Furthermore,
there are only 21 initials and 36 finals. By making use of this properties,

-12 -

we can implement the zi dictionary with a table. The rows are indexed
with initials and the columns are indexed with finals. An extra row
indexed by null is needed since there may be phonetic spellings with
finals only. Fig. 5 displays part of this construction.

finals (%E)
initials (B2 BF) | a | o | e | -i| er | ai

b ba bo bai

p pa | po pai

m ma | mo | me mai

f fa fo

d da de dai

t ta te tai

n na ne nai

1 la le lai

Fig. 5 Initials Finals Combination Table.

Each table entry (representing a certain pinyin) consists of 3 parts:

1. Anindex to ZIu (main area) for the first zi having the phonetic
spelling (or pinyin).

2. An integer which is the number of zis of the pinyin that can be
found in the main area of ZIu.

3. Another index pointing to first zi of that pinyin in the overflow area
of ZIu.

As shown later, this implementation occupies less storage than the zi trie.

4.2. Ci Universe (CIu)

There is no need to store the bitmaps in the ci universe (Clu). Indices
to the ZIu are used to refer to the zis making up a ci. The cis can be
divided into different groups according to their length. There are tables of
2-ideograph cis, 3-ideograph cis, ..., in the Clu. The number of these
tables depends on the length of the longest word. Usually, the maximum
length is five. Words usually contain no more than five ideographs. The
2-ideograph table is a list of ordered pairs of indices to the ZIu. Each pair
represents a legal word of two ideographs. Words with the same phonetic

-13 -

spelling are grouped adjacent to cach other. Only one index 1s necessary
to address a group of ideographs with the same phonetic spelling. The
arrangement can be pictured in Fig. 6 below.

GEIEED EEDTED
aiban aidai anhao

Fig. 6 The 2-ideograph Table

The 3-ideograph table is a list of ordered triples of indices to ZIu.
Each of these triples represents a word of three ideographs. Similar to the
2-ideograph table, the words with the same phonetic spelling are stored
adjacent to each other. Fig. 7 is an example.

EEEIIEREN

[ai,ge.er] [an,mian,yac]

Fig. 7 The 3-ideograph Table

- 14 -

In general, n-ideograph table is a list of ordered n-tuples of indices to
the ZIu. Each of these n-tuples represents a word of n ideographs. The
words with the same phonetic spelling are stored adjacent to each other.
To allow it to be dynamically expandable, a header node is added to each
group of cis with the same pinyin. The header node consists of two
pieces of information:

number of cis found in that group
a pointer to first ci with the same pinyin in the overflow area

The overflow area consists of cis being added dynamically. It is also
separated into several areas according to the length of cis, that is, 2-
ideograph cis are added to one table, 3-ideograph cis are added to another,
and so on. Similar to the ZIu, an extra pointer is added with ci in the
overflow area to keep the cis with same pinyin in a linear list,

4.3. Ci Dictionary

The zi dictionary is indexed by pinyin of the zis which are sequences
of characters. Using pinyin input, the ci dictionary is indexed by
sequences of pinyins of words. Each ci is a sequence of zis and each zi is
a sequence of pinyins. So the ci dictionary is implemented as a trie with
the nodes at the ith level being a representation of the ith zi of a ci. This
representation is the coded-pinyin of the zi. The actual zis that
correspond to a ci are stored by the zis index to the ZIu. Fig. 8 is an
abstract picture for part of the ci trie of our pinyin dictionary. A coding
scheme uses less storage without losing any efficiency. Since all zis with
the same pinyin are stored together, a zi can be retrieved by its pinyin
together with its displacement from the first zi in the list. This trie is
called the ci trie.

-15 -

Fig. 8 Detail of a Ci Trie

In our pinyin dictionary, each internal node of the ci trie is also a
variable list node structures. Similar to the ZID, each node is a union of
3 possible types of structures:

* Grey: an ordered triple of a coded-pinyin, a pointer to the
next node, and a pointer to the Ci table.

s Black: an ordered pair of a coded-pinyin, and a pointer to the
next node.

e White: an ordered pair of a coded-pinyin, and a pointer to the
dictionary table.

The coded-pinyin in the structure is part of a word. For the grey
nodes and the white nodes, the pointer to the dictionary table represents
the word(s) constructed from the sequence of coded-pinyin along the path
from the root of the trie to the current node. Depending on the level of

- 16 -

the node, the pointer points to the appropriate ideggraph table, e.g. the
node at level 3 points to the 3-ideograph tal_ale. Fig. 9 is a detail o
description of the ci trie with the words “‘aiban’’ (iR) and ““aidai”* (

).

Fig.9 The Ci Trie

The implementation is similar to the zi trie with the following
exceptions:

1. The phonetic symbol in the zi trie is replaced by the coded-pinyin
in the ci trie.

2. The coded-pinyin in the zi trie is replaced by the pointer to the
dictionary table in the ci trie.

Another major difference between zi trie and the ci trie is the size of a
node in the ci trie is much bigger than the one in the zi trie. In the zi trie,
the maximum number of structure in one node is 26, while in the ci trie,
the maximum number of structure is about 400 (from a counting of a
phonetic spelling dictionary, the number of different phonetic spellings is
416). The node structure is modified to allow binary search on a node. A
header containing a number which is the size of the node is added to each

-17 -

node. The structure is also modified to be uniform in size. The grey node
is changed 10 a 4-byte structure, with the first two bytes storing the
coded-pinyin, and the second two bytes storing a pointer to an ordered
pair. The ordered pair contains a pointer to the dictionary table and a
pointer to the next node. The ordered pair is stored outside the node. Fig.
10 is a pictorial description of the modified structure.

Grey ; # ; node
Black node
White

Fig. 10 Node Structure of the Ci Trie

Furthermore, in order to allow it to be expandable, we reserve
overflow area for each level of the ci trie. One extra field is needed at the
header of a node for the index to the overflow area.

5. Storage Analysis

We now give an estimate of storage utilization of the whole pinyin
dictionary. In the analysis, we assume that 1 byte consists of eight bits
and 1 K is 1024. For each part, we reserve 256 positions for overfiow.

5.1. Zi Universe

In Zlu, each zi is a bitmap. Research has been done on how to
compress the storage utilization for these ideographs. Some work has
been done on implementing this database in hardware for fast retrieval
and low storage requirements. This problem will not be discussed any
further. Our implementation stores each ideograph by a 24X24 bitmap.
Each bitmap can be represented by 72 bytes. The total storage required is
432 Kbytes for 6000 zis (72 x 6000). Two bytes are used to index a zi in

- 18 -

the Chinese National Standard Code for Information Interchange
(GB2312-80) [1]. In the overflow area, each zi is still 72 bytes long, but
one extra byte pointer is required for each zi. So, the zi universe requires
19 Kbytes overflow area ((72+1)x256).

5.2. Zi Dictionary

Consider the array implementation. The array contains totally 792
(22x36) entries. Each entry consists of 4 bytes:

e 2 bytes for index to main area of zi universe

o 1 byte for the number of zis (with the same pinyin) in the main
area

¢ 1 byte for index to the first zi of the same pinyin in the overflow
area

Hence, the zi dictionary requires 792x4 bytes, which is less than 4 K
bytes. Table 4 summarizes the storage requirement of the zi dictionary.

Parts Calculation Total (bytes)
Zi Universe 72 x 6000 = 432 Kbytes 432K
Zi Overflow (72 + 1) x 256 = 18688 bytes 19K
Zi Dictionary 22 x 36 = 792 entries
4 x 792 = 3168 Bytes 4K
Total (a) 455K

Table 4. Storage Utilization of Zi Dictionary

5.3. CiTable

The storage utilization of the ci tables depends on the dictionary
implemented. Qur analysis confines to an implementation of the
dictionary BEEHEFARE [3]. The number of commonly used cis
of each length is found and used in the analysis. The maximum length of
ci allowed is six. When we are retrieving a ci, we should have gone
through the ci trie already. Since we have a field of coded-pinyin of each
zi in the ci trie, we can find the group of zis with that pinyin in the zi
universe. Actually, we can use the index to the first zi of the pinyin as a

-19 -

representation of coded-pinyin. Therefore, it is not necessary 1o keep a
2-byte index for each zi of the ci in the ci table. We only require, for
each zi of a ci, an offset from the first zi of that pinyin. One byte is
enough for each zi. So an n-ideograph ci requires n bytes storage in the
table. About 34 Kbytes is required to store all cis. Each group of ci with
the same pinyin is proceeded by a 2-byte header. One byte for the
number of cis in that group, and one byte for an index to overflow area.
Since there are totally 15,435 ci in the ci table, so 30 K bytes (15,435x2)
would be a loose upper bound for the storage requirement of the headers.
Besides, different overflow areas are reserved for cis of length two to six.
As in the ZIu, one more pointer is stored together with each ci in overflow
area. Therefore, an n-ideograph ci requires n+1 bytes storage. 7 Kbytes
are required for the overflow area of ci table. Table 5 summarizes the
storage utilization of the ci table.

Types Entries Size

2-ideograph cis (2 bytes) 11993 23986

3-ideograph cis (3 bytes) 3376 10128

4-ideograph cis (4 bytes) 62 248

5-ideograph cis (5 bytes) 2 10

6-ideograph cis (6 bytes) 2 12
Subtotal 15435 34384

Heading node for each group

of ci with same pinyin

2 x 15435 = 30870 30K

Overflow area of Ci table
(n+1 bytes of each n-ideograph ci)
3 x 256 = 768 Bytes
4 x 256 = 1024 Bytes
5 x 256 = 1280 Bytes
6 x 256 = 1536 Bytes
7 x 256 = 1792 Bytes
Subtotal 6400 Bytes 7K
Total (b) 71K

Table 5. Storage Utilization of Ci Table.

-20 -

5.4. CiTrie

Ci trie is the second largest area in the pinyin dictionary. The basic
unit of memory cell of the ci trie is two bytes long. The pointer to the
dictionary table is two bytes, and the size of the coded-pinyin is also two
bytes. Actually, 10 bits is enough for the coded pinyin. Two bits from
this field can be used for distingushing different types of node structures.
If the whole trie can be implemented within 128K bytes (verify later), two
bytes are enough to store a pointer. The header of each node requires 2
bytes: one for the number of different structures in that node, another is
an index to the overflow area. In the first level, all structures must be
black nodes. 416 node structures are needed at this level. Hence, it
requires 4164 bytes and a header of two bytes. For the second level,
there may be occurrence of all 3 kinds of nodes. It is not difficult to see
that there are (11,993 + 3376 + 62 + 2 + 2) 4-byte structures in level 2.
For example, if the first two zis of a 3-ideograph ci do not form a ci, there
would be a black node in level 2 for that ci (4 bytes), otherwise, it would
be a grey node (8 bytes). We also count twice in the expression if it is
the later case. Other levels are counted similarly. Hence the ci trie adds
up to 85 Kbytes storage. In the overflow area, 5-byte structure are used (1
more byte for pointer) and 256 positions are reserved for each level. It
requires totally 14K bytes.

Summing up all these entries, 625K bytes are required for the whole
dictionary. A summary of the storage analysis is given in Table 6.

Since the size of the overflow area is limited, reorganisation of the
database may be required if the database is expanded frequently. For
convenience, one may allow expandable overflow area, but it should be
noted that if the overflow area is allowed to be expanded to have more
than 256 positions, those pointers into or inside the overflow area should
also be enlarged.

-21 -

Level Calculation Total (bytes)
1st 416 x4 + 2 1666
2nd (11993 +3376 + 62+ 2+ 2) x4 + 2 x 416 62572
3rd (3376 + 62+ 2+ 2)x (4 +2) 20652
4th 62+2+2)x (@ +2) 396
5th QR+x@E+2) 24
6th 2xX@E+2) 12
Total 85322
Overflow area 256 x (4 + 1) x 6 = 14280 Bytes 14K
Subtotal (a) 455K
Subtotal (b) 71K
Total 625K

Table 6. Storage Utilization of the Ci Trie

6. The Transient Words

Besides the permanent words discussed in last section, there exists an
infinite number of transient words or temporary words. These transient
words are single word syntactically. Their usage in Chinese text is very
common. Unfortunately, it is impossible to list all of them. For example,
an infinite number of words can be constructed from a numeral, followed

by ge ({&), and followed by ren (Ny, such as:
yigeren (— /A (one person)
lianggeren (@ A) (two persons)
sangeren (= N) (three persons)
shigeren ('f’ & A) (ten persons)

In this section, methods to generate these transient words are

discussed. These methods do not cover all aspect of transient word
generation. They just provide some ideas of how to handle these infinite
sets of words. Implementation details are not presented.

-22 -

6.1. Numerals

The first group of transient words to be discussed is the numerals.
Similar t0 Roman numerals, there exists an infinite number of Chinese
numerals. These Chinese numerals can be generated by a regular
expression. Unlike Roman numerals, the regular expression can generate
some numerals that are illegal. This will not cause any problem since the
dictionary is used in detecting the existence of a legal word instead of
checking the correctness of a word. Following is the regular expression.

D(digin=—|Z | =@ & || |N B
N (number) = D*
c=T |8 |T |8 |8
N=@OCyY OO INEN
F (fraction) = C; 7 Z Cy |

BHZNI

NXFI

NEE N

N &

Since a regular expression can be represented by a deterministic finite
automaton, it can be implemented by extending the ci trie to a
deterministic finite automaton.

6.2. Numeral-Measure-Noun Combination

In English, the phrase ‘‘one pair of chopsticks’’ consists of the
following components: ‘‘one’” is a numeral, ‘‘pair’’ is ?E] measure, and
*‘chopsticks’” is a noun. In Chinese, the measure ge (1l) is used with
the noun ren (A), weniti (fa] &8), xuexiao ('E—ﬁ% B), and jihui (% =
). There does not exist any general rule that governs the Measure-Noun
combination pair. The only possible method is to list all of them. A
fairly complete list of these combinations is in Chao’s book [2]. Usually
the Measure-Noun pair is proceeded by a Numeral.

A specifier (SP) may exist in front of a Nu-M-N construct. Part of
the set of specifiers are listed as follow:

-23-

{zhe(iﬁ),na(ﬂﬁ),gc(%),di(%),tou(gﬁ)}

Other types of transient words that can be generated with the
combination of DFA and exhaustive listing are the place words and time

expression.

6.3. Affixes

Similar to English, there exist affixes in Chinese language. Affixes
are bounded morphemes that are added to other morphemes to form larger
units, Other affixes are grammatical morpheme indicating number and
aspect. Chinese has few affixes. The three kinds of affixes — prefixes,
suffixes, and infixes — are discussed in the following sections. The list of
affixes is extracted from Li and Thompson’s book [6].

6.3.1. Prefixes

Following is the list of prefixes and their constructs:

PREFIXES

lao (&)

xiao
di (
chu

/Ny

)
)

)
ke (®

hao (I)

nan (

6.3.2. Infixes

5E)

CONSTRUCT

lao-Surname
xiao-Surname
di-Numeral
chu-Numeral
ke-Verb
hao-Verb
nan-Verb

EXAMPLE

lao-Zhang (%J iR
xiao-Zhang (/I 3R)
di-liu (% 727)
chu-er {_I

ke-ai (ﬁ)
hao-kan (I &)
nan-kan (¥ &)

“de~"’ (7%) and “‘~bu-"’ (7F) are the only infixes in Chinese.
They are called potential infixes of verb compounds. For example,

shuo-de-gingchu (‘53 FEE)
shuo-bu-gingchu (B

6.3.3. Suffixes
Following is a list of common suffixes.

{ﬁxs)

-4 -

SUFFIXES CONSTRUCT EXAMPLE

-men]) Human Noun-men xuesheng-men (24) (students)
Human Pronoun-menwo-men { ®) (we)

xue () Subject Name-xue xinli-xue (DB (psychologist)
(equivalent to -ology)

ia () Subject Name-jia wulixue-jia (1 # £ 5) (physicist)
{equivalent to -isf)

zi (F) Noun-zi ti-zi (1% T) (ladden)

-tou (58) Noun-tou gu-tou (‘E" BE) (bone)

7. Summary

In this report, an implementation of the permanent word dictionary
and the construction of the transient word dictionary are discussed. The
permanent word dictionary provide a fundamental framework for the
Chinese dictionary. The transient word dictionary is augmented to the
permanent word dictionary. It is just a technique to compress the size of
the dictionary and store an infinite number of words. The tradeoff is that
some illegal words are stored. Since the goal is to store all legal words
instead of checking whether a word is legal or not, these minor defects
will not cause any problem.

8. References

1. National Standards Bureau, Code of Chinese graphic character for
information interchange (GB2312-80). 1980.

2. Y.R. Chao, A grammar of spoken chinese, University of California
Press (1970).

3. Hanyu pinyin cihui, , Wenzi Gaige Chubanshe, Peking (1958).
J. V. Guttag and J. J. Horning, The algebraic specification of abstract
data types, Acta Informatica 10 (1978), 27-52.

5. E. Horowitz and S. Sahni, Fundamentals of data structures in Pascal,
Computer Science Press (1984).

6. C.N.Liand S. A. Thompson, Mandarin Chinese: a functional
reference grammar, University of California Press, Berkeley (1981).

7. J. Sheng, A pinyin keyboard for inputting chinese characters,
Computer (January 1985).

225 -

LLLLLLLLL

Hllllll!ll\llllllllll Illllllllli!lllllllllllllllll}lli

X01553210

AP 495.13028 C5
Chow, Kam-pul.

Formal specification and
implementation of a
[1887]

	COVER
	Abstract
	1. Introduction
	2. Terminology
	3. Specification of chinese dictionary
	3.1. Zi dictionary
	3.2 Ci dictionary
	4. Implementaion of the chinese dictionary
	4.1 Zi universe (ZIu)
	4.2 Ci universe (CIu)
	4.3 Ci dictionary
	5. Storage analysis
	5.1 Zi universe
	5.2 Zi dictionary
	5.3 Ci table
	5.4 Ci trie
	6. The transient words
	6.1 Numerals
	6.2 Numeral measure noun combination
	6.3 Affixes
	7 Summary
	8 References
	COVER BACK
	CONTENTS

